
Coherent-feedback quantum control with a dynamic compensator

Hideo Mabuchi*
Physical Measurement and Control, Edward L. Ginzton Laboratory, Stanford University,

316 Via Pueblo Mall, Stanford, California 94305, USA
�Received 13 March 2008; revised manuscript received 2 September 2008; published 19 September 2008�

I present an experimental realization of a coherent-feedback control system that was recently proposed for
testing basic principles of linear quantum stochastic control theory �M. R. James, H. I. Nurdin, and I. R.
Petersen, e-print arXiv:quant-ph/0703150v2, IEEE Transactions on Automatic Control �to be published��. For
a dynamical plant consisting of an optical ring resonator, I demonstrate �7 dB broadband disturbance rejection
of injected laser signals via all-optical feedback with a tailored dynamic compensator. Comparison of the
results with a transfer function model pinpoints critical parameters that determine the coherent-feedback
control system’s performance.
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The need for versatile methodology to control quantum
dynamics arises in many areas of science and technology �1�.
For example, quantum dynamical phenomena are central to
quantum information processing, magnetic resonance imag-
ing and protein structure determination, atomic clocks,
SQUID sensors, and many important chemical reactions.
Substantial progress has been made over the past two de-
cades in the development of intuitive approaches within spe-
cific application areas �2,3� but the formulation of an inte-
grated, first-principles discipline of quantum control—as a
proper extension of classical control theory—remains a
broad priority.

It is natural to distinguish among three modes of quantum
control: open loop, in which a quantum system is driven by a
time-dependent control Hamiltonian in a predetermined way;
measurement feedback, in which discrete or continuous mea-
surements of some output channel of an open quantum sys-
tem are used to adjust the control actions in real time; and
coherent feedback, in which a quantized field scattered by
the quantum system of interest is processed coherently �with-
out measurement� and then redirected into the system in or-
der to effect control. The first two modes are entirely analo-
gous with classical open-loop and real-time feedback
control, and their relation to existing engineering theory is
now well understood �1�. The possibility of coherent feed-
back, however, gives rise to a genuinely new category of
control-theoretic problems as it encompasses noncommuta-
tive signals and quantum-dynamical transformations thereof
�8�. While some intriguing proposals can be found in the
physics literature �9,10�, relatively little is yet known about
the systematic control theory of coherent feedback �12�.

This paper describes an experimental implementation of
coherent-feedback quantum control with optical resonators
as the dynamical systems and laser beams as the coherent
disturbance and feedback signals. It is presented in the con-
text of recent developments in control theory �13–15�, which
have shown that optimal and robust design of quantum
coherent-feedback loops can be accomplished �in certain set-
tings� using sophisticated methods of systems engineering.

As discussed by James et al. in their seminal paper �13�,
quantum coherent-feedback theory generalizes the classical
theory of stochastic control by incorporating “signals” repre-
sented by quantum fields with noncommuting quadratures.
My setup parallels the quantum-optical example analyzed in
Sec. VII of their paper, with numerical parameters modified
to facilitate experimental implementation. James et al. have
shown that many canonical results of classical stochastic
control can be generalized to the quantum setting by exploit-
ing formal analogies between the usual Itô stochastic differ-
ential equations and quantum stochastic differential equa-
tions �QSDE’s� that arise in quantum field theory in a
Markovian limit �16�; the most immediate and familiar ex-
perimental setting in which QSDE’s are used for practical
modeling is quantum optics, and the work reported here re-
alizes the connection between experimental practice and the
theoretical advances of James et al. From the perspective of
quantum information science, the results presented here like-
wise represent a first step towards the goal of developing
embedded, autonomous controllers that can implement
feedback-stabilization protocols without ever bringing sig-
nals up to a classical, macroscopic level.

Figure 1 presents a schematic overview of the apparatus
and the coherent feedback loop. Two optical ring resonators
represent the “plant” and “controller” dynamical systems; the
control-theoretic design goal is to tailor the properties of the
controller so as to minimize the optical power detected at
output z when a “noise” signal �optical coherent state with
arbitrary time-dependent complex amplitude� is injected at
the input w. The component y of the noise beam that reflects
from the plant input coupler is treated as the error signal,
which is coherently processed by the controller to produce a
feedback signal u. As discussed in �13�, the controller should
properly transform both quadrature amplitudes of y to pro-
duce appropriate quadrature amplitudes in u. The latter sig-
nal is fed back into the plant resonator via the output coupler,
matched spatially to the same resonant mode driven by the
noise input w.

While this type of coherent-feedback loop is properly de-
scribed using quantum stochastic differential equations �as in
�13��, a simplified analysis can be performed using Laplace
transfer functions as familiar from classical linear control
theory �17�. This simplification here corresponds to the stan-*hmabuchi@stanford.edu
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dard practice of tracking only the mean values of quantum
observables, which is appropriate as long as all Hamiltonians
are linear and all input states are Gaussian. Following �13�
we exploit the basic insight that in coherent feedback one
can effectively ignore the fact that we have noncommuting
signal components in the loop and manipulate Laplace trans-
fer functions that apply simultaneously to both quadrature
amplitudes of the optical fields. The open-loop �without
feedback� transfer function of the plant resonator from the
input w to the output z can be written Gzw=−2�k1k4 / �s
+�p�, where �p is the total plant decay rate, k1 and k4 are the
partial rates associated with transmission through the input
and output couplers, and s is the Laplace transform variable
shifted to have value zero at the plant resonance frequency.
In terms of physical parameters �p=c�t1

2+ t2
2+ t3

2+ t4
2

+ l2� /4�Lp, where c is the speed of light, Lp is the round-trip
cavity length, ti

2 is the power transmission coefficient of the
ith mirror, and l2 represents all other intracavity losses. When
the feedback loop is implemented as shown in Fig. 1 with a
controller having transfer function Kuy, the overall �closed-
loop� transfer function from w to z becomes

S�G,K� = Gzw + Gzu�1 − KuyGyu�−1KuyGyw, �1�

where the additional transfer functions are given for our
setup by Gyu=Gzw, Gzu=1−2k4 / �s+�p�, and Gyw=1
−2k1 / �s+�p�.

The disturbance rejection problem can now be defined as
that of designing the controller so as to minimize the mag-
nitude of S�G ,K�. This corresponds to tailoring the coherent-
feedback loop in such a way as to minimize the ratio of the
optical power in the output z to that of the noise input w. If
we are interested in broadband disturbance rejection, it is
important to note that S�G ,K� cannot be made much smaller
than Gzw for all values of s if Kuy is independent of s. Thus a
simple proportional controller �for which Kuy is a complex
number� will not suffice; we require a dynamic compensator
with a nontrivial frequency response.

If we assume that our controller is itself an optical reso-
nator, and with some foresight parametrize Kuy as

Kuy =
2��K

�k1k4

s + �p − 2�k1 + k4� + ��

, �2�

it follows that S�G ,K�→0 for all s as ��→0 and �K→1.
Under these ideal conditions, zero optical power would be
observed by a perfect photodetector monitoring the output z,
for any coherent optical noise signal �mode-matched laser
beam with arbitrary time-varying complex amplitude� in-
jected at the input w. In practice it is difficult to implement
the ideal controller transfer function exactly, and there is an
additional challenge of perfecting the spatial mode matching
from the controller output to the u input of the plant cavity.
In modeling the experiment I thus include a factor � to ac-
count for imperfect spatial mode matching, �K to represent
deviation of the magnitude of Kuy from its ideal value, and
�� to represent deviation of the controller decay rate from its
ideal value of �p−2k1−2k4. Writing S��G ,K� to denote the
inclusion of a mode-matching correction, the ratio of the
optical power in z in the closed-loop case to the open-loop
case is then

�S��G,K�
Gzw

�2

= �1 � ��Sm�2 + �1 − ���Su�2, �3�

�with � for negative and � for positive coherent feedback�
where

Sm = Gzw
−1Gzu�1 − ��KuyGyu�−1KuyGyw,

Su = Gzw
−1KuyGyw.

With reference to Fig. 1, note that the resonance frequency of
the controller cavity is adjustable via the actuator PZT1 and
that the phase of Kuy is continuously variable via PZT2. In
practice these must both be set appropriately in order to
minimize the magnitude of S��G ,K�.

In my experiment the plant cavity is a four-mirror folded
ring resonator �as depicted in Fig. 1� with measured values
�p	9.3 MHz and Lp	14.1 cm. The controller is a four-
mirror ring resonator with measured decay rate �c
	7.3 MHz and length Lc	48.6 cm. The controller decay
rate can be adjusted using the intracavity variable attenuator
shown in Fig. 1. The injected signal at w, and thus the
coherent-feedback loop signals y, u, and z, derive from an
852 nm diode laser. The photodetector monitoring the output
signal z is placed behind an 852 nm optical-bandpass filter.
Additional laser beams from an 894 nm diode laser are in-
jected into both cavities in order to match the controller reso-
nance frequency with that of the plant. The carrier frequency
of the 894 nm laser is locked to the plant cavity resonance
�which is allowed to drift freely�; PZT1 is then used to lock
the controller cavity resonance to an electro-optic sideband
of the 894 nm laser that can be tuned over a frequency range
greater than the controller cavity free spectral range. Using
this arrangement it is straightforward to servocontrol the
controller cavity length so that its resonance frequency coin-
cides with that of the plant cavity for the 852 nm signal
beams.
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FIG. 1. �Color online� Experimental schematic showing the
coupled plant and controller resonators, variable attenuators PBS
HWP, piezoelectric transducers �PZT�, and photodetector �PD�.

HIDEO MABUCHI PHYSICAL REVIEW A 78, 032323 �2008�

032323-2



Disturbance rejection via coherent feedback is demon-
strated in Fig. 2. In order to generate this data the 852 nm
laser is servocontrolled to track the resonance frequency of
the plant cavity, thus ensuring that we initially probe all
transfer functions with s=0. In the upper subplot, the two
solid traces show the electronic noise floor �lower� and the
optical power level detected at the photodetector �PD� moni-
toring the output z in the absence of coherent feedback �up-
per�. When the coherent-feedback loop is closed, the optical
power in z is seen to depend strongly on the coherent feed-
back phase as set by PZT2. If the voltage on PZT2 is ramped
in order to vary the phase continuously the coherent-
feedback loop oscillates between positive and negative feed-
back �dashed trace�. The ratio of the minimum value of the
optical power in z, obtained with negative coherent feedback,
to the open-loop value yields an optimal disturbance rejec-
tion of approximately 7 dB. As the overall system is linear,
the input power of w is unimportant and drops out of the
analysis; values in the range of �100 �W were used in this
experiment.

The lower subplot of Fig. 2 presents a parametric plot of
the maximum �horizontal axis� versus minimum �vertical
axis� optical power ratios observed with �K ranging over a
set of values between 0.06 and 2.2 �adjusted using the vari-
able attenuator at the output of the controller cavity�. The
curve shows the prediction obtained from the transfer-
function model described above, where the values of ��, �,
k1, and k4 were adjusted within reasonable ranges to obtain a
good fit to the data. The values obtained in this way are ��

=�p /14, �=0.84, and t1
2= t4

2=0.002. These values for the
plant input- and output-coupler power transmission coeffi-
cients agree with witness sample measurements from the
mirror coating run when adjusted for the beam incidence
angle of 0.3 radians. The mode-matching factor � is in

agreement with a direct measurement ��0.85 obtained by
observing the ratio of TEM00 to transverse-mode transmis-
sion peaks, and �� agrees with the measurements of �p and
�c when t1

2 and t4
2 are set to 0.002. This comparison of data

with the transfer-function model thus confirms that the pa-
rameters affecting system performance are well known; it
follows from Eq. �3� that the s=0 disturbance rejection per-
formance is fundamentally limited by imperfect mode
matching �	1. The model also shows that for low-
frequency noise �small detuning�, a small error �� in the
controller decay rate can be overcome by adjusting �K. But a
high degree of broadband disturbance rejection �for noise
inputs with frequency spread comparable to �p� is not pos-
sible unless �� is carefully minimized.

The upper subplot of Fig. 3 displays data corresponding to
�single shot� swept-sine transfer function measurements of
Gzw �dashed� and S� �G ,K� under negative coherent feed-
back �solid�. These were obtained simply by scanning the
852 nm laser frequency over the plant cavity resonance and
recording the optical power in z. The ratio of the two traces
is shown in the lower subplot, which shows that suppression
is achieved over a wide range of noise signal frequencies and
thus establishes the broadband nature of the disturbance re-
jection. As the PD measures total optical power of z and the
observed suppression is independent of the phase of the co-
herent amplitude of w, coherent feedback is here seen to
operate simultaneously on both quadrature amplitudes of the
noise signal.

Finally, Fig. 4 shows that it is possible to stabilize the
path length of the coherent signal loop to maintain negative
feedback. In order to obtain a suitable error signal an elec-
trooptic modulator �EOM� is inserted in the y signal path as
shown in the top diagram. This EOM is driven by a high-
frequency ��1 MHz� sine wave; the signal from a photode-
tector �PD2� at an auxiliary output port of the plant cavity is
demodulated at this frequency to produce the error signal.
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FIG. 2. Upper: variation of the total optical power in output z as
PZT2 is scanned to change the coherent-feedback phase �note that
several periods of the triangle-wave voltage ramp are included, with
evident turning points�. Lower: parametric plot of the s=0 closed-
loop system response under positive �x coordinate� and negative �y
coordinate� feedback with gain mismatch �K ranging between ap-
proximately 0.06 and 2.2; see the text for an explanation of the
theoretical curve.
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FIG. 3. Upper: optical power in z as a function of detuning
between the input laser frequency and the plant resonance, corre-
sponding to swept sine measurements of �Gzw�2 �dashed� and
�S��G ,K��2 �solid�. Shoulders on the resonance peak are electro-
optic sidebands that were added to establish the frequency scale.
Lower: ratio of traces from the upper plot, confirming the broad-
band nature of the disturbance rejection.
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On the bottom of Fig. 4, the oscillating traces depict the
variation of the closed-loop output power in z �dashed� and
the error signal �solid� as the length of the feedback loop is
varied using PZT2. The minimum of the closed-loop output
power is seen to coincide with a zero crossing of the error
signal, thus making it possible to stabilize the coherent-
feedback phase via electronic feedback to PZT2. The open-
loop and phase-stabilized closed-loop optical output powers
in z �with the 852 nm laser locked to the plant cavity reso-
nance� are indicated by the flat traces in the plot.

While the experiment presented here has dealt only with
coherent optical states, the coherent-feedback disturbance re-
jection scheme should function without significant modifica-
tion for a very broad class of quantum noise signals. Existing
theory based on quantum stochastic differential equations
provides a rigorous basis for predicting the performance ex-
pected for squeezed-state inputs, and indeed the type of dy-
namic compensation demonstrated here is already of interest
for tailoring spectral properties of squeezed light for appli-
cations such as gravity-wave detection �18�. From an experi-
mental perspective it would be most interesting to test the
performance with non-Gaussian quantum states such as those
produced by photon subtraction �19�, which would push be-
yond the reach of current theory.

Even within the restricted scenario of Gaussian states, it
may also be noted that the coherent-feedback approach to
optical disturbance rejection should be capable of achieving
arbitrarily low power in the noise output z for an arbitrary
optical input power at w. In contrast, it seems intuitively
clear that any measurement-based feedback loop �in which
the results of broadband measurements on y are used to syn-
thesize optical states injected at u� that is capable of sup-
pressing coherent-state noise inputs with arbitrary nonsta-
tionary magnitude and phase should exhibit a disturbance
rejection noise floor such that there would be a minimum
optical output power at z even for vanishing power at w. This
would stem from the fact that the complex amplitude of a
coherent state noise input can never be measured perfectly
�in the “single-shot” sense relevant to this type of real-time
feedback�. For example, even an ideal balanced heterodyne
photoreceiver produces electronic photocurrent noise in the
absence of any real optical signal, whose fluctuations are
indistinguishable in any given time interval from the photo-
current that would be produced by a very weak flux of pho-
tons appearing at the signal port. These vacuum photocurrent
fluctuations would necessarily result in some sort of stochas-
tic low-level optical feedback to the control input u, and
therefore to output power at z, even in the complete absence
of any noise power at w. It clearly should be possible to
design a rigorous experiment that would demonstrate the su-
periority of coherent feedback as compared to measurement-
based feedback in this setting, but this would appear to re-
quire a fairly extensive quantitative analysis as well as some
experimental improvements to the stability of the apparatus.

This work was supported by the Air Force Office of Sci-
entific Research under Grant No. FA9550-07-1-0198.
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FIG. 4. �Color online� �a� schematic detail of the plant indicat-
ing additional photodetector �PD2� and electro-optic modulator
�EOM� used to generate an error signal for locking the coherent-
feedback phase. �b� oscillating traces depict the optical power varia-
tion of output z �dashed� and the coherent-feedback phase error
signal �solid� as a function of coherent-feedback phase. The flat
traces indicate the levels of optical power observed in output z with
no feedback �upper� and with the phase locked to the negative feed-
back condition �lower�.
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