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We compare two different tests of quantum nonlocality, both in theoretical terms and with respect to a
possible implementation in a mesoscopic circuit: Hardy’s test �L. Hardy, Phys. Rev. Lett. 68, 2981 �1992�� and
the Clauser-Horne-Shimony-Holt �CHSH� test, the latter including a recently discovered inequality relevant for
experiments with three possible outcomes �D. Collins and N. Gisin, J. Phys. A 37, 1775 �2004��. We clarify the
geometry of the correlations defined by Hardy’s equations with respect to the polytope of causal correlations,
and show that these equations generalize to the CHSH inequality if the slightest imperfections in the setup need
to be taken into account. We propose a mesoscopic circuit consisting of two interacting Mach-Zehnder inter-
ferometers in a Hall bar system for which both Hardy’s test and the CHSH test can be realized with a simple
change of gate voltages, and evaluate the robustness of the two tests in the case of fluctuating experimental
parameters. The proposed setup is remarkably robust and should work for fluctuations of beam splitter angles
or phases up to the order of 1 radian, or single particle loss rates up to about 15%.
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I. INTRODUCTION

The belief that nature should be describable by a local
realistic theory is deeply rooted in our classical intuition �1�.
Impressive evidence has been accumulated to the contrary,
however, starting with the pioneering work by Bell �2�. He
showed that the assumptions of locality and reality lead, in
the framework of classical probability theory, to bounds on
the correlations of measurement outcomes of spatially sepa-
rated observers. Experiments with entangled photons have
shown that the quantum world does not obey these bounds
�3�. Violations of Bell’s inequality by tens of standard devia-
tions have been observed meanwhile, while being in excel-
lent agreement with the quantum mechanical predictions �4�.
Such quantum correlations have become known as “quantum
nonlocality.” Several proposals have been put forward to ob-
serve entanglement �5–10� or even a violation of Bell’s in-
equality in mesoscopic circuits �11,12�. None of these has
been implemented experimentally so far, even though the
two-particle Aharonov-Bohm effect �7� demonstrated in a re-
cent experiment �13� suggests the presence of the electron
entanglement. On the other hand, a violation of a modified
Bell’s inequality has been observed in a circuit-QED system
very recently �14�. From a foundational perspective, it is de-
sirable to observe a violation of a Bell inequality in a mate-
rial system, as one of the key requirements for a conclusive
refutation of any local hidden variable �LHV� description of
an experiment is the knowledge of the pair production rate.
As was shown by Santos, a LHV description is always pos-
sible if the probabilities are obtained as relative frequencies
normalized to �the sum of� joint-coincidence rates rather than
to absolute pair production rates, even in the case of ideal
polarizers and detectors �15�. This requirement is hard to

meet in quantum optical experiments, but should be feasible
with material particles, which are easier to keep track of than
photons. Progress was recently achieved in this direction in
an experiment with trapped ions �16�.

In this paper we compare two different kinds of tests of
quantum nonlocality and their mutual relations: Hardy’s test
�17,18� and the Clauser-Horne-Shimony-Holt �CHSH� test
�19� �the Bell-type test based on the CHSH inequality�. We
compare these tests both on a purely theoretical level, and in
relation to a possible experimental realization using a spe-
cific setup in a mesoscopic circuit, paying particular attention
to the range of parameters in which these tests are expected
to signal violation of noncontextual realism, a generalization
of local realism �see below�. The motivation for the first part
lies in the fact that Hardy’s test, which is one of the tests of
“nonlocality without inequalities,” has always stood apart
from other tests by its simplicity and apparent reliance on
pure logic. Mermin has called it “the best version of Bell’s
theorem” �20�. On the other hand, the CHSH inequality is
special among all Bell-type inequalities: It is known to be the
only relevant Bell-type inequality �for bipartite experiments
with two observables per observer with two possible out-
comes each� in the sense that a CHSH inequality is always
violated if any other Bell-type inequality is violated �but not
necessarily the other way around� �21–25�. The question then
arises, what role Hardy’s test plays in this context. We dis-
cuss the relation between Hardy’s test and the CHSH test
both in the absence and presence of imperfections. In the
former case, we study the relation between the two tests in
geometrical terms, making obvious the connection between
the convex sets of joint probabilities of different measure-
ments involved, while the latter is examined by means of
set-theoretical arguments �26–28�. We then propose a meso-
scopic circuit which allows one to implement both Hardy’s
test and the CHSH test by a simple change of parameters.
This makes it possible to compare the two tests on an equal
footing concerning the range of parameter fluctuations
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which, according to quantum mechanics �QM�, would still
allow a refutation of noncontextual hidden variable theories.

II. HARDY’S TEST VERSUS THE CHSH TEST

A. Local hidden variable theories

As pioneered by Bell �2,29�, the nonlocality of the quan-
tum world can be tested by attempting to construct a local
hidden variable theory that reproduces all quantum mechani-
cal predictions. Such an approach leads to necessary condi-
tions for LHV theories in the form of bounds on the corre-
lations, the famous Bell inequalities. If in an experiment a
violation of such an inequality is observed, a LHV descrip-
tion is ruled out and the nonlocality of the quantum world is
established.

Let us consider a possible local hidden-variable descrip-
tion of a bipartite system. LHV models are defined by the
joint probabilities P�m1 ,m2 �M1 ,M2� to obtain a pair of out-
comes m1 and m2 for the observables M1 and M2 on “par-
ticle” 1 and 2, respectively. There can be n1 �n2� observables
and k1 �k2� outcomes per observable on the side of “particle”
1 �2�. We suppose that the particle 1 �2� is possessed by Alice
�Bob�.

There are overall d=n1n2k1k2 possible joint probabilities,
but they are not all independent and have to satisfy several
constraints. First of all, all joint probabilities must be non-
negative and normalized, such that for any measurement set-
ting �M1 ,M2�

�
m1,m2

P�m1,m2�M1,M2� = 1. �1�

This implies that

0 � P�m1,m2�M1,M2� � 1 �2�

for all m1 ,m2 ,M1 ,M2. Secondly, the joint probabilities must
respect the causality constraint �also called nonsignaling con-
straint�. This means that the reduced probabilities on either
side must not depend on the measurement settings on the
other side—otherwise superluminal signaling would be pos-
sible over sufficiently large distances:

�
m2

P�m1,m2�M1,M2�

= �
m2�

P�m1,m2��M1,M2�� ∀ m1,M1,M2,M2�, �3a�

�
m1

P�m1,m2�M1,M2�

= �
m1�

P�m1�,m2�M1�,M2� ∀ m2,M2,M1,M1�. �3b�

Bell-type correlations are further constrained by the request
of locality for each value of the hidden variables �. In a LHV
theory, the outcome of any single run must be, for both ob-
servers, a function of the hidden variables � and the local
measurement setting alone, such that the joint probabilities
are given by

P�m1,m2�M1,M2� = �
�

p�P�
�1��m1�M1�P�

�2��m2�M2� , �4�

where p� is the normalized distribution of hidden variables,
and P�

�j��mj �Mj� is the probability for a given hidden variable
� that the measurement result is mj if an observable Mj of
particle j �j=1,2� is measured. We have written down the
locality constraint for a stochastic hidden variable theory. A
deterministic HV theory is a special case, where all prob-
abilities P�

�1��m1 �M1� and P�
�2��m2 �M2� are either zero or one.

On the other hand, any stochastic HV theory can be made
deterministic �21–23�. Note that the causality constraint
above works on the level of the actually observed probabili-
ties �i.e., for averages over hidden variables�, whereas the
locality constraint �4� is based on the request of nonsignaling
for each value of the hidden variables.

B. Ideal Hardy’s test

In 1992, Hardy proposed an experiment, which allows to
test whether Nature can be described by a local realistic
theory �17�. The experiment can be based on any pair of
observables M1=X1 ,Y1 and M2=X2 ,Y2 with two mutually
exclusive outcomes �which we will take as �1 for concrete-
ness� for each observable. Alice �Bob� has the free choice to
measure either X1 or Y1 �X2 or Y2� in any run of the experi-
ment. The measurements of Alice and Bob should be space-
like separated, such that the measurement settings of Alice
will, if one accepts Einstein locality, not influence the out-
comes of Bob’s experiment and vice versa. The situation first
analyzed by Hardy �17� assumes three vanishing joint prob-
abilities,

P�+ , + �X1,X2� = 0, �5�

P�+ ,− �Y1,X2� = 0, �6�

P�− , + �X1,Y2� = 0. �7�

Suppose an experimental setup can be found where these
three equations are fulfilled. Then, if Nature can be described
by a LHV theory, it follows immediately that also

P�+ , + �Y1,Y2� = 0 �8�

must be satisfied. In the following we will call Eqs. �5�–�8�
“Hardy’s equations.” To see how a violation of Eq. �8� under
given assumptions �5�–�7� implies nonlocality, suppose that
an event with y1=y2= +1 was detected for the simultaneous
measurement of Y1 and Y2. It follows from Eq. �6� that on
Bob’s side the outcome x2 of the measurement of X2 must
have had the value +1, as y1=1 can never appear with x2=
−1, and x2= +1 is the only alternative. Similarly, from Eq.
�7� follows that x1 must have had the value +1, as y2=1 can
never appear with x1=−1, and x1= +1 is the only alternative.
Furthermore, due to the locality assumption, the value of x2
cannot depend on whether Alice measured x1 or y1, and x1
cannot depend on whether Bob measured x2 or y2. So one
concludes in a LHV theory that both x1 and x2 must have had
the values +1. This, however, is excluded by Eq. �5�. As a
consequence, if Eqs. �5�–�7� are fulfilled, even a single event
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y1=y2= +1 amidst any finite series of measurements rules
out that the experiment can be described by a local realistic
theory.

Hardy managed to construct a pure state for which, ac-
cording to QM, just this happens �17�. Later, his argument
was generalized and it was shown that almost any pure state
of any system with an arbitrary number of particles and ar-
bitrary dimension of Hilbert space can be used �30–32�, and
even a large class of mixed states �26�.

It is instructive to determine how strongly Eq. �8� can be
violated according to QM. Following Ref. �31�, suppose a
pure state ���=b�01�+c�10�+d�11� is prepared �normalized
to �b�2+ �c�2+ �d�2=1�, where, e.g., �01�= �0� � �1�, the first
state belongs to Alice, the second to Bob, and �0� and �1� are
orthogonal basis states, which we will take as computational
basis. In fact, any pure two-qubit state which is neither a
product state nor a maximally entangled state can be brought
to this form through an appropriate choice of orthogonal ba-
sis states �31�. Assume furthermore that the measurement
operators on Alice’s side are defined by X1= �0��0�− �1��1�
and Y1= �y1

+��y1
+�− �y1

−��y1
−�, where

�y1
+� =

d*�0� − b*�1�
	�b�2 + �d�2

�9�

and

�y1
−� =

b�0� + d�1�
	�b�2 + �d�2

. �10�

The possible measurement outcomes are obviously �1 for
both measurements. Similarly, for Bob we define X2= �0��0�
− �1��1� and Y2= �y1

+��y2
+�− �y2

−��y2
−�, where

�y2
+� =

d*�0� − c*�1�
	�c�2 + �d�2

�11�

and

�y2
−� =

c�0� + d�1�
	�c�2 + �d�2

. �12�

It is then straightforward to verify �31� that Eqs. �5�–�7� are
fulfilled, whereas

P�� + + �YY� =
�bcd�2

��b�2 + �d�2���c�2 + �d�2�
� 0, �13�

where we have omitted the particle indices 1 and 2 �hereafter
we will adopt this convention unless there is a risk of con-
fusion�. The joint probability P�++ �YY� is maximized for
�b�= �c� and �d � =	5−2, in which case

P�� + + �YY� =
5	5 − 11

2

 0.090 17. �14�

Thus, about 9% of the experimental outcomes should falsify
any LHV theory, and this is the largest possible value �31�.
We call such an optimized state

��� = 	2�	5 − 2���01� + �10�� + �	5 − 2��11� �15�

an “ideal Hardy state.”

“Hardy nonlocality” has so far stood apart from other
tests of local realistic theories in several aspects. First, it does
not rely on inequalities, but apparently on pure logic. In the
ideal setting proposed by Hardy, a single measurement event
can invalidate all LHV theories. Note that for three particles
such tests are known and can be based, e.g., on the
Greenberger-Horne-Zeilinger �GHZ� state �33�. Secondly,
Hardy nonlocality does not work for maximally entangled
states, in contrast to the standard Bell’s inequality. It is well
known that the CHSH inequality �19� is maximally violated
for a singlet state �and appropriately chosen measurements�.
It may be for these reasons that Hardy nonlocality has been
called “the best version of Bell’s theorem” �20�. Substantial
efforts have been spent to observe Hardy nonlocality experi-
mentally. An experiment with photons was performed by Ir-
vine et al. �34� using the bunching of photons at a beam
splitter �BS� in order to create a Hardy state, and by Di
Giuseppe et al. using polarized photons in a nonmaximally
entangled state �35�.

C. The geometry of Hardy’s test

Above we have seen several apparent differences between
Hardy’s test and the CHSH test. But what is the precise
relationship between Hardy’s test and the CHSH test? To
answer this question, we found it very instructive to investi-
gate the geometry of the sets of joint probabilities defined by
the two tests.

Given a set of observables M1=X1 ,Y1 and M2=X2 ,Y2
with outcomes xj =� and yj = � �j=1,2�, an entire correla-
tion table of 16 joint probabilities P�m1 ,m2 �M1 ,M2� can be
regarded as a point in the 16-dimensional vector space R16.
The correlation tables cannot span the whole space R16 be-
cause of the various constraints imposed on the joint prob-
abilities, as discussed in Sec. II A. For example, the positiv-
ity and normalization constraints, �1� and �2�, define a
convex subset. The causality constraints �3� restrict further
the subset, and lead to a convex subset in the form of a
polytope which we call the “causal polytope” C. A polytope
is the higher dimensional generalization of a polyhedron in
three dimensions with flat surfaces �i.e., given by linear
equations� and a finite number of vertices. For the situation
considered here, there are 12 linear equations, 4 from the
normalization constraints �1� and 8 from the causality con-
straints �3�. Only 8 of them are linearly independent, and
thus the causal polytope C is eight dimensional �8D�. It has
7D facets. Correlation tables restricted additionally to Eq. �4�
form also a convex polytope, L, which is commonly called
the “local polytope,” or “Bell polytope.” The local polytope
L lies inside the causal polytope C �21–23,25�. As was
shown by Fine �21�, the CHSH inequalities together with the
positivity constraints �2� form all the facets of L, and give
therefore a complete characterization of all LHV correla-
tions. Quantum correlations can lie outside L, but are always
inside C. They also form a convex set, but not in the form of
a polytope. They are still restricted by Cirel’son’s bound,
which gives an upper bound 2	2 for the left-hand side of the
CHSH inequality �36�.

All vertices of the polytope C have all joint probabilities
either equal zero or one. There are 24 vertices, 16 of which
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represent local correlations �called “local vertices”�, and 8
represent nonlocal correlations. The vertices which represent
local correlations are the vertices of the Bell polytope. They
can be parametrized by four binary variables, � ,� ,� ,	
� �0,1�. If we also code measurement outcomes and observ-
ables with binaries �Mj =Xj ,Y j �0,1 and mj = � �0,1 for
j=1,2�, they can be found from �25�

P�m1,m2�M1,M2�

= 
1, m1 = �M1 � � and m2 = �M2 � 	 ,

0, otherwise,
� �16�

where � denotes addition modulo 2. Hardy’s equations
�5�–�8� are four more independent linear constraints, which
thus restrict us to a 4D subspace of the 8D polytope C. In-
deed, the remaining joint probabilities �besides the ones cho-
sen to be zero in Eqs. �5�–�8�, can be parametrized as

P�+ − �XX� = 1 − P�− − �XY� ,

P�− + �XX� = 1 − P�− − �YX� ,

P�− − �XX� = − 1 + P�− − �XY� + P�− − �YX� ,

P�+ − �XY� = 1 − P�− − �XY� − P�− + �YY� ,

P�+ + �XY� = P�− + �YY� ,

P�+ + �YX� = 1 − P�− − �YY� + P�− + �YY� ,

P�− + �YX� = − P�− − �YX� + P�− − �YY� + P�− + �YY� ,

P�+ − �YY� = 1 − P�− − �YY� − P�− + �YY� . �17�

All 16 joint probabilities are now determined once we
specify P�−−�XY�, P�−−�YX�, P�−+ �YY�, and P�−−�YY�.
Thus, Hardy’s equations span a 4D polytope H which we
will call “Hardy’s polytope.” In the following we will group
the four independent joint probabilities in a 4D vector p
= �P�−−�XY� , P�−−�YX� , P�−+ �YY� , P�−−�YY��. It is straight-
forward to check that five of the 16 local vertices satisfy Eq.
�17�, namely those given by p= �1,0 ,0 ,0�, p= �1,0 ,0 ,1�,
p= �1,1 ,0 ,1�, p= �0,1 ,0 ,1�, and p= �0,1 ,1 ,0�. The other
local vertices can be covered by another set of Hardy’s equa-
tions generated from Eqs. �5�–�8� through local permutations
of measurements, but in the following we will focus on one
given set of Hardy’s equations, i.e., on a single polytope H.
The five local vertices are the only vertices of H, as can be
directly verified by looking at all combinations of probabili-
ties equal to zero or one for the elements of p, calculating the
remaining probabilities, and checking whether they fulfill
normalization, positivity, and causality. Taking one of the
five vertices as origin, we have four linearly independent
vectors pointing to the other four vertices, which thus allow
one to entirely span H. This by itself does not mean yet that
H lies in a facet of L, as a polytope spanned by local vertices
might lie in the interior of L. However, we know that for all
points within H, in particular with the three probabilities in
Eqs. �5�–�7� equal to zero, adding an infinitesimally small

value to P�++ �YY� moves us outside the realm of LHV theo-
ries, by construction of Hardy’s argument. Thus, for all
points in H where a positive P�++ �YY� is not prohibited by
other constraints �normalization and positivity of other joint
probabilities� H must lie inside an interface between L and
the remainder of C. This interface must be a single facet of L
or an edge, as otherwise H would not be convex. �For points
where P�++ �YY� is prevented from taking positive values, H
may lie within one of the trivial facets of L given by the
positivity and upper bound one of all joint probabilities.�
Thus, Hardy’s equations define a 4D polytope contained
within a 7D facet, which forms a boundary of the local poly-
tope L with the set of non-local correlations, and hence cor-
responds to a CHSH inequality.

Suppose now that we add a small value 
 to any of the
probabilities in the first three Hardy equations, Eqs. �5�–�7�,
i.e., move outside of H in a different direction. Since we
were already inside the interface between the local and the
other causal correlations described by CHSH inequalities,
the best we can do if we want to stay in L is to move within
the facet. This suggests that a generalization of Hardy’s
equations to a necessary condition for LHV theories with
finite values of the probabilities in Eqs. �5�–�7� should lead
immediately to a CHSH inequality. Indeed, we will see in the
following section �Sec. III D� that this is the case.

In order to visualize the polytope H in the subspace of the
components of p, we present in Fig. 1 several 3D cuts of H,
namely for P�−−�YY�=0, 1

4 , 1
2 , and 1. We see that for

P�−−�YY�=0 the polytope degenerates to a straight diagonal
line, from p= �0,1 ,1 ,0� to p= �1,1 ,0 ,0�. For finite values of
P�−−�YY�, the line widens to a cylinder with the cross sec-
tion of a right-angled isosceles triangle in the planes of con-
stant P�−+ �YY�. These triangles move along the mentioned
diagonal with increasing P�−+ �YY�, until-they hit the bound-
ary P�−−�XY�=0. The length of the short sides of the tri-
angles are given by P�−−�YY�. Altogether, we can describe
the polytope H by the four inequalities

0 � P�− − �YY� � 1, �18�

0 � P�− + �YY� � 1 − P�− − �YY� , �19�

1 − P�− + �YY� − P�− − �YY� � P�− − �XY�

� 1 − P�− + �YY� , �20�

1 − P�− − �XY� � P�− − �YX� � 1 − P�− − �XY� + P�− − �YY� .

�21�

The five local vertices which satisfy Eqs. �17� show up
here as corners �1,0,0� twice, once for P�−−�YY�=0 and once
for P�−−�YY�=1; p= �1,1 ,0� and p= �0,1 ,0� for
P�−−�YY�=1, and p= �0,1 ,1� for P�−−�YY�=0.

A final remark is in order about the quantum states which
allow to falsify LHV theories using Hardy’s test. As men-
tioned, almost all pure states allow to demonstrate Hardy
nonlocality, but the singlet state, which violates the CHSH
inequality maximally, does not. How is this possible if H is
a subset of an interface described by a CHSH inequality?
The reason for this is that no set of observables X1 ,Y1 ,X2 ,Y2
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can be found such that Eq. �8� is violated while Eqs. �5�–�7�
are all satisfied. The set of correlations which satisfy Hardy’s
equations �5�–�7� define a 5D subset of C, and only in this
subset can Hardy’s test exclude LHV theories. The singlet
state leads to correlations, which, no matter the choice of
observables, are outside of this subset.

D. Hardy’s test in the presence of imperfections

In any realistic experimental situation, it will be difficult
to fulfill Eqs. �5�–�7� exactly. It is therefore essential to ana-
lyze the effects of various imperfections, which may lead to

finite values of the probabilities in Eqs. �5�–�7�. Errors can
occur in the preparation of the ideal quantum mechanical
state ���, in the construction of the measurement operators Xj
and Y j, and due to detection problems, including particle
loss. Suppose then that, say, P�++ �XX� has some finite but
small value, P�++ �XX�=
1. Immediately the logic of Har-
dy’s argument ceases to work, and nothing prevents an out-
come �++ �YY�. The same holds true for the other two prob-
abilities in Eqs. �6� and �7�, for which we may assume that
they take on finite values P�+−�YX�=
2, and P�−+ �XY�=
3.
Furthermore, the logic of Hardy’s argument also ceases to
work if a particle can be lost, as this corresponds to a third
outcome, which we will label “0” for any measurement. We
should therefore also consider the situation where probabili-
ties such as P�+0 �YX�=
4 and P�0+ �XY�=
5 can become
finite. For continuity reasons it is clear that P�++ �YY� cannot
jump immediately to arbitrarily large values if any of the 
i
takes on a very small but finite value. In other words, there
should be a bound on P�++ �YY� depending on the 
i. We
will now show that this bound is equivalent to the CHSH
inequality.

The key to generalizing Hardy’s argument to finite values
of the 
i is replacing logical implications by set-theoretical
inclusions. This approach was pioneered very recently by
Ghirardi and Marinatto �GM� �26,27�. The sets in question
are sets of values of hidden variables which imply certain
outcomes of measurements. Following the steps in �26�, only
slightly generalized to different 
� and equalities instead of
bounds for the joint probabilities, we immediately find the
necessary condition

P�+ + �YY� � �
�=1

5


� �22�

for any LHV theory. Note that Eq. �22� is based solely on
classical set-theory and does not make any assumption on
how the measurement outcomes are generated. The prob-
abilities 
4 and 
5 may not be measurable through a direct
correlation measurement, but conservation of probability de-
mands

P�+ 0�YX� = P�1��+ �Y� − P�+ + �YX� − P�+ − �YX� �23�

and similarly for P�0+ �XY�. Using this and inequality �22�,
we are immediately led to the CH inequality �37�,

P�+ + �XY� + P�+ + �YX� + P�+ + �YY� − P�+ + �XX�

− P�1��+ �Y� − P�2��+ �Y� � 0. �24�

The CH inequality �24� is mathematically equivalent to the
more familiar CHSH inequality �19� based on expectation
values for dichotomic observables with measurement out-
comes �1,

�X1Y2� + �Y1X2� + �X1X2� − �Y1Y2� − 2 � 0, �25�

if particle loss is excluded �38�. This can be easily seen by
using conservation of probability to express all four prob-
abilities appearing in an expectation value such as �Y1X2� in
terms of the sole probability P�++ �YX� �and similarly for all
other expectation values�. Thus, the CHSH inequality can be
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FIG. 1. �Color online� 3D cross sections of the Hardy’s polytope
H for P�−−�YY�=0 �a�, 0.25 �b�, 0.5 �c�, and 1 �d�. All cross sec-
tions are cut once more at constant values P�−+ �YY� to reveal the
triangular 2D cross sections.
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considered as a natural generalization of Hardy’s
equations—or Hardy’s equations as a special case of the
CHSH inequality—once the slightest imperfections need to
be taken into account �see also �28��. Not withstanding the
fact that Hardy’s test has always been considered apart from
other quantum nonlocality tests, this should come to no sur-
prise, as in the 2222 scenario �i.e., n1=n2=k1=k2=2� two
observables for both Alice and Bob with two possible values
each, the only relevant inequality is the CHSH inequality
�21–24�, in the sense that if any inequality linear in the rel-
evant joint- and single-particle probabilities is violated in
this scenario, so is one of the CH inequalities constructed
from Eq. �24� through symmetry operations such as particle
exchange or relabeling of measurement results. Thus, as soon
as Hardy’s test needs to be formulated using bounds on prob-
abilities, the resulting inequality can be at most as strong as
the CHSH inequality. Note that in the experimental realiza-
tion in Ref. �34� a similar inequality was derived in order to
deal with imperfections.

Our derivation of the CHSH inequality as a generalized
Hardy’s test also sheds a new light on the former in the
following sense: The inequality �24� provides a necessary
condition for LHV theories even if particles can be lost.
However, this does not change the status of the problem of
the detector loophole. A violation of Eq. �24� would always
have been considered as falsification of a LHV description, if
the probabilities were the ones describing the whole en-
semble of pairs used, and not just the pairs which were de-
tected. Otherwise an additional fair sampling assumption
comes in, which is the origin of the detector loophole.

E. The CHSH test with particle loss

In reality, particles can be lost without any measurement
signal, on the way from the source to the detector, or due to
nonideal detectors. Particle loss may be considered as a third
measurement outcome, say, “0.” We are therefore dealing
with the case of n1=n2=2 and k1=k2=3. In such a case there
exists an inequality, called I2233 inequality,

I2233 = P�− + �YY� + P�+ + �YY� + P�− − �YY� + P�+ + �XY�

+ P�− − �XY� + P�+ − �XY� + P�+ + �YX� + P�− − �YX�

+ P�+ − �YX� − P�+ + �XX� − P�− − �XX� − P�+ − �XX�

− P�1��− �Y� − P�1��+ �Y� − P�2��+ �Y� − P�2��− �Y� � 0,

�26�

which is more relevant than the CHSH inequality �39,40�. In
other words, it can detect quantum nonlocal correlations,
even if the CHSH inequality fails to do so. It appears there-
fore to be worthwhile examining, whether experiments
which include the possibility of particle loss would not better
test for nonlocality using the I2233 inequality. It is the purpose
of the present section to show that this is not the case.

Interestingly, the inequality is maximally violated by a
nonmaximally entangled state, if the three outcomes corre-
spond to actual quantum states �41�. However, in the case of
particle loss as third outcome, the events are not indepen-
dent. If we assume that an electron is lost with probability r

on Alice’s side, and with the same probability �and indepen-
dently� on Bob’s side, I2233 becomes

I2233�r� = �P�− + �YY� + P�+ + �YY� + P�− − �YY�

+ P�+ + �XY� + P�− − �XY� + P�+ − �XY�

+ P�+ + �YX� + P�− − �YX� + P�+ − �YX�

− P�+ + �XX� − P�− − �XX� − P�+ − �XX���1 − r�2

− �P�1��− �Y� + P�1��+ �Y� + P�2��+ �Y� + P�2��− �Y��

��1 − r� � 0. �27�

Whereas in Eq. �26� the probabilities mean the actually ob-
served ones, the probabilities in Eq. �27� are the ideal prob-
abilities without particle loss. The latter permit only two val-
ues for each observable, and we have conservation of these
ideal probabilities, such as

P�1��+ �X� = P�+ + �XX� + P�+ − �XX� �28�

This allows one to rewrite I2233�r� as

I2233�r� = ICHSH�r� − r�1 − r��P�1��+ �X� + P�2��+ �X�� � 0,

�29�

where

ICHSH�r� = �P�+ + �YY� + P�+ + �XY� + P�+ + �YX�

− P�+ + �XX���1 − r�2 − �P�1��+ �Y� + P�2��+ �Y��

��1 − r� � 0 �30�

is the CHSH inequality modified for the possibility of par-
ticle loss �see also Sec. III D below�. For r=0 we have
I2233�0�= ICHSH�0�= ICHSH, as it should be. Due to the positiv-
ity of the term P�1��+�X�+ P�2��+�X� in Eq. �29�, we have
I2233�r�� ICHSH�r�, i.e., if I2233�r��0 is violated, so is
ICHSH�r��0, but not necessarily the other way round. Thus,
we have established that if the third measurement outcome is
particle loss, the CHSH inequality is more relevant than the
I2233 inequality, contrary to the case of genuine three-
outcome measurements.

To summarize, we have established the CH inequality
�24� or, equivalently, the CHSH inequality �25� as the rel-
evant inequality for all three tests considered above: ideal
Hardy’s test, Hardy’s test with imperfections, and the CHSH
test including particle loss. This leaves open the question,
however, which test will be violated in a more robust way in
an experiment. Optimizing different tests leads indeed to dif-
ferent experiments, i.e., not only the state to be constructed is
different, but so are the corresponding measurement opera-
tors. Since all tests will be based on the CHSH inequality, we
will distinguish different tests by the specific experimental
situations. Under the “CHSH test” we understand an experi-
ment using the singlet state �or, in the case of noise, a state
close to the singlet� in order to show a violation of the CHSH
inequality. We will call “Hardy’s test” an experiment using a
state close to the ideal Hardy state �15� in order to show a
violation of the CHSH inequality �see Sec. II D above�. Ex-
perimentally, it is desirable to obtain as strong a violation as
possible, but also in a range of parameters as wide as pos-
sible. Since the CHSH inequality is known to be violated
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maximally for a singlet state �36�, the CHSH test wins in the
first category. However, the second category is important in
the case of uncontrolled fluctuations of parameters in the
experiment, and the question which test fares best in this
category is a priori open. It is best answered for a specific
experimental setup, and this is what we are going to discuss
now.

III. PROPOSED EXPERIMENTAL SETUP

We propose a flexible mesoscopic circuit which allows to
perform Hardy’s test and the CHSH test discussed in the
previous section, and compare then the expected parameter
regions in which these tests are expected to fail according to
quantum mechanics. Spacelike separation of measurements
is unlikely to be achieved on a chip in the near future, where
the measurement stations are separated by a few 
m. How-
ever, the locality condition is known to be a special case of
the more general concept of noncontextuality �42�. Noncon-
textuality in quantum mechanics �QM� means that the mea-
surement of an observable A does not influence the outcome
of the measurement of another observable B that commutes
with A. The theories ruled out by a successful experiment
with a mesoscopic circuit should therefore be classified as
“noncontextual hidden variable theories” �NCHV�. While a
local hidden variable �LHV� theory might still explain the
results, it would have to introduce so far unknown interac-
tions. Replacing the belief in locality by the more general
assumption of noncontextuality is indeed natural once one
starts to doubt the validity of locality in quantum mechanics
�see �43–46� for recent attempts to explain the quantum
world with nonlocal realistic theories�. The conclusions
drawn from a NCHV theory in terms of bounds on correla-
tions are exactly the same as for a LHV theory—only the
physical origin of the assumed independence of Alice’s mea-
surement results on Bob’s settings is different. The violation
of any of the noncontextuality conditions discussed below
may be viewed as signature of true quantum correlations in a
mesoscopic circuit.

A. Mesoscopic circuit

The circuit consists of two coupled electronic Mach-
Zehnder �MZ� interferometers fabricated on a quantum Hall
bar �13,47,48�, see Fig. 2�a�. One of the two MZ interferom-
eters is formed of the outer edge channel of the quantum Hall
liquid with filling factor 2, whereas the other uses the inner
channel. The electronic beam splitters �BS� in the MZ inter-
ferometers are realized by quantum point contacts �QPC�. A
QPC can be fine tuned so as either to block the inner channel
completely and partially transmit the outer channel, or to
entirely transmit the outer channel and partially reflect the
inner channel. In this way a QPC can operate as a BS selec-
tively on one of the two edge channels. In order to create an
entangled state, the two MZ interferometers should be
coupled. The coupling in our scheme arises from the Cou-
lomb repulsion between the electrons in the two parallel edge
channels. The repulsive potential affects the phases of the
interacting electrons, and thus the coupling provides a con-

trolled phase shift between the two MZ interferometers. This
has been recently demonstrated experimentally �48�. As we
will explain below, the chip should be fed with synchronized
single-electron sources rather than through more common
contact reservoirs, which inject continuous streams of elec-
trons. Among several possible methods, we propose the use
of the coherent single-electron source based on a coherent
capacitor. Demonstrated in a recent experiments �49�, this
source allows well-controlled injection times, well-defined
energy of the injected electrons, as well as good control of
the input current through the frequency of the pump �about
180 MHz in Ref. �49��.

Let us denote by Sj �j=1,2� the input port through which
electrons are injected to the jth MZ interferometer, by Aj and
Bj, the two beam splitters, and by Dj and Ej, the two output
ports where the electrons are detected; see Fig. 2�b�. We
attribute the value +1 to detection in Dj �basis state �0��, and
−1 to detection in Ej �basis state �1��. Using the fact that only
relative phases between the two branches in an MZ interfer-
ometer are relevant, we may represent the beam splitters by a
real orthogonal matrix of the form

(b)

(a)

FIG. 2. �Color online� �a� A schematic of the mesoscopic circuit
with two coupled Mach-Zehnder interferometers fabricated on a
quantum Hall bar and �b� its equivalent diagram. The arrowed
�black and red� lines are the edge channels of the quantum Hall
liquid with filling factor 2. Sj �j=1,2� denote the electron sources,
Aj and Bj the beam splitters �quantum point contacts�, Dj and Ej the
electron detectors, and C the conditional phase shift. The coupling
is realized by the Coulomb interaction between the two channels in
the gray shaded region in �a�.
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UB��� = �cos � − sin �

sin � cos �
� �31�

in the basis ��0�,�1��. Phase shifts within a MZ interferometer
are described by

UP��� = �1 0

0 ei� � . �32�

The coupling C reads

UC��� =�
1

1

1

ei2�
� �33�

in the basis ��00�,�01�,�10�,�11�� with ��1�2����1� � ��2�. A1,
A2 and C are used for the preparation of the entangled state,
while B1 and B2 allow to select the four different quantum
measurements. The two interacting MZ interferometers real-
ize the unitary transformation

U = �UB��1�� � UB��2����UP��1� � UP��2��UC���

��UB��1� � UB��2�� . �34�

Even though there have been experimental demonstra-
tions of high precision single-electron detection �50–53�,
none of them is fast enough for nanosecond time scales.
Therefore, we propose to use low-frequency current cross
correlations instead �5,7,12,54�. The zero-frequency spectral
density SM1M2

�H1 ,H2� of the correlations between two drains
H1 ,H2 �where Hj � �Dj ,Ej�, j=1,2� of the current fluctua-
tions 	Ij�Hj�= Ij�Hj�− �Ij�Hj�� is defined as

SM1M2
�H1,H2� = �

−�

�

dt�	I1�H1,t�	I2�H2,0�� . �35�

To simplify notation, we have suppressed the dependence of
	Ij on the measurement settings, coded in the subscripts of
SM1M2

�H1 ,H2� �Mj =Xj or Y j�. If the electron pairs from the
synchronized sources S1 and S2 are well separated in each
interferometer �at 180 MHz operation the temporal width of
the electron wave package was below 1 ns for optimal cur-
rent quantization in �49��, SM1M2

�H1 ,H2� is directly related to
the joint probabilities of Eqs. �5�–�8� �7,12�. For example, we
have

P�� + − �YX� =
2�

eI0
SYX�D1,E2� , �36�

and correspondingly for the other joint probabilities in Eqs.
�5�–�8�, where I0 is the injection current from the single-
electron sources S1 and S2 ��5 pA in �49��. The requirement
for well separated electrons for the validity of Eq. �36� and
the need for well-defined interaction phases �and thus simul-
taneous arrival of the electrons in the interaction area C�,
motivate the use of synchronized single electron sources. As
a byproduct, the production rate of electron pairs is precisely
known. This is important for a convincing falsification of any
NCHV model, as discussed in Sec. I at the beginning. As Eq.
�36� makes obvious, the joint probabilities for our setup are

normalized relative to the absolute pump rates I0, and this
allows us to avoid the description by an NCHV model as in
Ref. �15�.

B. Parameters for Hardy’s test

For Hardy’s test, one should create the state �15�. In prin-
ciple two full MZ interferometers and thus four BSs are nec-
essary to do so. For the choice of measurement operators,
one would need two more BSs �one for Alice, one for Bob�.
However, since these BSs just perform local unitary rota-
tions, we can combine the last two BSs on each side, and
therefore perform all experiments for the correlations �5�–�8�
with just two BSs per party. We put the beam splitter A1 into
a fixed mode associated with the unitary matrix V1
=UB�� /4�, create V2=UB��0� with A2, and adjust the cou-
pling to V0=UC��0�, where the optimal values �0 and �0 are
given by

cos�2�0� = cos�2�0� = 2 − 	5. �37�

This leads to the entangled state ���=V0�V1 � V2��00�,

��� =
cos �0

	2
��00� + �10�� +

sin �0

	2
��01� + ei2�0�11�� ,

�38�

achieved after the electrons pass through A1, A2, and undergo
the conditional phase shift C.

Following the lines of Refs. �18,26,27,55� we implement
the measurements X1 and Y1 by switching the beam splitter
B1 between the two modes associated with the unitary ma-
trices U1=UB�� /4� and W1=UP�2�0�UB�� /4�UP�−2�0�,
and the beam splitter B2 between the two modes U2=UB�0�
and W2=UP��0�UB���UP�−�0�, where cot �=tan �0 cos �0.
In other words, the measurements Xj and Y j are given by
Xj =Uj

†ZUj and Y j =Wj
†ZWj, respectively, where Z= �0��0�

− �1��1�. The last phase shifts in W1 and W2 change the
phases of the computational basis states immediately before
detection and do not modify the final probabilities. Omitting
them brings the total unitary transformation to the form �34�
with seven parameters, whose optimal values we have sum-
marized in Table I. It is then straightforward to see that the
quantum mechanical joint probabilities P� associated with
the state ��� in Eq. �38� verify Eqs. �5�–�7�, whereas instead
of Eq. �8� we have Eq. �14�, i.e., a violation of the inequality
in about 9% of all cases.

C. Parameters for CHSH test

The singlet state can be created as

��s� = �UB��

4
� � UB�0��UCP��

2
��UB��

4
� � UB��

4
��

��00� . �39�

The optimal choice of measurements for a maximal violation
of Eq. �24� is
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X1 = �z,

Y1 = �x,

X2 =
1
	2

��z − �x� ,

Y2 = −
1
	2

��x + �z� , �40�

where �x and �z are Pauli matrices. This implies that the BS
B1 should be set to full transmission (UB�0�) for M1=X1, and
to UB�− �

4 � for M1=Y1, as X1=UB� �
4 �ZUB�− �

4 �. For B2 we
choose angles �

8 or 3�
8 for X2 or Y2, respectively, as X2

=UB�− �
8 �ZUB� �

8 � and Y2=UB�− 3�
8 �ZUB� 3�

8 �. In Table I we
summarize the parameters for the different BSs and phase
shifters for all four measurements for Hardy’s test and the
CHSH test.

D. Imperfections

Let us now calculate, both for Hardy’s test and the CHSH
test, the range of fluctuations of the seven angles � j, � j�, � j,
�j=1,2�, and � of the unitary matrix U in Eq. �34� around
their optimal values �see Table I�, for which QM still predicts
a violation of Eq. �24�. Fluctuations in these angles lead to
mixed states � at the output ports, which depend on the test
and the measurements. We denote the quantum mechanical
predictions of the probabilities corresponding to � by P�. The
final QM joint probabilities in Eq. �24� are given by postpro-
cessing the P� with a classical stochastic map that models
particle loss. Besides electrons going undetected, an electron
may also be detected in the wrong output port �Ej instead of
Dj, or vice versa�, or an electron might be detected errone-
ously in both output ports. The last process, witnessed by a
finite value of the correlator SM1M2

�Ej ,Dj�, should be taken
care of experimentally by subtracting the dark count. Detect-
ing an electron in the wrong drain can be shown to be
equivalent to a bit flip error after the state preparation and
can be included in the fluctuations of the 7 angles. As we
exclude joint dark counts, the final predictions for the joint
probabilities in Eq. �24� are then simply obtained by multi-
plying the P� with a factor �1−r�2, where r is the single

electron loss rate per interferometer, indicating that no elec-
tron was lost, neither on Alice’s nor Bob’s side. The single
particle probabilities are multiplied only with a factor �1
−r�. This leads to inequality �30�. Note that r can be mea-
sured through �I�Dj��+ �I�Ej��= I0�1−r� for known I0; see the
discussions in Sec. II E.

We have estimated the allowed range of errors for uni-
form distributions of the relevant fluctuations, independent
of the measurement chosen. Note that different probabilities
correspond to different settings of the BS, and thus to a dif-
ferent final state before the application of the measurement
operator Z, even without fluctuations. Correspondingly, also
a different final mixed state is produced for each different
joint probability function. This can be considered as the
Schrödinger picture of the measurement process �same op-
erator, different states� in contrast to the more familiar
Heisenberg picture �fixed state, different measurements�.
Since the CHSH inequality �24� is linear in the probabilities,
we may as well average the probabilities themselves over the
distributed parameters. For example, when the first beam
splitters A1 and A2 are subject to errors in the tuning of the
transmissions, the allowed error range is given by the condi-
tion

1

4	1	2
�

�1
opt−	1

�1
opt+	1

d�1�
�2

opt−	2

�2
opt+	2

d�2��P��+ + �XX� + P��+ + �XY�

+ P��+ + �YX� − P��+ + �YY���1 − r� − P�
�1��+ �Y�

− P�
�2��+ �Y�� � 0, �41�

where � j
opt �j=1,2� are the optimal settings for the corre-

sponding test and measurements �different for different terms
in the integral, see Table I�. In the above inequality �41�,
P��m1 ,m2 �M1 ,M2� denote the quantum mechanical prob-
abilities corresponding to the states ����1 , . . . ,�2���
=U��1 , . . . ,�2���00� with U from Eq. �34�. As such, the
� j dependence of P��m1 ,m2 �M1 ,M2� is through the
state ����1 , ¯ ,�2���. Note that the marginal probability
P�

�1��+�Y� is implemented experimentally either by
P�

�1�= P��++ �YY�+ P��+−�YY� or by P�
�1�= P�

�++ �YX�+ P��+−�YX�, and similarly for P�
�2��+�Y�.

TABLE I. Optimal parameters for all four measurements for Hardy’s test and the CHSH test; �0=�0

= �arccos�2−	5�� /2, �=arccot�tan �0 cos �0�.

M1 ,M2 �1
opt �2

opt �opt �1
opt �2

opt �1�
opt �2�

opt

Hardy X ,X � /4 �0 �0 0 0 � /4 0

Hardy X ,Y � /4 �0 �0 0 −�0 � /4 �

Hardy Y ,X � /4 �0 �0 −2�0 0 � /4 0

Hardy Y ,Y � /4 �0 �0 −2�0 −�0 � /4 �

CHSH X ,X � /4 � /4 � /2 0 � � /4 � /8

CHSH X ,Y � /4 � /4 � /2 0 � � /4 3� /8

CHSH Y ,X � /4 � /4 � /2 0 � 0 � /8

CHSH Y ,Y � /4 � /4 � /2 0 � 0 3� /8
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Figure 3 shows that for Hardy’s test all angles can fluctu-
ate over intervals of the order of 1 radian, if no electron is
lost, whereas for small fluctuations of the angles loss rates up
to 15% in each interferometer can be tolerated, in agreement
with earlier findings about the detector efficiency needed to
avoid a detector loophole for Hardy nonlocality �56�. How-
ever, for the CHSH test the allowed range of fluctuations is
even larger �see Fig. 3�. Altogether, we see that our mesos-
copic scheme is very robust against possible imperfections.
The scheme might therefore be sufficiently robust for experi-
mental implementation with present day technology.

IV. CONCLUSIONS

We have compared three different tests of quantum non-
locality, both on a theoretical level, and with respect to a
possible implementation in a mesoscopic circuit. We have
shown that Hardy’s test becomes a special instance of the
more general CHSH inequality as soon as imperfections
have to be taken into account. We have uncovered the deeper
geometrical reason for this fact by establishing that Hardy’s
equations describe a 4D convex polytope embedded inside
the interface, described by a CHSH inequality, between the
polytope of local correlations and the remaining causal cor-
relations. We have also demonstrated that the inequality I2233,
relevant for experiments with three outcomes per observable,
is superseded by the CHSH inequality if the third measure-
ment outcome is particle loss. We have proposed a flexible
measurement setup based on two interacting Mach-Zehnder
interferometers formed from Hall-bar edge states at filling
factor 2 and quantum point contacts, which allows to imple-
ment both Hardy’s test and the CHSH test. Based on that
setup, we have shown that both Hardy’s test and the CHSH
test should be sufficiently robust with respect to parameter
fluctuations to allow falsification of a noncontextual hidden
variable description of the experiment. For the CHSH test
the tolerance with respect to fluctuations of the relevant ex-
perimental parameters is substantially larger than for Hardy’s
test.
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FIG. 3. �Color online� Boundaries of the regions where NCHV
theories are expected to be falsified in Hardy’s test �lower surfaces�
and the CHSH test �upper surfaces� for a selection of different
errors. �a� Allowed fluctuations 	1 and 	2 in �1 and �2 of the beam
splitters A1 and A2, respectively, when electrons are lost with prob-
ability r per interferometer. �b� The same as �a� for the beam split-
ters B1 and B2. �c� The same as �a�, but for the phase fluctuations
	�1 and 	�2 in the two Mach-Zehnder interferometers. �d� Same as
�c�, but with a phase fluctuation 	� in the controlled phase shift
UC��� instead of r for r=0.
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