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We perform an analysis of the optomechanical entanglement between the experimentally detectable output
field of an optical cavity and a vibrating cavity end-mirror. We show that by a proper choice of the readout
�mainly by a proper choice of detection bandwidth� one cannot only detect the already predicted intracavity
entanglement but also optimize and increase it. This entanglement is explained as being generated by a
scattering process owing to which strong quantum correlations between the mirror and the optical Stokes
sideband are created. All-optical entanglement between scattered sidebands is also predicted, and it is shown
that the mechanical resonator and the two sideband modes form a fully tripartite-entangled system capable of
providing practicable and robust solutions for continuous-variable quantum-communication protocols.
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I. INTRODUCTION

Mechanical resonators at the micro- and nanometer scale
are now widely employed in the high-sensitivity detection of
mass and forces �1–3�. The recent improvements in nanofab-
rication techniques suggest that in the near future these de-
vices will reach the regime in which their sensitivity will be
limited by the ultimate quantum limits set by the Heisenberg
principle, as first suggested in the context of the detection of
gravitational waves by the pioneering work of Braginsky and
co-workers �4�.

The experimental demonstration of genuine quantum
states of macroscopic mechanical resonators with a mass in
the nanogram-milligram range will represent an important
step not only for the high-sensitivity detection of displace-
ments and forces, but also for the foundations of physics. It
would represent, in fact, a remarkable signature of the quan-
tum behavior of a macroscopic object, allowing further light
to be shed on the quantum-classical boundary �5�. Significant
experimental �6–21� and theoretical �22–31� efforts are cur-
rently devoted to cooling such microresonators to their quan-
tum ground state.

However, the generation of other examples of quantum
states of a micromechanical resonator has been also consid-
ered recently. The most relevant examples are given by
squeezed and entangled states. Squeezed states of nanome-
chanical resonators �32� are potentially useful for surpassing
the standard quantum limit for position and force detection
�4�, and could be generated in different ways, using either
coupling with a qubit �33� or measurement and feedback
schemes �25,34�. Entanglement is instead the characteristic
element of quantum theory, because it is responsible for cor-
relations between observables that cannot be understood on
the basis of local realistic theories �35�. For this reason, there
has been an increasing interest in establishing the conditions
under which entanglement between macroscopic objects can
arise. Relevant experimental demonstrations in this direction
are given by the entanglement between collective spins of
atomic ensembles �36�, and between Josephson-junction qu-
bits �37�. Then, starting from the proposal of Ref. �38� in
which two mirrors of a ring cavity are entangled by the ra-
diation pressure of the cavity mode, many proposals in-

volved nano- and micromechanical resonators eventually en-
tangled with other systems. One can entangle a
nanomechanical oscillator with a Cooper-pair box �39�,
while Ref. �40� studied how to entangle an array of nanome-
chanical oscillators. Further proposals suggested entangling
two charge qubits �41� or two Josephson junctions �42� via
nanomechanical resonators, or entangling two nanomechani-
cal resonators via trapped ions �43�, Cooper-pair boxes �44�,
or dc superconducting quantum interference devices
�SQUIDS� �45�. More recently, schemes for entangling a su-
perconducting coplanar waveguide field with a nanome-
chanical resonator, either via a Cooper-pair box within the
waveguide �46�, or via direct capacitive coupling �47�, have
been proposed.

After Ref. �38�, other optomechanical systems have been
proposed for entangling optical and/or mechanical modes by
means of the radiation-pressure interaction. Reference �48�
considered two mirrors of two different cavities illuminated
with entangled light beams, while Refs. �49–52� considered
different examples of double-cavity systems in which en-
tanglement either between different mechanical modes or be-
tween a cavity mode and a vibrational mode of a cavity
mirror was studied. References �53,54� considered the sim-
plest scheme capable of generating stationary optomechani-
cal entanglement, i.e., a single Fabry-Pérot cavity with either
one �53� or two �54� movable mirrors.

Here we shall reconsider the Fabry-Pérot model of Ref.
�53�, which is remarkable for its simplicity and robustness
against temperature of the resulting entanglement, and ex-
tend its study in various directions. In fact, entangled opto-
mechanical systems could be profitably used for the realiza-
tion of quantum-communication networks, in which the
mechanical modes play the role of local nodes where quan-
tum information can be stored and retrieved, and optical
modes carry this information between the nodes. References
�55–57� proposed a scheme of this kind, based on free-space
light modes scattered by a single reflecting mirror, which
could allow the implementation of continuous-variable �CV�
quantum teleportation �55�, quantum telecloning �56�, and
entanglement swapping �57�. Therefore, any quantum-
communication application involves traveling output modes
rather than intracavity ones, and it is important to study how
the optomechanical entanglement generated within the cavity
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is transferred to the output field. Furthermore, by considering
the output field, one can adopt a multiplexing approach be-
cause, by means of spectral filters, one can always select
many different traveling output modes originating from a
single intracavity mode �see Fig. 1�. One can therefore ma-
nipulate a multipartite system, eventually possessing multi-
partite entanglement. We shall develop a general theory
showing how the entanglement between the mechanical reso-
nator and optical output modes can be properly defined and
calculated.

We shall see that, together with its output field, the single
Fabry-Pérot cavity system of Ref. �53� represents the “cavity
version” of the free-space scheme of Refs. �55,56�. In fact, as
happens in this latter scheme, all the relevant dynamics in-
duced by radiation-pressure interaction is carried by the two
output modes corresponding to the first Stokes and anti-
Stokes sidebands of the driving laser. In particular, the opto-
mechanical entanglement with the intracavity mode is opti-
mally transferred to the output Stokes sideband mode, which
is, however, robustly entangled also with the anti-Stokes out-
put mode. We shall see that the present Fabry-Pérot cavity
system is preferable with respect to the free-space model of
Refs. �55,56�, because entanglement is achievable in a much
more accessible experimental parameter region.

The outline of the paper is as follows. Section II gives a
general description of the dynamics by means of the quan-
tum Langevin equations �QLEs�, Sec. III analyzes in detail
the entanglement between the mechanical mode and the int-
racavity mode, while in Sec. IV we describe a general theory
as to how a number of independent optical modes can be
selected and defined, and their entanglement properties cal-
culated. Section V is for concluding remarks.

II. SYSTEM DYNAMICS

We consider a driven optical cavity coupled by radiation
pressure to a micromechanical oscillator. The typical experi-
mental configuration is a Fabry-Pérot cavity with one mirror
much lighter than the other �see, e.g., �8,10–13,20��, but our
treatment applies to other configurations such as the silica
toroidal microcavity of Refs. �14,19,58�. Radiation pressure
couples each cavity mode with many vibrational normal
modes of the movable mirror. However, by choosing the de-
tection bandwidth so that only an isolated mechanical reso-
nance significantly contributes to the detected signal, one can
restrict consideration to a single mechanical oscillator, since
intermode coupling due to mechanical nonlinearities are
typically negligible �see also �59� for a more general treat-

ment�. The Hamiltonian of the system reads �60�

H = ��ca
†a +

1

2
��m�p2 + q2� − �G0a†aq

+ i�E�a†e−i�0t − aei�0t� . �1�

The first term describes the energy of the cavity mode, with
lowering operator a ��a ,a†�=1�, cavity frequency �c, and
decay rate �. The second term gives the energy of the me-
chanical mode, modeled as a harmonic oscillator at fre-
quency �m and described by dimensionless position and mo-
mentum operators q and p ��q , p�= i�. The third term is the
radiation-pressure coupling of rate G0= ��c /L��� /m�m,
where m is the effective mass of the mechanical mode �61�,
and L is an effective length that depends upon the cavity
geometry: it coincides with the cavity length in the Fabry-
Pérot case, and with the toroid radius in the case of Refs.
�14,58�. The last term describes the input driving by a laser
with frequency �0, where E is related to the input laser
power P by �E�=�2P� /��0. One can adopt the single-
cavity-mode description of Eq. �1� as long as one drives only
one cavity mode and the mechanical frequency �m is much
smaller than the cavity free spectral range R�c /L. In this
case, scattering of photons from the driven mode into other
cavity modes is negligible �62�.

The dynamics is also determined by the fluctuation-
dissipation processes affecting both the optical and the me-
chanical modes. They can be taken into account in a fully
consistent way �60� by considering the following set of non-
linear QLEs, written in the interaction picture with respect to
��0a†a:

q̇ = �mp , �2a�

ṗ = − �mq − �mp + G0a†a + � , �2b�

ȧ = − �� + i�0�a + iG0aq + E + �2�ain, �2c�

where �0=�c−�0. The mechanical mode is affected by a
viscous force with damping rate �m and by a Brownian sto-
chastic force with zero mean value � that obeys the correla-
tion function �60,63,64�

���t���t��	 =
�m

�m

 d�

2�
e−i��t−t����coth� ��

2kBT

 + 1� , �3�

where kB is the Boltzmann constant and T is the temperature
of the reservoir of the micromechanical oscillator. The
Brownian noise ��t� is a Gaussian quantum stochastic pro-
cess and its non-Markovian nature �neither its correlation
function nor its commutator is proportional to a Dirac 	�
guarantees that the QLEs of Eqs. �2� preserve the correct
commutation relations between operators during the time
evolution �60�. The cavity mode amplitude instead decays at
the rate � and is affected by the vacuum radiation input noise
ain�t�, whose correlation functions are given by

�ain�t�ain,†�t��	 = �N��c� + 1�	�t − t�� �4�

and

FIG. 1. �Color online� Scheme of the cavity, which is driven by
a laser and has a vibrating mirror. With appropriate filters one can
select N independent modes from the cavity output field.
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�ain,†�t�ain�t��	 = N��c�	�t − t�� , �5�

where N��c�= �exp���c /kBT�−1�−1 is the equilibrium mean
thermal photon number. At optical frequencies ��c /kBT
1
and therefore N��c��0, so that only the correlation function
of Eq. �4� is relevant. We shall neglect here technical noise
sources, such as the amplitude and phase fluctuations of the
driving laser. They can hinder the achievement of genuine
quantum effects �see, e.g., �19,65��, but they could be easily
accounted for by introducing fluctuations of the modulus and
of the phase of the driving parameter E of Eq. �1� �65,66�.

A. Linearization around the classical steady state and stability
analysis

As shown in �53�, significant optomechanical entangle-
ment is achieved when radiation-pressure coupling is strong,
which is realized when the intracavity field is very intense,
i.e., for high-finesse cavities and enough driving power. In
this limit �and if the system is stable�, the system is charac-
terized by a semiclassical steady state with the cavity mode
in a coherent state with amplitude �s=E / ��+ i��, and the
micromechanical mirror displaced by qs=G0��s�2 /�m �see
Refs. �30,53,67� for details�. The expression giving the int-
racavity amplitude �s is actually an implicit nonlinear equa-
tion for �s because

� = �0 −
G0

2��s�2

�m
�6�

is the effective cavity detuning including the effect of the
stationary radiation pressure. As shown in Refs. �30,53�,
when ��s�
1 the quantum dynamics of the fluctuations
around the steady state is well described by linearizing the
nonlinear QLEs of Eqs. �2�. Defining the cavity field fluctua-
tion quadratures 	X��	a+	a†� /�2 and 	Y ��	a−	a†� / i�2,
and the corresponding Hermitian input noise operators Xin

��ain+ain,†� /�2 and Y in��ain−ain,†� / i�2, the linearized
QLEs can be written in the following compact matrix form
�53�:

u̇�t� = Au�t� + n�t� , �7�

where uT�t�= (	q�t� ,	p�t� ,	X�t� ,	Y�t�)T �the superscript T
denotes the transposition� is the vector of CV fluctuation
operators, nT�t�= (0,��t� ,�2�Xin�t� ,�2�Y in�t�)T the corre-
sponding vector of noises, and A the matrix

A =�
0 �m 0 0

− �m − �m G 0

0 0 − � �

G 0 − � − �
� , �8�

where

G = G0�s
�2 =

2�c

L
� P�

m�m�0��2 + �2�
�9�

is the effective optomechanical coupling �we have chosen the
phase reference so that �s is real and positive�. When �s

1, one has G
G0, and therefore the generation of signifi-

cant optomechanical entanglement is facilitated in this lin-
earized regime.

The formal solution of Eq. �7� is u�t�=M�t�u�0�
+�0

t ds M�s�n�t−s�, where M�t�=exp�At�. The system is
stable and reaches its steady state for t→� when all the
eigenvalues of A have negative real parts so that M���=0.
The stability conditions can be derived by applying the
Routh-Hurwitz criterion �68�, yielding the following two
nontrivial conditions on the system parameters:

s1 = 2�m����2 + ��m − ��2���2 + ��m + ��2� + �m���m + 2��


��2 + �2� + 2��m
2 �� + ��mG2��m + 2��2 � 0, �10a�

s2 = �m��2 + �2� − G2� � 0, �10b�

which will be considered to be satisfied from now on. Notice
that when ��0 �the laser is red detuned with respect to the
cavity� the first condition is always satisfied and only s2 is
relevant, while when ��0 �blue-detuned laser� the second
condition is always satisfied and only s1 matters.

When the system is stable, the eigenvalues of A also de-
termine the relaxation time, i.e., the time required for the
system to reach the steady state. In fact, this time is deter-
mined by the eigenvalue of A whose real part is closest to
zero: the relaxation time is equal to the inverse of the abso-
lute value of this real part. As expected, in the absence of
radiation-pressure coupling, G=0, the relaxation time is
given by min��m

−1 ,�−1� and therefore by the mechanical re-
laxation time �m

−1, because it is typically �
�m. For generic
parameter values and optomechanical couplings the relax-
ation time has an involved expression and depends upon all
the parameters; however, it becomes larger and larger if the
instability threshold is approached and it becomes infinite
exactly at threshold.

B. Correlation matrix of the quantum fluctuations of the
system

The steady state of the bipartite quantum system formed
by the vibrational mode of interest and the fluctuations of the
intracavity mode can be fully characterized. In fact, the
quantum noises � and ain are zero-mean quantum Gaussian
noises and the dynamics is linearized, and, as a consequence,
the steady state of the system is a zero-mean bipartite Gauss-
ian state, fully characterized by its 4
4 correlation matrix
�CM� Vij = ��ui���uj���+uj���ui���	� /2. Starting from Eq.
�7�, this steady-state CM can be determined in two equiva-
lent ways. Using the Fourier transforms ũi��� of ui�t�, one
has

Vij�t� =
 
 d� d��

4�
e−it��+����ũi���ũj���� + ũj����ũi���	 .

�11�

Then, by Fourier transforming Eq. �7� and the correlation
functions of the noises, Eqs. �3� and �4�, one gets
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�ũi���ũj���� + ũj����ũi���	
2

= �M̃���D���M̃����T�ij	�� + ��� , �12�

where we have defined the 4
4 matrices

M̃��� = �i� + A�−1 �13�

and

D��� =�
0 0 0 0

0
�m�

�m
coth� ��

2kBT

 0 0

0 0 � 0

0 0 0 �
� . �14�

The 	��+��� factor is a consequence of the stationarity of
the noises, which implies the stationarity of the CM V: in
fact, inserting Eq. �12� into Eq. �11�, one gets that V is time
independent and can be written as

V =
 d� M̃���D���M̃���†. �15�

It is, however, reasonable to simplify this exact expression
for the steady-state CM, by appropriately approximating the
thermal noise contribution D22��� in Eq. �14�. In fact
kBT /��1011 s−1 even at cryogenic temperatures, and it is
therefore much larger than all the other typical frequency
scales, which are at most of the order of 109 Hz. The inte-
grand in Eq. �15� goes rapidly to zero at ��1011 Hz, and
therefore one can safely neglect the frequency dependence of
D22��� by approximating it with its zero-frequency value

�m�

�m
coth� ��

2kBT

 � �m

2kBT

��m
� �m�2n̄ + 1� , �16�

where n̄= �exp���m /kBT�−1�−1 is the mean thermal excita-
tion number of the resonator.

It is easy to verify that assuming a frequency-independent
diffusion matrix D is equivalent to making the following
Markovian approximation to the quantum Brownian noise
��t�:

���t���t�� + ��t����t�	/2 � �m�2n + 1�	�t − t�� , �17�

which is known to be valid also in the limit of a very high
mechanical quality factor Q=�m /�m→� �69�. Within this
Markovian approximation, the above frequency domain
treatment is equivalent to the time domain derivation consid-
ered in �53� which, starting from the formal solution of Eq.
�7�, arrives at

Vij��� = �
k,l



0

�

ds

0

�

ds�Mik�s�Mjl�s��Dkl�s − s�� , �18�

where Dkl�s−s��= ��nk�s�nl�s��+nl�s��nk�s�	� /2 is the matrix
of the stationary noise correlation functions. The Markovian
approximation of the thermal noise on the mechanical reso-
nator yields Dkl�s−s��=Dkl	�s−s��, with D=Diag�0,�m�2n̄
+1� ,� ,��, so that Eq. �18� becomes

V = 

0

�

ds M�s�DM�s�T, �19�

which is equivalent to Eq. �15� whenever D does not depend
upon �. When the stability conditions are satisfied �M���
=0�, Eq. �19� is equivalent to the following Lyapunov equa-
tion for the steady-state CM:

AV + VAT = − D , �20�

which is a linear equation for V and can be straightforwardly
solved; but the general exact expression is too cumbersome
and will not be reported here.

III. OPTOMECHANICAL ENTANGLEMENT WITH THE
INTRACAVITY MODE

In order to establish the conditions under which the opti-
cal mode and the mirror vibrational mode are entangled, we
consider the logarithmic negativity EN, which can be defined
as �70�

EN = max�0,− ln 2�−� , �21�

where �−�2−1/2���V�− ���V�2−4 det V�1/2�1/2, with ��V�
�det Vm+det Vc−2 det Vmc, and we have used the 2
2
block form of the CM,

V � � Vm Vmc

Vmc
T Vc


 . �22�

Therefore, a Gaussian state is entangled if and only if �−

�1 /2, which is equivalent to Simon’s necessary and suffi-
cient entanglement nonpositive partial transpose criterion for
Gaussian states �71�, which can be written as 4 det V��
−1 /4.

A. Correspondence with the down-conversion process

As already shown in �28–30�, many features of the
radiation-pressure interaction in the cavity can be understood
by considering that the driving laser light is scattered by the
vibrating cavity boundary mostly at the first Stokes ��0
−�m� and anti-Stokes ��0+�m� sidebands. Therefore we ex-
pect that the optomechanical interaction and eventually en-
tanglement will be enhanced when the cavity is resonant
with one of the two sidebands, i.e., when �= ��m.

It is useful to introduce the mechanical annihilation op-
erator 	b= �	q+ i	p� /�2, obeying the following QLE:

	ḃ = − i�m	b −
�m

2
�	b − 	b†� + i

G

2
�	a† + 	a� +

�

�2
.

�23�

Moving to another interaction picture by introducing the

slowly moving operators with tildes, 	b�t�=	b̃�t�e−i�mt and
	a�t�=	ã�t�e−i�t, we obtain from the linearized version of
Eqs. �2c� and �23� the following QLEs:
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	ḃ̃ = −
�m

2
�	b̃ − 	b̃†e2i�mt� + ��mbin

+ i
G

2
�	ã†ei��+�m�t + 	ãei��m−��t� , �24�

	ȧ̃ = − �	ã + i
G

2
�	b̃†ei��+�m�t + 	b̃ei��−�m�t� + �2�ãin.

�25�

Note that we have introduced two noise operators: �i� ãin�t�
=ain�t�ei�t, possessing the same correlation function as ain�t�;
�ii� bin�t�=��t�ei�mt /�2 which, in the limit of large �m, ac-
quires the correlation functions �72�

�bin,†�t�bin�t��	 = n̄	�t − t�� , �26�

�bin�t�bin,†�t��	 = �n̄ + 1�	�t − t�� . �27�

Equations �24� and �25�, are still equivalent to the linearized
QLEs of Eq. �7�, but now we particularize them by choosing
�= ��m. If the cavity is resonant with the Stokes sideband
of the driving laser, �=−�m, one gets

	ḃ̃ = −
�m

2
	b̃ +

�m

2
	b̃†e2i�mt + i

G

2
	ã† + i

G

2
	ãe2i�mt + ��mbin,

�28�

	ȧ̃ = − �	ã + i
G

2
	b̃† + i

G

2
	b̃e2i�mt + �2�ãin, �29�

while when the cavity is resonant with the anti-Stokes side-
band of the driving laser, �=�m, one gets

	ḃ̃ = −
�m

2
	b̃ +

�m

2
	b̃†e2i�mt + i

G

2
	ã + i

G

2
	ã†e−2i�mt + ��mbin,

�30�

	ȧ̃ = − �	ã + i
G

2
	b̃ + i

G

2
	b̃†e−2i�mt + �2�ãin. �31�

From Eqs. �28� and �29� we see that, for a blue-detuned
driving laser, �=−�m, the cavity mode and mechanical reso-
nator are coupled via two kinds of interactions: �i� a down-

conversion process characterized by 	b̃†	ã†+	ã	b̃, which is
resonant, and �ii� a beam-splitter-like process characterized

by 	b̃†	ã+	ã†	b̃, which is off resonant. Since the beam
splitter interaction is not able to entangle modes starting
from classical input states �73�, and it is also off resonant in
this case, one can invoke the rotating wave approximation
�RWA� �which is justified in the limit of �m
G ,�� and sim-
plify the interaction to a down-conversion process, which is
known to generate bipartite entanglement. In the red-detuned
driving laser case, Eqs. �30� and �31� show that the two
modes are strongly coupled by a beam-splitter-like interac-
tion, while the down-conversion process is off resonant. If
one chose to make the RWA in this case, one would be left
with an effective beam splitter interaction which cannot en-
tangle. Therefore, in the RWA limit �m
G ,�, the best re-

gime for strong optomechanical entanglement is when the
laser is blue detuned from the cavity resonance and down-
conversion is enhanced. However, as will be seen in the fol-
lowing section, this is hindered by instability and one is
rather forced to work in the opposite regime of a red-detuned
laser where instability occurs only at large values of G.

B. Entanglement in the blue-detuned regime

The CM of the Gaussian steady state of the bipartite sys-
tem can be obtained from Eqs. �28�–�31�, in the RWA limit,
with the techniques of the previous section �see also �47��

V � V� =�
V11

� 0 0 V14
�

0 V11
� �V14

� 0

0 �V14
� V33

� 0

V14
� 0 0 V33

�
� , �32�

where the upper �lower� sign corresponds to the
blue-�red-�detuned case, and

V11
� = n̄ +

1

2
+

2G2��1/2 � �n̄ + 1/2��
��m + 2���2�m� � G2�

, �33a�

V33
� =

1

2
+

G2�m�n̄ + 1/2 � 1/2�
��m + 2���2�m� � G2�

, �33b�

V14
� =

2G�m��n̄ + 1/2 � 1/2�
��m + 2���2�m� � G2�

. �33c�

For clarity we have included the red-detuned case in the
RWA and we see that det Vmc

� = � �V14
� �2, i.e., is non-negative

in this latter case, which is a sufficient condition for the
separability of bipartite states �71�. Of course, this is ex-
pected, since it is just the beam splitter interaction that gen-
erates this CM. Thus, in the weak optomechanical coupling
regime of the RWA limit, entanglement is obtained only for a
blue-detuned laser, �=−�m. However, the amount of achiev-
able optomechanical entanglement at the steady state is seri-
ously limited by the stability condition of Eq. �10a�, which in
the RWA limit �=−�m
� ,�m simplifies to G��2��m.
Since one needs a small mechanical dissipation rate �m in
order to see quantum effects, this means a very low maxi-
mum value for G. The logarithmic negativity EN is an in-
creasing function of the effective optomechanical coupling G
�as expected�, and therefore the stability condition puts a
strong upper bound also on EN. In fact, it is possible to prove
that the following bound on EN exists:

EN � ln�1 + G/�2��m

1 + n̄

 , �34�

showing that EN� ln 2 and above all that entanglement is
extremely fragile with respect to temperature in the RWA
limit, because, due to the stability condition, EN vanishes as
soon as n̄�1.

C. Entanglement in the red-detuned regime

We conclude that, due to instability, one can find signifi-
cant optomechanical entanglement, which is also robust
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against temperature, only far from the RWA regime, in the
strong coupling regime in the region with positive �, be-
cause Eq. �10b� allows for higher values of G. This is con-
firmed by Fig. 2, where EN is plotted versus the normalized
detuning � /�m and the normalized input power P / P0 �P0
=50 mW� at a fixed value of the cavity finesse F=F0
=1.67
104 in Fig. 2�a�, and versus the normalized finesse
F /F0 and normalized input power P / P0 at a fixed cavity
detuning �=�m in Fig. 2�b�. We have assumed an experi-
mentally achievable situation, i.e., a mechanical mode with
�m /2�=10 MHz, Q=105, mass m=10 ng, and a cavity of
length L=1 mm, driven by a laser with wavelength 810 nm,
yielding G0=0.95 kHz and a cavity bandwidth �=0.9�m
when F=F0. We have assumed a reservoir temperature for
the mirror T=0.4K, corresponding to n̄�833. Figure 2�a�
shows that EN is peaked around ���m, even though the
peak shifts to larger values of � at larger input powers P. For
increasing P at fixed �, EN increases, even though at the
same time the instability region �where the plot is suddenly
interrupted� widens. In Fig. 2�b� we fixed the detuning at
�=�m �i.e., the cavity is resonant with the anti-Stokes side-
band of the laser� and varied both the input power and the
cavity finesse. We see again that EN is maximum just at the
instability threshold and also that, once the finesse has
reached a sufficiently large value, F�F0, EN roughly satu-
rates at larger values of F. That is, one gets an optimal op-

tomechanical entanglement when ���m and moving into
the well-resolved sideband limit ���m does not improve the
value of EN. The parameter region analyzed is analogous to
that considered in �53�, where it has been shown that this
optomechanical entanglement is extremely robust with re-
spect to the temperature of the reservoir of the mirror, since
it persists to more than 20 K.

D. Relationship between entanglement and cooling

As discussed in detail in �28–31�, the same cavity–
mechanical-resonator system can be used for realizing
cavity-mediated optical cooling of the mechanical resonator
via the back action of the cavity mode �23�. In particular,
back action cooling is optimized just in the same regime
where ���m. This fact is easily explained by taking into
account the scattering of the laser light by the oscillating
mirror into the Stokes and anti-Stokes sidebands. The gen-
eration of an anti-Stokes photon takes away a vibrational
phonon and is responsible for cooling, while the generation
of a Stokes photon heats the mirror by producing an extra
phonon. If the cavity is resonant with the anti-Stokes side-
band, cooling prevails and one has a positive net laser cool-
ing rate given by the difference of the scattering rates.

It is therefore interesting to discuss the relation between
optimal optomechanical entanglement and optimal cooling
of the mechanical resonator. This can easily performed be-
cause the steady-state CM V determines also the resonator
energy, since the effective stationary excitation number of
the resonator is given by neff= �V11+V22−1� /2 �see Ref. �30�
for the exact expression of these matrix elements giving the
steady-state position and momentum resonator variances�. In
Fig. 3 we have plotted neff under exactly the same parameter
conditions as in Fig. 2. We see that ground state cooling is
approached �neff�1� simultaneously with a significant en-
tanglement. This shows that a significant back action cooling
of the resonator by the cavity mode is an important condition
for achieving an entangled steady state that is robust against
the effects of the resonator thermal bath.

Nonetheless, entanglement and cooling are different phe-
nomena and optimizing one does not generally also optimize
the other. This can be seen by comparing Figs. 2 and 3: EN is
maximized always just at the instability threshold, i.e., for
the maximum possible optomechanical coupling, while this
is not true for neff, which is instead minimized quite far from
the instability threshold. For a more clear understanding we
make use of some of the results obtained for ground state
cooling in Refs. �28–30�. In the perturbative limit where G
��m ,�, one can define scattering rates into the Stokes �A+�
and anti-Stokes �A−� sidebands as

A� =
G2�/2

�2 + �� � �m�2 , �35�

so that the net laser cooling rate is given by

� = A− − A+ � 0. �36�

The final occupancy of the mirror mode is consequently
given by �28–30�

FIG. 2. �Color online� �a� Logarithmic negativity EN versus the
normalized detuning � /�m and normalized input power P / P0,
�P0=50 mW� at a fixed value of the cavity finesse F=F0=1.67

104; �b� EN versus the normalized finesse F /F0 and normalized
input power P / P0 at a fixed detuning �=�m. Parameter values are
�m /2�=10 MHz, Q=105, mass m=10 ng, a cavity of length L
=1 mm driven by a laser with wavelength 810 nm, yielding G0

=0.95 KHz and a cavity bandwidth �=0.9�m when F=F0. We have
assumed a reservoir temperature for the mirror T=0.4 K, corre-
sponding to n̄�833. The sudden drop to zero of EN corresponds to
entering the instability region.
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neff =
�mn̄

�m + �
+

A+

�m + �
, �37�

where the first term in the right-hand side is the minimized
thermal noise, which can be made vanishingly small pro-
vided that �m��, while the second term shows residual
heating produced by Stokes scattering off the vibrational
ground state. When �
�mn̄, the lower bound for neff is prac-
tically set by the ratio A+ /�. However, as soon as G is in-
creased for improving the entanglement generation, scatter-
ing into higher-order sidebands takes place, with rates
proportional to higher powers of G. As a consequence, even
though the effective thermal noise is still close to zero, re-
sidual scattering off the ground state takes place at a rate that
can be much higher than A+. This can be seen more clearly in
the exact expression of �	q2	=V11 given in �30�, which is
shown to diverge at the threshold given by Eq. �10b�.

The net laser cooling rate � determines also the relaxation
time of the optomechanical system. In fact, �m+� is the
effective relaxation rate of the mechanical oscillator in the
presence of the radiation-pressure interaction. Therefore the
time required to reach the steady state is essentially given by
the inverse of the smallest number between � and �m+�.

IV. OPTOMECHANICAL ENTANGLEMENT WITH
CAVITY OUTPUT MODES

The above analysis of the entanglement between the me-
chanical mode of interest and the intracavity mode provides

a detailed description of the internal dynamics of the system,
but it is not of direct use for practical applications. In fact,
one typically does not have direct access to the intracavity
field, but one detects and manipulates only the cavity output
field. For example, for any quantum-communication applica-
tion, it is much more important to analyze the entanglement
of the mechanical mode with the optical cavity output, i.e.,
how the intracavity entanglement is transferred to the output
field. Moreover, considering the output field provides further
options. In fact, by means of spectral filters, one can always
select many different traveling output modes originating
from a single intracavity mode, and this gives the opportu-
nity to easily produce and manipulate a multipartite system,
eventually possessing multipartite entanglement.

A. General definition of cavity output modes

The intracavity field 	a�t� and its output are related by the
usual input-output relation �63�

aout�t� = �2�	a�t� − ain�t� , �38�

where the output field possesses the same correlation func-
tions as the optical input field ain�t� and the same commuta-
tion relation, i.e., the only nonzero commutator is
�aout�t� ,aout�t��†�=	�t− t��. From the continuous output field
aout�t� one can extract many independent optical modes, by
selecting different time intervals or, equivalently, different
frequency intervals �see, e.g., �74��. One can define a generic
set of N output modes by means of the corresponding anni-
hilation operators

ak
out�t� = 


−�

t

ds gk�t − s�aout�s�, k = 1, . . . ,N , �39�

where gk�s� is the causal filter function defining the kth out-
put mode. These annihilation operators describe N indepen-
dent optical modes when �aj

out�t� ,ak
out�t�†�=	 jk, which is sat-

isfied when



0

�

ds gj�s�*gk�s� = 	 jk, �40�

i.e., the N filter functions gk�t� form an orthonormal set of
square-integrable functions in �0,��. The situation can be
equivalently described in the frequency domain: taking the
Fourier transform of Eq. �39�, one has

ãk
out��� = 


−�

� dt
�2�

ak
out�t�ei�t = �2�g̃k���aout��� , �41�

where g̃k��� is the Fourier transform of the filter function. An
explicit example of an orthonormal set of filter functions is
given by

gk�t� =
��t� − ��t − ��

��
e−i�kt �42�

�� denotes the Heaviside step function� provided that �k and
� satisfy the condition

FIG. 3. �Color online� �a� Effective stationary excitation number
of the resonator neff versus the normalized detuning � /�m and nor-
malized input power P / P0 �P0=50 mW� at a fixed value of the
cavity finesse F=F0=1.67
104; �b� neff versus the normalized fi-
nesse F /F0 and normalized input power P / P0 at a fixed detuning
�=�m. Parameter values are the same as in Fig. 2. Again, the sud-
den drop to zero corresponds to entering the instability region.
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� j − �k =
2�

�
p, integer p . �43�

These functions describe a set of independent optical modes,
each centered around the frequency �k and with time dura-
tion �, i.e., frequency bandwidth �1 /�, since

g̃k��� =� �

2�
ei��−�k��/2sin��� − �k��/2�

�� − �k��/2
. �44�

When the central frequencies differ by an integer multiple of
2� /�, the corresponding modes are independent due to the
destructive interference of the oscillating parts of the spec-
trum.

B. Stationary correlation matrix of output modes

The entanglement between the output modes defined
above and the mechanical mode is fully determined by the
corresponding �2N+2�
 �2N+2� CM, which is defined by

Vij
out�t� =

1

2
�ui

out�t�uj
out�t� + uj

out�t�ui
out�t�	 , �45�

where

uout�t� = „	q�t�,	p�t�,X1
out�t�,Y1

out�t�, . . . ,XN
out�t�,YN

out�t�…T

�46�

is the vector formed by the mechanical position and momen-
tum fluctuations and by the amplitude, Xk

out�t�= �ak
out�t�

+ak
out�t�†� /�2, and phase, Yk

out�t�= �ak
out�t�−ak

out�t�†� / i�2,
quadratures of the N output modes. The vector uout�t� prop-
erly describes N+1 independent CV bosonic modes, and in
particular the mechanical resonator is independent of �i.e., it
commutes with� the N optical output modes because the lat-
ter depend upon the output field at previous times only �s
� t�. From the definition of uout�t�, of the output modes of
Eq. �39�, and the input-output relation of Eq. �38�, one can
write

ui
out�t� = 


−�

t

ds Tik�t − s�uk
ext�s� − 


−�

t

ds Tik�t − s�nk
ext�s� ,

�47�

where

uext�t� = „	q�t�,	p�t�,X�t�,Y�t�, . . . ,X�t�,Y�t�…T �48�

is the �2N+2�-dimensional vector obtained by extending the
four-dimensional vector u�t� of the preceding section by re-
peating N times the components related to the optical cavity
mode, and

next�t� =
1

�2�
„0,0,Xin�t�,Y in�t�, . . . ,Xin�t�,Y in�t�…T �49�

is the analogous extension of the noise vector n�t� of the
former section without, however, the noise acting on the me-
chanical mode. In Eq. �47� we have also introduced the
�2N+2�
 �2N+2� block matrix consisting of N+1 two-
dimensional blocks,

T�t� =�
	�t� 0 0 0 0 0 . . .

0 	�t� 0 0 0 0 . . .

0 0 �2� Re g1�t� − �2� Im g1�t� 0 0 . . .

0 0 �2� Im g1�t� �2� Re g1�t� 0 0 . . .

0 0 0 0 �2� Re g2�t� − �2� Im g2�t� . . .

0 0 0 0 �2� Im g2�t� �2� Re g2�t� . . .

] ] ] ] ] ] . . .

� . �50�

Using Fourier transforms and the correlation function of the
noises, one can derive the following general expression for
the stationary output correlation matrix, which is the coun-
terpart of the 4
4 intracavity relation of Eq. �15�:

Vout =
 d�T̃����M̃ext��� +
Pout

2�




Dext����M̃ext���† +
Pout

2�

T̃���†, �51�

where Pout=Diag�0,0 ,1 ,1 , . . . � is the projector onto the
2N-dimensional space associated with the output quadra-
tures, and we have introduced the extensions corresponding

to the matrices M̃��� and D��� of the previous section,

M̃ext��� = �i� + Aext�−1, �52�

with
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Aext =�
0 �m 0 0 0 0 . . .

− �m − �m G 0 G 0 . . .

0 0 − � � 0 0 . . .

G 0 − � − � 0 0 . . .

0 0 0 0 − � � . . .

G 0 0 0 − � − � . . .

] ] ] ] ] ] . . .

� �53�

and

Dext��� =�
0 0 0 0 0 0 . . .

0
�m�

�m
coth� ��

2kBT

 0 0 0 0 . . .

0 0 � 0 � 0 . . .

0 0 0 � 0 � . . .

0 0 � 0 � 0 . . .

0 0 0 � 0 � . . .

] ] ] ] ] ] . . .

� .

�54�

A deeper understanding of the general expression for Vout of
Eq. �51� is obtained by multiplying the terms in the integral;
one gets

Vout =
 d� T̃���M̃ext���Dext���M̃ext���†T̃���† +
Pout

2

+
1

2

 d� T̃����M̃ext���Rout + RoutM̃

ext���†�T̃���†,

�55�

where Rout= PoutD
ext��� /�=Dext���Pout /� and we have used

the fact that


 d�

4�2 T̃���PoutD
ext���PoutT̃���† =

Pout

2
. �56�

The first integral term in Eq. �55� is the contribution coming
from the interaction between the mechanical resonator and
the intracavity field. The second term gives the noise added
by the optical input noise to each output mode. The third
term gives the contribution of the correlations between the
intracavity mode and the optical input field, which may can-
cel the destructive effects of the second noise term and even-
tually even increase the optomechanical entanglement with
respect to the intracavity case. We shall analyze this fact in
the following section.

C. A single output mode

Let us first consider the case when we select and detect
only one mode at the cavity output. Just to fix the ideas, we
choose the mode specified by the filter function of Eqs. �42�
and �44�, with central frequency � and bandwidth �−1.
Straightforward choices for this output mode are a mode cen-
tered either at the cavity frequency �=�c−�0, or at the driv-
ing laser frequency �=0 �we are in the rotating frame and

therefore all frequencies are referred to the laser frequency
�0�, and with a bandwidth of the order of the cavity band-
width, �−1��. However, as discussed above, the motion of
the mechanical resonator generates Stokes and anti-Stokes
motional sidebands, consequently modifying the cavity out-
put spectrum. Therefore it may be nontrivial to determine
which is the optimal frequency bandwidth of the output field
that carries most of the optomechanical entanglement gener-
ated within the cavity. The cavity output spectrum associated
with the photon number fluctuations S���= �	a���†	a���	 is
shown in Fig. 4, where we have considered a parameter re-
gime close to that considered for the intracavity case, i.e., an
oscillator with �m /2�=10 MHz, Q=105, mass m=50 ng, a
cavity of length L=1 mm with finesse F=2
104, detuning
�=�m, driven by a laser with input power P=30 mW and
wavelength 810 nm, yielding G0=0.43 kHz, G=0.41�m, and
a cavity bandwidth �=0.75�m. We have again assumed a
reservoir temperature for the mirror of T=0.4 K, correspond-
ing to n̄�833. This regime is not far from but does not
correspond to the best intracavity optomechanical entangle-
ment regime discussed in Sec. III. In fact, optomechanical
entanglement monotonically increases with the coupling G
and is maximum just at the bistability threshold, which, how-
ever, is not a convenient operating point. We have chosen
instead a smaller input power and a larger mass, implying a
smaller value of G and an operating point not too close to
threshold.

In order to determine the output optical mode that is best
entangled with the mechanical resonator, we study the loga-
rithmic negativity EN associated with the output CM Vout of
Eq. �55� �for N=1� as a function of the central frequency of
the mode � and its bandwidth �−1, at the considered operat-
ing point. The results are shown in Fig. 5, where EN is plot-
ted versus � /�m at five different values of �=��m. If ��1,
i.e., the bandwidth of the detected mode is larger than �m,
the detector does not resolve the motional sidebands, and EN
has a value �roughly equal to that of the intracavity case�
which does not essentially depend upon the central fre-
quency. For smaller bandwidths �larger ��, the sidebands are
resolved by the detection, and the role of the central fre-

FIG. 4. �Color online� Cavity output spectrum in the case of an
oscillator with �m /2�=10 MHz, Q=105, mass m=50 ng, a cavity
of length L=1 mm with finesse F=2
104, detuning �=�m, driven
by a laser with input power P=30 mW and wavelength 810 nm,
yielding G0=0.43 kHz, G=0.41�m, and a cavity bandwidth �
=0.75�m. We have again assumed a reservoir temperature for the
mirror of T=0.4 K, corresponding to n̄�833. In this regime pho-
tons are scattered only at the two first motional sidebands, at
�0��m.
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quency becomes important. In particular, EN becomes highly
peaked around the Stokes sideband �=−�m, showing that
the optomechanical entanglement generated within the cavity
is mostly carried by this lower-frequency sideband. What is
relevant is that the optomechanical entanglement of the out-
put mode is significantly larger than its intracavity counter-
part and achieves its maximum value at the optimal value
��10, i.e., a detection bandwidth �−1��m /10. This means
that, in practice, by appropriately filtering the output light,
one realizes an effective entanglement distillation because
the selected output mode is more entangled than the intrac-
avity mode with the mechanical resonator.

The fact that the output mode which is most entangled
with the mechanical resonator is the one centered around the
Stokes sideband is also consistent with the physics of two
previous models analyzed in Refs. �55,75�. In �75� an atomic
ensemble is inserted within the Fabry-Pérot cavity studied
here, and one gets a system showing robust tripartite �atom-
mirror-cavity� entanglement at the steady state only when the
atoms are resonant with the Stokes sideband of the laser. In
particular, the atomic ensemble and the mechanical resonator
become entangled under this resonance condition, and this is
possible only if entanglement is carried by the Stokes side-
band because the two parties are only indirectly coupled
through the cavity mode. In �55�, a free-space optomechani-
cal model is discussed, where the entanglement between a
vibrational mode of a perfectly reflecting micromirror and
the two first motional sidebands of an intense laser beam
shone on the mirror is analyzed. In that case also the me-
chanical mode is entangled only with the Stokes mode and it
is not entangled with the anti-Stokes sideband.

By looking at the output spectrum of Fig. 4, one can also
understand why the output mode optimally entangled with
the mechanical mode has a finite bandwidth �−1��m /10 �for
the chosen operating point�. In fact, the optimal situation is
achieved when the detected output mode overlaps as much as
possible with the Stokes peak in the spectrum, and therefore
�−1 coincides with the width of the Stokes peak. This width is

determined by the effective damping rate of the mechanical
resonator, �m

eff=�m+�, given by the sum of the intrinsic
damping rate �m and the net laser cooling rate � of Eq. �36�.
It is possible to check that, with the chosen parameter values,
the condition �=10 corresponds to �−1��m

eff.
It is finally important to analyze the robustness of the

present optomechanical entanglement with respect to tem-
perature. As discussed above and shown in �53�, the en-
tanglement of the resonator with the intracavity mode is very
robust. It is important to see if this robustness is retained also
by the optomechanical entanglement of the output mode.
This is shown by Fig. 6, where the entanglement EN of the
output mode centered at the Stokes sideband �=−�m is plot-
ted versus the temperature of the reservoir at two different
values of the bandwidth, the optimal one �=10, and at a
larger bandwidth �=2. We see the expected decay of EN for
increasing temperature, but above all that also this output
optomechanical entanglement is robust against temperature
because it persists even above liquid He temperatures, at
least in the case of the optimal detection bandwidth �=10.

D. Two output modes

Let us now consider the case where we detect at the out-
put two independent, well-resolved, optical output modes.
We use again the steplike filter functions of Eqs. �42� and
�44�, assuming the same bandwidth �−1 for both modes and
two different central frequencies �1 and �2 satisfying the
orthogonality condition of Eq. �43�, �1−�2=2p��−1, for
some integer p, in order to have two independent optical
modes. It is interesting to analyze the stationary state of the
resulting tripartite CV system formed by the two output
modes and the mechanical mode, in order to see if and when
it is able to show �i� purely optical bipartite entanglement
between the two output modes; �ii� fully tripartite optom-
echanical entanglement.

The generation of two entangled light beams by means of
the radiation-pressure interaction of these fields with a me-
chanical element has already been considered in various con-
figurations. In Ref. �76�, and more recently in Ref. �52�, two
modes of a Fabry-Pérot cavity system with a movable mirror,
each driven by an intense laser, are entangled at the output

FIG. 5. �Color online� Logarithmic negativity EN of the CV
bipartite system formed by the mechanical mode and a single cavity
output mode versus the central frequency of the detected output
mode � /�m at five different values of its inverse bandwidth �
=�m�. The other parameters are the same as in Fig. 4. When the
bandwidth is not too large, the mechanical mode is significantly
entangled only with the first Stokes sideband at �0−�m.

FIG. 6. �Color online� Logarithmic negativity EN of the CV
bipartite system formed by the mechanical mode and the cavity
output mode centered around the Stokes sideband �=−�m versus
temperature for two different values of its inverse bandwidth �
=�m�. The other parameters are the same as in Fig. 4.
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due to their common ponderomotive interaction with the
movable mirror �the scheme was then generalized to many
driven modes in �77��. In the single-mirror free-space model
of Ref. �55�, the two first motional sidebands are also ro-
bustly entangled by the radiation-pressure interaction as in a
two-mode squeezed state produced by a nondegenerate para-
metric amplifier �78�. Robust two-mode squeezing of a bi-
modal cavity system can be similarly produced if the mov-
able mirror is replaced by a single ion trapped within the
cavity �79�.

The situation considered here is significantly different
from that of Refs. �52,76,77,79�, which require many driven
cavity modes, each associated with the corresponding output
mode. In the present case instead, the different output modes
originate from the same single driven cavity mode, and there-
fore it is much simpler from an experimental point of view.
The present scheme can be considered as a sort of “cavity
version” of the free-space case of Ref. �55�, where the re-
flecting mirror is driven by a single intense laser. Therefore,
as in �55,78�, one expects to find a parameter region where
the two output modes centered around the two motional side-
bands of the laser are entangled. This expectation is clearly
confirmed by Fig. 7, where the logarithmic negativity EN
associated with the bipartite system formed by the output
mode centered at the Stokes sideband ��1=−�m� and a sec-
ond output mode with the same inverse bandwidth ��=�m�
=10�� and a variable central frequency �, is plotted versus
� /�m. EN is calculated from the CM of Eq. �55� �for N=2�,
eliminating the first two rows associated with the mechanical
mode, and assuming the same parameters considered in the
former subsection for the single-output-mode case. One can
clearly see that bipartite entanglement between the two cav-
ity outputs exists only in a narrow frequency interval around
the anti-Stokes sideband, �=�m, where EN achieves its
maximum. This shows that, as in �55,78�, the two cavity
output modes corresponding to the Stokes and anti-Stokes
sidebands of the driving laser are significantly entangled by
their common interaction with the mechanical resonator. The
advantage of the present cavity scheme with respect to the
free-space case of �55,78� is that the parameter regime for
reaching radiation-pressure-mediated optical entanglement is

much more promising from an experimental point of view
because it requires less input power and a not too large me-
chanical quality factor of the resonator. In Fig. 8, the depen-
dence of EN of the two output modes centered at the two
sidebands �= ��m upon their inverse bandwidth � is stud-
ied. We see that, differently from optomechanical entangle-
ment of the previous subsection, the logarithmic negativity
of the two sidebands always increases for decreasing band-
width, and it achieves a significant value ��1�, comparable
to that achievable with parametric oscillators, for very nar-
row bandwidths. This fact can be understood from the fact
that quantum correlations between the two sidebands are es-
tablished by the coherent scattering of the cavity photons by
the oscillator, and that the quantum coherence between the
two scattering processes is maximal for output photons with
frequencies �0��m.

In Fig. 9 we analyze the robustness of the entanglement
between the Stokes and anti-Stokes sidebands with respect to
the temperature of the mechanical resonator, by plotting, for
the same parameter regime as in Fig. 8, EN versus the tem-
perature T at two different values of the inverse bandwidth
��=10� ,100��. We see that this purely optical CV entangle-
ment is extremely robust against temperature, especially in
the limit of small detection bandwidth, showing that the ef-
fective coupling provided by radiation pressure can be strong
enough to render optomechanical devices with high-quality
resonators a possible alternative to parametric oscillators for

FIG. 7. �Color online� Logarithmic negativity EN of the bipartite
system formed by the output mode centered at the Stokes sideband
��1=−�m� and a second output mode with the same inverse band-
width ��=�m�=10�� and a variable central frequency �, plotted
versus � /�m. The other parameters are the same as in Fig. 4. Op-
tical entanglement is present only when the second output mode
overlaps with the anti-Stokes sideband.

FIG. 8. �Color online� Logarithmic negativity EN of the bipartite
system formed by the two output modes centered at the Stokes and
anti-Stokes sidebands ��= ��m� versus the inverse bandwidth �
=�m�. The other parameters are the same as in Fig. 4.

FIG. 9. �Color online� Logarithmic negativity EN of the two
output modes centered at the Stokes and anti-Stokes sidebands ��
= ��m� versus the temperature of the resonator reservoir, at two
different values of the inverse bandwidth �=�m�. The other param-
eters are the same as in Fig. 4.
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the generation of entangled light beams for CV quantum
communication.

Since in Figs. 7 and 8 we used the same parameter values
for the cavity-resonator system used in Fig. 5, we have that,
in this parameter regime, the output mode centered around
the Stokes sideband mode shows bipartite entanglement si-
multaneously with the mechanical mode and with the anti-
Stokes sideband mode. This fact suggests that, in this param-
eter region, the CV tripartite system formed by the output
Stokes and anti-Stokes sidebands and the mechanical resona-
tor mode could be characterized by a fully tripartite-
entangled stationary state. This is confirmed by Fig. 10,
where we have applied the classification criterion of Ref.
�80�, providing a necessary and sufficient criterion for the
determination of the entanglement class in the case of tripar-
tite CV Gaussian states, which is directly computable in
terms of the eigenvalues of appropriate test matrices �80�.
These eigenvalues are plotted in Fig. 10 versus the inverse
bandwidth � at �=�m in the left plot, and versus the cavity
detuning � /�m at a fixed inverse bandwidth �=� in the right
plot �the other parameters are again those of Fig. 4�. We see
that all the eigenvalues are negative in a wide interval of
detuning and detection bandwidth of the output modes,
showing, as expected, that we have a fully tripartite-
entangled steady state.

Therefore, if we consider the system formed by the two
cavity output fields centered around the two motional side-
bands at �0��m and the mechanical resonator, we find that
the entanglement properties of its steady state are identical to
those of the analogous tripartite optomechanical free-space
system of Ref. �55�. In fact, the Stokes output mode shows
bipartite entanglement both with the mechanical mode and
with the anti-Stokes mode; the anti-Stokes mode is not en-
tangled with the mechanical mode, but the whole system is
in a fully tripartite-entangled state for a wide parameter re-
gime. What is important is that in the present cavity scheme

such a parameter regime is much easier to achieve with re-
spect to that of the free-space case.

V. CONCLUSIONS

We have studied in detail the entanglement properties of
the steady state of a driven optical cavity coupled by radia-
tion pressure to a micromechanical oscillator, extending in
various directions the results of Ref. �53�. We first analyzed
the intracavity steady state and showed that the cavity mode
and the mechanical element can be entangled in a robust way
against temperature. We have also investigated the relation-
ship between entanglement and cooling of the resonator by
the back action of the cavity mode, which has already been
demonstrated recently in Refs. �11,12,14,15,18–20� and dis-
cussed theoretically in Refs. �23,28–31�. We have seen that a
significant back action cooling is a sufficient but not neces-
sary condition for achieving entanglement. In fact, intracav-
ity entanglement is possible also in the opposite regime of
negative detunings �, where the cavity mode drives and does
not cool the resonator, even though it is not robust against
temperature in this latter case. Moreover, entanglement is not
optimal when cooling is optimal, because the logarithmic
negativity is maximized close to the stability threshold of the
system, where instead cooling is not achieved.

We then extended our analysis to the cavity output, which
is more important from a practical point of view because any
quantum-communication application involves the manipula-
tion of traveling optical fields. We have developed a general
theory showing how it is possible to define and evaluate the
entanglement properties of the multipartite system formed by
the mechanical resonator and N independent output modes of
the cavity field.

We then applied this theory and saw that, in the parameter
regime corresponding to a significant intracavity entangle-
ment, the tripartite system formed by the mechanical element
and the two output modes centered at the first Stokes and
anti-Stokes sidebands of the driving laser �where the cavity
output noise spectrum is concentrated� shows robust fully
tripartite entanglement. In particular, the Stokes output mode
is strongly entangled with the mechanical mode and shows a
sort of entanglement distillation because its logarithmic
negativity is significantly larger than the intracavity one
when its bandwidth is appropriately chosen.

In the same parameter regime, the Stokes and anti-Stokes
sideband modes are robustly entangled, and the achievable
entanglement in the limit of a very narrow detection band-
width is comparable to that generated by a parametric oscil-
lator. These results make the present cavity optomechanical
system very promising for the realization of CV quantum-
information interfaces and networks.
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FIG. 10. �Color online� Analysis of tripartite entanglement. The
minimum eigenvalues after partial transposition with respect to the
Stokes mode �blue line�, anti-Stokes mode �green line�, and me-
chanical mode �red line� are plotted versus the inverse bandwidth �
at �=�m in the left plot, and versus the cavity detuning � /�m at
fixed inverse bandwidth �=� in the right plot. The other parameters
are the same as in Fig. 4. These eigenvalues are all negative in the
studied intervals, showing that one has fully tripartite entanglement.
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