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We analyze the finite-size corrections to entanglement in quantum critical systems. By using conformal
symmetry and density functional theory, we discuss the structure of the finite-size contributions to a general
measure of ground state entanglement, which are ruled by the central charge of the underlying conformal field
theory. More generally, we show that all conformal towers formed by an infinite number of excited states �as
the size of the system L→�� exhibit a unique pattern of entanglement, which differ only at leading order
�1 /L�2. In this case, entanglement is also shown to obey a universal structure, given by the anomalous
dimensions of the primary operators of the theory. As an illustration, we discuss the behavior of pairwise
entanglement for the eigenspectrum of the spin-1 /2 XXZ chain with an arbitrary length L for both periodic and
twisted boundary conditions.
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I. INTRODUCTION

In recent years, the observation that entanglement may
play an important role at a quantum phase transition �1–4�
has motivated intensive research on the characterization of
critical phenomena via quantum information concepts. In
this direction, conformal invariance has brought valuable in-
formation about the behavior of block entanglement, as mea-
sured by the von Neumann entropy, in critical models. In-
deed, conformal field theory �CFT� has been used as a
powerful tool to determine universal properties of entangle-
ment. Remarkably, it was shown that the entanglement en-
tropy obeys a universal logarithmic scaling law for one-
dimensional critical models both at zero and finite
temperatures �5–7�, which is governed by the central charge
of the associated CFT. Moreover, corrections to the entangle-
ment entropy due to finite-size effects have also been con-
sidered �6,8� for periodic and open boundary conditions. To-
gether with approximative methods such as renormalization
group �see, e.g., Refs. �9–13�� and density functional theory
�DFT� �14�, CFT has been settled as one of the most prom-
ising approaches for investigating the behavior of entangle-
ment in many-body quantum critical systems.

In this work, we will exploit in a different perspective the
impact of CFT methods for the evaluation of entanglement at
criticality. More specifically, our approach will be based on
the statement that finite size corrections to the ground state
expectation values of arbitrary observables are ruled by con-
formal invariance. This conclusion is indeed a consequence
of two results: �1� finite-size corrections to the energy spec-
trum of a critical theory are determined by conformal invari-
ance �15–17�; �2� DFT techniques imply that, under certain
conditions discussed below, general observables can be
evaluated as a function of the first derivative of the ground

state energy with respect to a Hamiltonian coupling param-
eter �18,19�. We then simultaneously apply these two results
to obtain the finite-size corrections to ground state entangle-
ment in critical models. As a by-product, conformal invari-
ance determines the structure of entanglement in the pres-
ence of extra symmetries for certain higher energy states,
which are the lowest energy states in each symmetrically
decoupled subspace of the Hilbert space. For instance, if the
Hamiltonian is translationally invariant and has a U�1� sym-
metry due to its commutation with the magnetization opera-
tor, we can split out the Hilbert space in sectors of fixed
momentum and magnetization. More generally, we will also
show that all conformal towers formed by an infinite number
of excited states �as the size of the system L→�� exhibit a
unique pattern of entanglement, which differ only at leading
order �1 /L�2. This will be based on a generalization of the
Hohenberg-Kohn �HK� theorem for individual states belong-
ing to conformal towers of critical systems. Finite-size cor-
rections to entanglement in these excited states will obey a
universal structure, given by the anomalous dimensions of
the primary operators of the theory.

Since our approach is applicable for any entanglement
measure, it allows in particular for the investigation of the
universality properties of pairwise entanglement measures,
e.g., concurrence �20� and negativity �21�. For pairwise mea-
sures, criticality was first noticed through a divergence in the
derivative of entanglement, signaling a second-order phase
transition �1�. For first-order phase transitions, jumps in en-
tanglement itself indicates quantum critical points �22,23�. A
general explanation for this distinct usual behavior of first-
order and second-order phase transitions has been provided
in Refs. �19,24� �for an explicit discussion of examples
which do not obey this expected behavior, see Ref. �25��.
From the point of view of CFT, we will be able to explicitly
work out the finite-size corrections to pairwise entanglement
measures and show how these corrections involve universal
quantities, such as the central charge or the anomalous di-
mension of primary operators associated with the CFT. As an
illustration, we will consider the spin-1 /2 XXZ chain, where
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an analytical expression, valid up to o�L−2�, will be provided
for the negativity of nearest neighboring spins as a function
of the size L of the chain.

II. ENERGY SPECTRUM AND FINITE-SIZE EFFECTS IN
CRITICAL QUANTUM SYSTEMS

Let us consider a critical theory in a strip of finite width L
with periodic boundary conditions. The transfer matrix of the
theory is written as T=exp�aH�, where a denotes the lattice
spacing and H is the Hamiltonian. Then, for large L, the
ground state energy density ��L�=E0�L� /L of H is provided
by conformal invariance �15,16�, reading

��L� = �� −
�

6
L−2 + o�L−2� , �1�

where �� is the energy density in the limit L→� and o�L−2�
denotes terms of any order higher than L−2. In Eq. �1�, c is
the central charge of the Virasoro algebra �the conformal
anomaly� and the parameter � must be fixed in such a way
that the equations of motion of the theory are conformally
invariant �26�. The structure of the higher energy states is
determined by the primary operators of the theory �17�. For
each operator O� with anomalous dimension x�, there corre-
sponds a tower of states with energy densities � j,j�

� �L� given
by

� j,j�
� �L� = ��L� + 2���x� + j + j��L−2 + o�L−2� , �2�

where j , j�=0,1 , . . .. are indices labeling the tower of states
associated with the anomalous dimensions x�. Higher-order
corrections to Eqs. �1� and �2� as well as convenient gener-
alizations for more general boundary conditions, e.g., twisted
boundary conditions, may also be obtained �27,28�.

III. HOHENBERG-KOHN THEOREM AND EXPECTATION
VALUES OF OBSERVABLES

Let us turn now to the discussion on how DFT can be
allied with conformal invariance to extract information about
expectation values of observables from the energy spectrum.
DFT �29,30� is originally based on the HK theorem �29�
which, for a many-electron system, establishes that the de-
pendence of the physical quantities on the external potential
v�r� can be replaced by a dependence on the particle density
n�r�. The HK theorem can be extended for the context of a
generic quantum Hamiltonian H on a lattice �see, e.g., Refs.
�18,19��. In order to be specific, let us consider a quantum
spin chain of size L governed by the Hamiltonian

H = H0 + ��
i=1

L

Ai, �3�

where � is a control parameter associated with the Hermitian
operators Ai which act on the site i, e.g., an observable rel-
evant to driving a quantum phase transition. Let us take, for
simplicity, a translationally invariant chain �e.g., by assum-
ing periodic boundary conditions�. Then, by taking the ex-
pectation value of Eq. �3�, we obtain

�H� = �H0� + �L�A� , �4�

where �A���Ai�= �Aj��∀i , j� due to translation symmetry.
Therefore

� = �0 + ��A� , �5�

where �= �H� /L and �0= �H0� /L are the energy densities as-
sociated with H and H0, respectively. For a general Hamil-
tonian such as given in Eq. �3�, the HK theorem can be
generalized to the statement that there is a duality �in the
sense of a Legendre transform� between the expectation
value �A� �corresponding to n�r�� and the control parameter
� �corresponding to v�r�� �18,19�. In order to specify the
conditions supporting this duality let us separately consider
the cases of nondegenerate and degenerate Hamiltonians.

A. Nondegenerate case

Let � and �� be two fixed values of the coupling param-
eter in Eq. �3�, which correspond to nondegenerate ground
states given by 	�� and 	���, respectively. We assume that,
for ����, we have that 	���� 	���, with � a complex
phase. This assumption means that different values of the
coupling parameter are associated with distinct ground
states. It reflects the requirement of the uniqueness of the
potential �see, e.g., Ref. �31��. A general condition to ensure
the uniqueness of the potential for Hamiltonian �3� will be
derived below. Then, by assuming a unique potential and
taking two different couplings � and ��, the Rayleigh-Ritz
variational principle allows us to write

��	H	�� � ���	H	��� = ���	H�	��� + �� − ���L�A��, �6�

where �A��= ��� 	A 	��� and H and H� are the Hamiltonians
associated with � and ��, respectively. Therefore

� − �� � �� − ����A��. �7�

Analogously, application of the variational principle for the
ground state 	��� results into

�� − � � ��� − ���A� . �8�

By adding Eqs. �7� and �8� we obtain

�A�� � �A� . �9�

Equation �9� expresses the HK theorem for nondegenerate
ground states, stating that distinct densities are associated
with distinct potentials. In other words, we can establish the
map

� ⇔ 	�� ⇔ �A� = ��	A	�� . �10�

B. Degenerate case

In order to establish the HK theorem for degenerate
ground states, let us consider two fixed values of the cou-
pling constant, each of them associated with arbitrarily de-
generate ground states:

� ↔ q-degenerate ground states:
	�1�, . . . , 	�q�� ,
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�� ↔ q�-degenerate ground states:
	�1��, . . . , 	�q�
� �� .

Considering that any of the ground states are equally likely,
we can describe them by the uniformly distributed density
matrices

	 =
1

q
�
i=1

q

	�i���i	, 	� =
1

q
�
i=1

q�

	�i����i�	 . �11�

The requirement of uniqueness of the potential yields in the
degenerate case the condition that 	 and 	� are distinct. Ap-
plying the variational principle, we obtain

Tr�	H� � Tr�	�H� = Tr�	�H�� + �� − ���L�A��, �12�

where, here, �A��=Tr�	�A�. Equation �12� implies that �
−��� ��−����A��. Therefore, as before, we use the comple-
mentary equation ��−�� ���−���A� and obtain �A��� �A�.
The HK map in this case can be written as

� ⇔ 	 ⇔ �A� = Tr�	A� . �13�

C. Uniqueness of the potential

As discussed above, the condition for the uniqueness of
the potential, which is fundamental for the derivation of the
HK theorem, is defined by the requirement that different val-
ues of the coupling parameter � are associated with distinct
ground states of the Hamiltonian H. Here we will show that
a necessary and sufficient condition for which different val-
ues of � are associated with distinct eigenstates of H is that
the operators H0 and �iAi, as given in Eq. (3), do not have
common eigenstates.

Sufficiency. Suppose that two distinct couplings � and ��
yield the same eigenstate of H,

�H0 + ��
i

Ai	�� = E���	�� , �14�

�H0 + ���
i

Ai	�� = E����	�� . �15�

Then, from Eqs. �14� and �15�, we obtain

�
i

Ai	�� =
E��� − E����

� − ��
	�� . �16�

Therefore, in this case, 	�� is also an eigenstate of �iAi �as
well as an eigenstate of H0�. Hence, the condition that H0
and �iAi do not have common eigenstates is sufficient for
ensuring the uniqueness of the potential.

Necessity. Let us suppose that H0 and �iAi have a com-
mon eigenstate

H0	�� = E0	�� , �17�

�
i

Ai	�� = a	�� . �18�

Then we obtain that �H0+��iAi� 	��= �E0+�a� 	��. Hence,
by varying �, we only change the eigenvalue �keeping the

same eigenstate�, which means that distinct couplings will
lead to the same eigenstate of H. Therefore, the condition
that H0 and �iAi do not exhibit a common eigenstate is also
necessary for the uniqueness of the potential. In conclusion,
the sufficient and necessary condition for the uniqueness of
the potential can be translated by the noncommutation rela-
tion

�H0,�
i

Ai� � 0. �19�

Naturally, we disregard in Eq. �19� the rather unusual situa-
tion where H0 and �iAi are noncommuting observables, but
�H0 ,�iAi� 	�� results in a vanishing quantum state.

D. HK theorem for conformal towers in quantum critical
models

Since the HK theorem is based on a variational principle,
we cannot guarantee that the expectation values of the ob-
servables in individual excited states are in general a func-
tion of the derivative of the energy of the excited state. Natu-
rally, as previously mentioned in Sec. I, the HK theorem can
be applicable in the presence of symmetries to excited states
that are the minimum energy states in a given symmetric
subspace of Hilbert space. In this work, we show that, under
certain conditions, the HK theorem can also be extended for
all the individual states of conformal towers in quantum criti-
cal models. We begin by supposing a periodic chain gov-
erned by a Hamiltonian given by Eq. �3� which is confor-
mally invariant in a critical interval �c1


�
�c2
. Moreover

we will assume the condition �19� for the uniqueness of the
potential. Let us denote by 
	� j,j�;d

� ����� the set of eigenstates
associated with the energy � j,j�

� ���, with d=1, . . . ,D labeling
the D-fold degeneracy �see Eq. �2��. We take the system in a
uniformly distributed density matrix

	 j,j�
� ��� =

1

D
�
d=1

D

	� j,j�;d
� ������ j,j�;d

� ���	 . �20�

Our aim is to show that the potential � uniquely specifies the
density

�A� j,j�
� = Tr�	 j,j�

� ���A� =
�� j,j�

�

��
. �21�

Therefore, the derivative �� j,j�
� /�� must be a monotonic

function of �. In order for this to occur, it is sufficient that �i�
�� j,j�

� /�� is continuous in the interval �c1

�
�c2

and �ii�
�2� j,j�

� /��2�0. Condition �i� is usually achieved for a
smooth �well-behaved� energy. Concerning condition �ii�, let
us take the derivative of Eq. �2�, which yields

�2� j,j�
�

��2 =
�2�

��2 +
2�

L2

�2

��2 ���x� + j + j��� + o�L−2� . �22�

The first term in the right-hand side of Eq. �22� concerns the
second derivative of the ground state energy with respect to
�. We can show that this term is strictly negative. Indeed,
from Eqs. �7� and �8�, which hold for both degenerate and
nondegenerate ground states, we obtain
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�

��
�A� =

�2�

��2 � 0, �23�

where �A� denotes the expectation value of A taken in the
ground state. Concerning the second term in the right-hand
side of Eq. �22�, it is negligible for large L. Consequently, we
can write

�2� j,j�
�

��2 �
�2�

��2 � 0 �large L� . �24�

Hence, �2� j,j�
� /��2 is nonvanishing and then the derivative

�� j,j�
� /�� is monotonically related to �. Therefore, a D-fold

degenerate �up to order L−2� eigenlevel given by �, j, and j�
defines a density matrix 	 j,j�

� that can be taken either as a
function of � or �A� j,j�

� . This provides an extension of the HK
theorem for arbitrary individual eigenstates belonging to
conformal towers in quantum critical models.

IV. FINITE-SIZE CORRECTIONS TO ENTANGLEMENT
IN CONFORMAL INVARIANT MODELS

The HK theorem implies a duality between the potential �
and the density �A�. This behavior was revealed specially
useful for the investigation of entanglement in the ground
state of quantum systems undergoing quantum phase transi-
tions �19�. In particular, the dependence of an arbitrary en-
tanglement measure M on the parameter � can be replaced
by the dependence on the ground state expectation value �A�
�19�, which means that

M = M��� = M��A�� = M� ��

��
 , �25�

where the Hellmann-Feynman theorem �32,33� has been
used in the last equality above. As discussed in the last sec-
tion, in the case of critical models, the HK theorem can also
be applied to any state of conformal towers, which allows us
to write the entanglement of such states as

Mj,j�
� = Mj,j�

� ��� = Mj,j�
� ��A� j,j�

� � . �26�

Equation �26� can be rewritten by observing that

�A� j,j�
� =

�� j,j�
�

��
= �A� +

2�

L2

�

��
���x� + j + j��� + o�L−2�

�27�

By inserting Eq. �27� into Eq. �26� and performing a series
expansion, we obtain

Mj,j�
� = M��A�� +

2�

L2

�

��
���x� + j + j���� �Mj,j�

�

��
�

�=�A�

+ o�L−2� . �28�

This means that the entanglement corresponding to all the
eigenstates in the conformal towers are nearly the same as
that of the ground state, with corrections of order L−2. More-
over, it follows that finite-size effects for an arbitrary mea-

sure of entanglement are ruled by conformal invariance.
In order to evaluate entanglement at a point �=�c, we

should be able to perform a derivative of the energy with
respect to � taken at �c. Therefore, note that we will have
that Eqs. �1� and �2� are the starting point to determine finite-
size corrections to entanglement if and only if the theory is
critical in an interval around �c. For the case of a single
critical point �e.g., Ising spin-1 /2 chain in a transverse field�
instead of a critical region �e.g., XXZ spin-1 /2 chain in the
anisotropy interval −1���1�, more general expressions for
the energy should be used, which take into account a mass
spectrum �see, e.g., Ref. �34��.

V. ENTANGLEMENT IN THE FINITE-SIZE SPIN-1 Õ2 XXZ
CHAIN

As an illustration of the previous results, let us consider
the spin-1 /2 XXZ chain, whose Hamiltonian is given by

HXXZ = −
J

2�
i=1

L

��i
x�i+1

x + �i
y�i+1

y + ��i
z�i+1

z � , �29�

where periodic boundary conditions �PBC� are assumed. We
will set the energy scale such that J=1. Entanglement for
spin pairs can be quantified by the negativity �21�, which is
defined by

N�	ij� = 2 max„0,− min
�

��
ij�… , �30�

where �
ij are the eigenvalues of the partial transpose 	ij,TA of

the density operator 	ij, defined as ��� 		TA	���= ���			���.
For the XXZ model, U�1� invariance ��H ,�i�z

i�=0� and
translation invariance ensure that the reduced density matrix
for spins i and j reads

	ij =�
aij 0 0 0

0 bij zij 0

0 zij* bij 0

0 0 0 dij
� , �31�

where

aij =
1

4
�1 + 2Gz + Gzz

ij � ,

bij =
1

4
�1 − Gzz

ij � ,

dij =
1

4
�1 − 2Gz + Gzz

ij � ,

zij =
1

4
��Gxx

ij + Gyy
ij � + i�Gxy

ij − Gyx
ij �� , �32�

where Gz= ��z
i� is the magnetization density �computed for

any site i� and G��
ij = ���

i ��
j � �� ,�=x ,y ,z�, with the expecta-

tion value taken over an arbitrary quantum state of the sys-
tem. Moreover, invariance of HXXZ under the discrete trans-
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formations �x→−�x, �y→�y, and �z→−�z implies that
Gxy

ij =0 and Gyx
ij =0. Therefore, the element zij in Eq. �32� is

real, namely, zij =zij*=1 /4�Gxx
ij +Gyy

ij �. Then, evaluation of
the negativity for spins i and j from Eq. �31� yields

N�L� =
1

2
max�0,�4Gz

2 + 	Gxx
ij + Gyy

ij 	2 − Gzz
ij − 1� . �33�

From now on, we will be interested in computing the nega-
tivity for nearest-neighbor spins. The generalized HK theo-
rem discussed in Sec. III implies that we can consider � as
the external potential and ��i

z�i+1
z � �for any site i� as the

relevant density. Thus, N�L� can be written as a function of
�� /�� for the ground state as well as for any minimum en-
ergy state in a sector of magnetization m �m
=0, �2, . . . , �L� and momentum P= �2� /L�p �p
=0,1 , . . . ,L−1�. In this direction, it is convenient to write
the correlation functions G��

i,i+1 in terms of �� /��, which re-
sults into

Gzz
i,i+1 = − 2

��

��
,

Gxx
i,,i+1 + Gyy

i,i+1 = − 2�� − �
��

��
 . �34�

A. Ground state entanglement

For the ground state, we have that Gz=0. Then, by using
Eq. �34� and Eq. �33�, negativity reads

N�L� = − ��L� + �� + 1�
���L�
��

−
1

2
, �35�

where we have used that 	Gzz
i,i+1 	 
1 and Gxx

i,i+1+Gyy
i,i+1�0

�Marshall-Peierls rule�. Note that, in Eq. �35�, the energy
density ��L� can be seen as a function of �� /�� by the HK
theorem, which is explicitly shown in Fig. 1. Indeed, this
implies that the negativity can be taken as a function of
�� /��, which illustrates the duality between potential and
density established in Eq. �25� for entanglement measures.
The XXZ model is critical in the interval −1
��1, with
central charge c=1. Then, from Eq. �35�, we can determine
an approximate analytical expression for the negativity in
terms of energy as given by Eq. �1�. The parameter � appear-
ing in Eq. �1� can be obtained analytically �35� for the XXZ
chain, reading

� = �
sin �

�
, �36�

where � is defined by

� = − cos �, � � �0,�� . �37�

Then, substitution of Eq. �1� into Eq. �35� yields

NCFT�L� = N� +
�2c

6�L2�sin � +
1 + �

�
+

��1 + �

�1 − �
 + o�L−2� ,

�38�

where N� can be computed from Eq. �35�, with �� and
��� /�� directly given by the solution of the model at the
thermodynamic limit �36�. An exact value for the negativity
N�L� can be obtained from Eq. �35� by computing ��L� and
���L� /�� via Bethe ansatz equations for each length L.
Naturally, this amounts to a much harder computational ef-
fort for a general �, while Eq. �38� directly provides the
negativity for a finite chain up to order L−2 with no need of
solving the Bethe ansatz equations for each length L. A com-
parison between N�L� and NCFT�L� for �=� /2 and �=� /3
is exhibited in Tables I and II.

0 0.1 0.2 0.3 0.4
dε/d∆

-1

-0.9

-0.8

-0.7

-0.6

-0.5

ε

L = 4

L = 6

L = 8

L → ∞

-1 -0.5 0 0.5 1
∆

-1

-0.9

-0.8

-0.7

-0.6

-0.5

ε

FIG. 1. �Color online� Density energy � as a function of �� /��
as given by the solution of the Bethe equations for finite-size chains
as well as in the thermodynamic limit �values plotted in the range
−1���1�. For finite chains with lattice sizes L�8, the curves
become nearly superposed with the curve for the infinite chain.
Inset: Density energy � versus anisotropy parameter �. Note that �
can be taken either as a function of � �the potential� or �� /�� �the
density�. Units are chosen such that J=1.

TABLE I. Comparison between N�L� and NCFT�L� for �=� /2
�the XX model�. For an infinite chain, we have that negativity is
given by N���=0.339 262 139 652.

L N�L� NCFT�L�

4 0.457106781187 0.446378653269

8 0.366669830087 0.366041268056

16 0.345995599194 0.345956921753

32 0.340938243195 0.340935835178

64 0.339680713890 0.339680563534

128 0.339366755018 0.339366745623

256 0.339288291732 0.339288291145

512 0.339268677562 0.339268677525

1024 0.339263774123 0.339263774121
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B. Twisted boundary conditions

We can also use the results obtained for PBC to investi-
gate the finite-size corrections to the negativity with more
general boundary conditions. We will consider here the so-
called twisted boundary conditions �TBC�, which can be
achieved as the effect of a magnetic flux through a spin ring
�37�. Remarkably, it has recently been shown that TBC may
improve multiparty quantum communication via spin chains
�38�. In order to consider TBC, it is convenient to rewrite the
Hamiltonian in Eq. �29� �with J=1� in the following form:

HXXZ = −
1

2�
i=1

L

�2��i
+�i+1

− + �i
−�i+1

+ � + ��i
z�i+1

z � , �39�

where � j
�= �� j

x� i� j
y� /2 and �L+1

� =e�i��1
� �0
��2��,

with � denoting a phase. The quantum chain given by Eq.
�39� is solvable by the Bethe ansatz �28�. In presence of
TBC, Eq. �1� still holds, but with an effective central ĉ���
�28�, which is given by

ĉ��� = 1 −
3�2

2��� − ��
, �40�

with � defined as in Eq. �37�. Let us take the following
canonical transformations �39�:

�̃ j
� = e�i�j/L� j

�, �̃ j
z = � j

z �j = 1, . . . ,L� . �41�

In terms of this new set of operators, the original chain with
TBC is now given by the periodic chain

HXXZ = −
1

2�
j=1

L

�e−i�/L�̃ j
+�̃ j+1

− + ei�/L�̃ j
−�̃ j+1

+ + ��̃ j
z�̃ j+1

z � ,

�42�

where �̃L+1
� = �̃1

�. Defining the operators �̃ j
x and �̃ j

y through
�̃ j

�= ��̃ j
x� i�̃ j

y� /2, the Hamiltonian can be put in the form

HXXZ = −
1

2�
j=1

L �cos��

L
 ��̃ j

x�̃ j+1
x + �̃ j

y�̃ j+1
y �

2

− sin��

L
 ��̃ j

x�̃ j+1
y − �̃ j

y�̃ j+1
x �

2
+ ��̃ j

z�̃ j+1
z � . �43�

Note that the Hamiltonian in Eq. �43� is both U�1� invariant
��H ,� j�̃ j

z�=0� and translationally invariant �HXXZ exhibts
PBC in terms of the set 
�̃ j

� , �̃ j
z��. Therefore, the two-spin

reduced density matrix keeps the form given in Eq. �31�,
with the correlation functions G��

ij replaced by G̃��
ij

= ��̃�
i �̃�

j �. Then, the negativity for nearest-neighbor spins
governed by Hamiltonian �43� can be computed similarly as
before. By using that Gz=0 �ground state� and 	Gzz

i,i+1 	 
1 we
obtain

N = 2 max�0, 	z	 − a� , �44�

where a= �1+ G̃zz� /4 and z= �G̃� + iG̃�� /4, with G̃zz= G̃zz
i,i+1,

G̃� = G̃xx
i,i+1+ G̃yy

i,i+1, and G̃�= G̃xy
i,i+1− G̃yx

i,i+1 �∀ i�. In order to
write entanglement in terms of the derivatives of the energy

density, it is convenient to define H̄XXZ=HXXZ /cos�� /L�.
Then

�̄ = −
1

2
�G̃� − �G̃� + �̄G̃zz� , �45�

where �̄= �H̄XXZ� /L, �=tan�� /L�, and �̄=� /cos�� /L�.
From Eq. �45� we obtain

G̃zz = − 2
��̄

��̄
,

G̃� = 2
��̄

��
,

G̃� = 2�− �̄ + �
��̄

��
+ �̄

��̄

��̄
 . �46�

Therefore, the contribution �	z 	−a� for expression for the
negativity in Eq. �44� reads

	z	 − a =
1

2���− �̄ + �
��̄

��
+ �̄

��̄

��̄
2

+ � ��̄

��
2

+
��̄

��̄
−

1

2� .

�47�

In order to obtain the results in terms of � and �, we make
use of the expressions

��̄

��
= cos��

L
�L

��

��
+ tan��

L
�� , �48�

��̄

��̄
=

��

��
. �49�

Hence, finite-size corrections to entanglement can be found
now by using Eq. �1� �replacing the central charge c by the
effective central charge ĉ��� as in Eq. �40�� into Eq. �47�.

TABLE II. Comparison between N�L� and NCFT�L� for �
=� /3. For an infinite chain, we have that negativity is given by
N���=3 /8=0.375.

L N�L� NCFT�L�

4 0.489830037812 0.478556230132

8 0.401639244141 0.400889057533

16 0.381525197365 0.381472264383

32 0.376621871264 0.376618066096

64 0.375404791436 0.375404516524

128 0.375101148980 0.375101129131

256 0.375025283711 0.375025282283

512 0.375006320673 0.375006320571

1024 0.375001580150 0.375001580143
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Examples comparing the negativity NCFT�L� for nearest
neighbors up to o�L−2� and the exact value of the negativity
N�L� �obtained through the numerical solution of the Bethe
ansatz equations derived in Ref. �28�� are exhibited in Tables
III and IV below.

Note from Tables I and III that, for �=� /2, NCFT�L�
gives the same result either for �=0 �PBC� or �=� /2,
which is an indication that TBC should not affect the nega-
tivity �up to o�L−2�� in the case of the XX model. Indeed, this
can be analytically proved. In this case, the anisotropy is �
=0, which implies that �=� /2 and �=2. Then, from Eqs. �1�
and �40�, we have

��L� = �� −
�ĉ���

3
L−2 + o�L−2� ,

��

��
=

2

�

�

L2 + o�L−2� ,

��

��
= � ���

��
�

�=0
+

2

3L2 + o�L−2� . �50�

By inserting the above equations into Eqs. �48� and �49�, it
can be shown that the negativity as given by Eq. �44� be-
comes

NCFT = 	���=0�	 + � ���

��
�

�=0
+

2

3L2 −
1

2
+ o�L−2� , �51�

where 	���=0� 	 =���
2 −2���� / �6L2�. Hence, Eq. �51� implies

that the negativity for the XX model with TBC is not affected
by the phase � up to order 1 /L2.

C. Excited states

Let us consider now the structure of the negativity for the
excited states in the XXZ model with PBC. The U�1� and
translation symmetries allow us the decomposition of the
associated eigenspace of HXXZ into disjoint sectors �fixed
magnetization and momentum� labeled by the quantum num-
bers r=0,1 ,2 , . . . ,L and p=1,2 , . . . ,L−1, which give the
number of spins up in the �z basis and the eigenvalue of the
momentum P= �2� /L�p, respectively. An exact evaluation of
the negativity for nearest-neighbor spins can be performed
from Eq. �33� by taking a nonvanishing magnetization den-
sity Gz and by using Eq. �34�, where the energy of the ex-
cited state is obtained through the solution of the Bethe an-
satz equations. This is illustrated in Fig. 2, where we plot the
negativity between nearest neighbors in a chain of length L
=256 sites for minimum energy states with zero momentum
in several magnetization sectors. These states have anoma-
lous dimensions xn given by �28�

xn = n2 �� − ��
2�

, �52�

where n=L /2−r and j+ j�= p=0 in Eq. �2�. Remarkably,
note that the negativities for the minimum energy states plot-
ted are nearly the same, indicating a unique entanglement
pattern in the critical region. Indeed, this is a more general
result, which holds also for other excited states. For instance,
let us take the so-called marginal state �28�, which is a state
that will be taken in the sector n=0 with anomalous dimen-
sion x=2 �independently of �� and j , j�=0. Exact computa-

TABLE III. Comparison between the exact evaluation of N�L�
and the approximate expression NCFT�L� �up to order L−2� for �
=� /2 and �=� /2.

L N�L� NCFT�L�

4 0.406774810601 0.446378653269

8 0.354315234931 0.366041268056

16 0.342922395530 0.345956921753

32 0.340170924101 0.340935835178

64 0.339488945731 0.339680563534

128 0.339318816833 0.339366745623

256 0.339276307427 0.339288291145

512 0.339265681501 0.339268677525

1024 0.339263025109 0.339263774121

TABLE IV. Comparison between the exact evaluation of N�L�
and the approximate expression NCFT�L� �up to order L−2� for for
�=� /3 and �=2� /3.

L N�L� NCFT�L�

4 0.400000000000 0.452230707893

8 0.381121448251 0.394307676973

16 0.376577662094 0.379826919243

32 0.375405200439 0.376206729811

64 0.375102994373 0.375301682453

128 0.375025983614 0.375075420613

256 0.375006526789 0.375018855153

512 0.375001635654 0.375004713788

1024 0.375000409414 0.375001178447

-1 -0.5 0 0.5 1
∆

0

0.1
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0.4

N

n = 0
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0.34

0.36

0.38

FIG. 2. �Color online� Negativity for minimum energy states as
a function of the anisotropy � for L=256 sites. Note that the curves
are nearly the same, indicating a unique entanglement pattern in the
critical region. Inset: Negativity as a function of � in a larger zoom
scale. Units are chosen such that J=1.
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tion in Table V shows that its negativity is also close to the
values found in Fig. 2. Indeed, we can show that entangle-
ment in the critical region of the XXZ chain will exhibit a
unique pattern for all states accessible via the CFT associated
with the model. As discussed in Sec. II, each primary opera-
tor of the theory corresponds to a tower of states with ener-
gies given by Eq. �2�. All these states in the towers will have
energies which differ at order L−2 �see Eqs. �1� and �2��.
According to Eq. �33�, such a difference is also reflected in
the negativity of nearest-neighbor spins, which explains the
behavior displayed in both Fig. 2 and Table V. This can
explicitly be shown by inserting Eq. �2� into Eq. �33�. As an
illustration, we take the minimum energy states with zero
momentum in a given magnetization sector labeled by n. For
this case, the negativity can be evaluated as

Nn�L� = Nn
� +

	G�	−1

6�L2 �3�n2 + � sin �G�zn + ���G� + 	G�	�

��wn

�
− zn cot �� + o�L−2� ,

where

wn = ��c − 6n2�, Nn
� = 	G�	 + ��n

�/�� − 1/2,

zn = ��c − 6n2�� − ���, G� = − �n
� + ���n

�/�� ,

with �n
� denoting the energy density of the excited state as

L→�. Note that this unique pattern of entanglement, which
has been explicitly derived here, is in agreement with the
general discussion of Sec. IV. This is indeed exhibited in Eq.
�28�. Naturally, similar expressions can be obtained for ex-
cited states higher than the minimum energy states.

VI. CONCLUSION

In conclusion, we have investigated the computation of
finite-size corrections to entanglement in quantum critical
systems. These corrections were shown to depend on the
central charge of the model as well as the anomalous dimen-
sions of the primary operators of the theory. Our approach
has naturally arisen as a general consequence of the applica-
tion of CFT and DFT methods in critical theories. This
framework has been illustrated in the XXZ model, where we
have shown that �i� entanglement in spin chains with arbi-
trary finite sizes can be analytically computed up to order
o�L−2� with no need of solving the Bethe ansatz equations for
each length L; �ii� conformal towers of excited states dis-
plays a unique pattern of entanglement in the critical region.
Indeed, we have been able to provide a general argument
according to which this unique pattern of entanglement
should appear in all conformally invariant models. Further
examples in higher dimensional lattices and higher spin sys-
tems are left for future investigation.
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