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The minimal length may be interpreted as a radius of the cosmic string.

DOI: 10.1103/PhysRevA.78.032110 PACS number�s�: 03.65.�w, 11.27.�d, 98.80.Cq, 02.40.Gh

I. INTRODUCTION

We recently studied �1� the attractive inverse square po-
tential in three-dimensional quantum mechanics with a gen-
eralized uncertainty relation implying the existence of a non-
zero minimal uncertainty in position measurement �minimal
length� �2�. This study showed that this potential remained
regular in this framework; the elementary length plays the
role of a regulator cutoff at short distances, and may be in-
terpreted as an intrinsic dimension of the system under study.

In this paper, we generalize the aforementioned work to N
dimensions and arbitrary orbital momentum quantum num-
ber, and apply it to the problem of the dipole dynamics in the
background of a cosmic string, where the interaction is
known to be described by a two-dimensional 1 /R2 potential
�3�. Cosmic strings are very interesting one-dimensional to-
pological defects of space time �4�. Other types of defects are
point defects �monopoles�, planar defects �domain walls�,
and textures. Such defects are hypothesized to form in the
phase transition of the early universe due to the process of
spontaneous symmetry breaking and some of them could
have survived to much later time, perhaps even to the present
day �4–6�.

The quantum dynamics of a point dipole in nonrelativistic
quantum mechanics in a cosmic string background has been
considered by several authors �see, for instance, Refs.
�3,7–9��. In Ref. �9�, the author was interested in the case
where the angle � between the dipole moment and the cos-
mic string is such that ��� /4, in which case the potential is
repulsive. The author used the method of self-adjoint exten-
sions �10� and found that the cosmic string can bind the
dipole if the potential is weakly repulsive, i.e., if one has
2M� /�2�1, where M is the particle mass and � is the
strength of the potential. The author claims that this result is
an example of the classical scale symmetry breaking of the
system due to a “quantum anomaly.” Note that from a math-
ematical point of view, a bound state may exist in a weakly
repulsive 1 /R2 potential because the corresponding Hamil-
tonian has square integrable solutions �10�. Given the coun-

terintuitive feature of this result �i.e., the existence of a
bound state in a repulsive potential�, it is interesting to study
the existence of bound states of that system in quantum me-
chanics with a minimal length and to examine whether a
cosmic string keeps binding the dipole when the potential is
repulsive.

The idea of modifying the standard Heisenberg uncer-
tainty relation in such a way that it includes a minimal length
has first been proposed in the context of quantum gravity and
string theory �11�. It is assumed that this elementary length
should be on the scale of the Planck length of 10−35 m, be-
low which the resolution of distances is impossible. The for-
malism based on this modified uncertainty relation, together
with the concepts it implies has been discussed extensively
by Kempf and his collaborators �2,12�. Various topics were
studied over the last 10 years within this formalism: The
hydrogen atom problem �13�, the harmonic oscillator poten-
tial �14�, the Casimir effect �15�, the Dirac oscillator �16�,
and the problem of a charged particle of spin-1

2 moving in a
constant magnetic field �17�. The modifications of the gyro-
magnetic moment of electrons and muons due to the minimal
length have been discussed in Ref. �18�. More recently sev-
eral papers have been devoted to the study of the black hole
thermodynamics within the minimal length formalism �19�.
For a review of different approaches of theories with a mini-
mal length scale and the relation between them, we refer the
reader to Ref. �20�.

For the sake of completeness, let us mention that the 1 /R2

interaction that we study here in two spatial dimensions oc-
curs in many problems of great physical interest. Indeed, this
potential appears in the study of electron capture by polar
molecules with static dipole moments �21,22�. The problem
of atoms interacting with a charged wire is known to provide
an experimental realization of an attractive 1 /R2 potential
�23,24�. The Efimov effect in three-body systems �25� arises
from the existence of a long-range effective 1 /R2 interaction,
where R is built from the relative distances between the three
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particles. Finally, in black hole physics, the inverse-square-
type interaction occurs naturally in the analysis of the near-
horizon properties of black holes, the Bekenstein-Hawking
entropy and black holes decay �26�. Note finally that the
singular 1 /R2 potential provides a simple example of a
renormalization group limit cycle in nonrelativistic quantum
mechanics �27�. Let us mention that the condition of square
integrability of the Schrödinger wave function for a singular
1 /R2 potential does not lead to an orthogonal set of eigen-
functions with their corresponding eigenvalues �28–30�. This
is due to the fact that the Hamiltonian operator is not essen-
tially self-adjoint �10�, so that one must define self-adjoint
extensions of the Hamiltonian or equivalently require or-
thogonality of the wave functions �28�. The other technique
used to deal with this potential is the standard regularization
by a cutoff at short distances �31�.

Our paper is organized as follows. In Sec. II, we study the
1 /R2 potential in N-dimensional �ND� quantum mechanics
with a minimal length, using the momentum representation.
In Sec. III, we study the problem of a dipole in a cosmic
string background. Our main result is that a bound state ex-
ists only if the angle between the dipole and the cosmic
string is larger than � /4; the minimal length may be associ-
ated with the size of the cosmic string. Some concluding
remarks are reported in the last section.

II. N-DIMENSIONAL 1 ÕR2 POTENTIAL IN QUANTUM
MECHANICS WITH A GENERALIZED

UNCERTAINTY RELATION

In Ref. �1� we have solved the s-wave Schrödinger equa-
tion for the three-dimensional �3D� 1 /R2 potential in quan-
tum mechanics when the position and momentum operators
satisfy the following modified commutation relations:

�X̂i, P̂j� = i���1 + 	P̂2��ij + 	�P̂iP̂j�, �	,	�� 
 0,

�P̂i, P̂j� = 0,

�X̂i,X̂j� = i�
2	 − 	� + 	�2	 + 	��P̂2

1 + 	P̂2
�P̂iX̂j − P̂jX̂i� . �1�

These commutators imply the generalized uncertainty re-
lation

��Xi���Pi� �
�

2
�1 + 	�

j=1

N

���Pj�2 + �P̂j�2�

+ 	����Pi�2 + �P̂i�2�	 , �2�

which leads to a lower bound of �Xi, given by

��Xi�min = �
�N	 + 	��, ∀ i . �3�

Equation �2� embodies the uv-ir mixing: When �P is
large �uv�, �X is proportional to �P and, therefore, is also

large �ir�. This phenomenon is said to be necessary to under-
stand the cosmological constant problem or the observable
implications of short distance physics on inflationary cos-
mology; it has appeared in several contexts: The AdS-CFT
correspondence, in noncommutative field theory and in
quantum gravity in asymptotically de Sitter space �14,32�.
Another fundamental consequence of the minimal length is
the loss of localization in coordinates space, so that, momen-
tum space is more convenient in order to solve any eigen-
value problem.

In the momentum representation, the following realization
satisfies the above commutation relations:

X̂i = i���1 + 	p2�
�

�pi
+ 	�pipj

�

�pj
+ pi	, P̂i = pi. �4�

The arbitrary constant  does not affect the observable quan-
tities, its choice determines the weight factor in the definition
of the scalar product as follows:

����� =� dNp

�1 + �	 + 	��p2�1−��*�p���p� ,

� =

 − 	��N − 1

2
	

	 + 	�
. �5�

In the following, we generalize the work aforementioned
to arbitrary dimensions N and arbitrary orbital momentum
quantum number l.

We proceed, as in Ref. �1�, by writing the Schrödinger
equation, for a particle of mass M in the external potential
V�R�=� /R2, in the form

�R2P2 + 2M����� = 2MER2��� . �6�

Because of the rotational symmetry of the Hamiltonian,
we can assume that the momentum space energy eigenfunc-
tions can be factorized as �14�

�N�p�� = Yl�N−1�¯l2l1
����N�p� . �7�

Using Eq. �4� with =0, we obtain the following expres-
sion for R2�i=1

N XiXi �1,14�:

R2 = �i��2��1 + �1p2�2 d2

dp2 + �1 + �1p2�

���N+	 + 2	��p +
N−

p
	 d

dp
−

L2

p2 − 2	L2 − 	2L2p2� ,

�8�

where we have used the notations

�1 = 	 + 	�, N� = N � 1, L2 = l�l + N − 2� .

From Eqs. �6�–�8� the radial Schrödinger equation for the
� /R2 potential in the presence of a minimal length takes the
form
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d2�N�p�
dp2 + � 4p

p2 − 2ME
+

�N+	 + 2	��p +
N−

p

1 + �1p2 �d�N�p�
dp

+ �2p��N	 + 2	 + 3	��p +
N

p
	

+
1

1 + �1p2�− 	2L2p4 + 2	L2�M	E − 1�p2 + �4M	E − 1�L2 −
2M�

�2 +
2MEL2

p2 	� �N�p�
�1 + �1p2��p2 − 2ME�

= 0. �9�

In the case L=0 and N=3, this equation reduces to the Schrödinger equation of Ref. �1�.
Introducing the dimensionless variable z, defined as

z =
�	 + 	��p2 − 1

�	 + 	��p2 + 1
, �10�

which varies from −1 to +1, and using the following notations:

�4 =
	

	 + 	�
, � = − M�1E, � =

M�

2�2 , �11�

we obtain the differential equation

�1 − z2�
d2�N

dz2 + ��N+	 + 2	�

2�1
−

3

2
	�1 + z� +

N

2
�1 − z� +

4�1 + z�
�1 + 2�� + �1 − 2��z�d�N

dz

+ �+
1

1 − z
�− ���4� +

1

4
	L2 + ���1 − z�2 −

�4
2L2

4
�1 + z�2 + N−�1 − z� +

N+	 + 2	�

�1
�1 + z� + 2�

−

�L2

2
�1 − z�2

1 + z
−

�4L2

2
��4� + 1��1 + z�� �N

�1 + 2�� + �1 − 2��z
= 0. �12�

To show that this equation can be transformed in the form of a Heun differential equation, as in the 3D case with l=0 �1�,
we make the following transformation:

�N�z� = �1 − z���1 + z���f�z� , �13�

where � and �� are arbitrary constants. Then, the equation for f�z� is

d2f

dz2 + � N+	 + 2	�

2�1
−

3

2
− 2�

�1 − z�
+

2�� +
N

2

�1 + z�
+

4

�1 − z���1 + 2�� + �1 − 2��z�
�df

dz
+

1

�1 − z2�2��1 + 2�� + �1 − 2��z�

����1 + 2�� + �1 − 2��z����� − 1��1 + z�2 − 2����1 − z2� + ����� − 1��1 − z�2 − ��N+	 + 2	�

2�1
−

3

2
	�1 + z�2 −

N

2
��1 − z2�

+ ���N+	 + 2	�

2�1
−

3

2
	�1 − z2� +

N

2
���1 − z�2� + �N+	 + 2	�

�1
− 4�	�1 + z�2 + �N− + 4����1 − z2�

− ���4� +
1

4
	L2 + ���1 + z��1 − z�2 −

�4L2

2
��4� + 1��1 + z�2�1 − z� −

�4
2L2

4
�1 + z�3 −

�L2

2
�1 − z�3 + 2�1 + z�� f = 0. �14�

We choose � and �� by requiring that the coefficient of
f�z� in Eq. �14� vanishes for z= �1; this leads to the two
equations for � and �� as follows:

�2 − �3

2
+

N+	 + 2	�

2�1
	� +

1

2
+

N+	 + 2	�

2�1
−

�4
2L2

4
= 0,

��2 + �N

2
− 1	�� −

L2

4
= 0. �15�

The values of � and �� satisfying this system are

�� =
1

4
�3 +

N+	 + 2	�

�1
� �1	 ,
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��� =
1

2
�1 −

N

2
� �2	 , �16�

where

�1 =
�N	 + 	�

�1
	2

+ 4�4
2L2, �2 =
�N

2
− 1	2

+ L2.

�17�

We select the set �� ,���= ��− ,�+��; so the transformation
�13� becomes

�N�z� = �1 − z�1/4�3+��N+	+2	��/�1�−�1��1 + z��1/2��1−�N/2�+�2�f�z� .

�18�

By substituting � and �� with their values in Eq. �14�, we
obtain after some calculations

d2f

dz2 + �1 −
�1

2

z − 1
+

1 + �2

z + 1
+

2

z − z0
�df

dz

+ � �z + �

�z − 1��z + 1��z − z0�	 f = 0, �19�

where

z0 =
2� + 1

2� − 1
,

� =
10 − N

4
+

N�N	 + 	��
8�1

−
3�1

4
+

3�2

2
−

�1�2

4

+
1

1 − 2�
���4

2

2
− �4� +

�4

2
��4� + 1�	L2 − �� ,

� =
1

1 − 2�
�1

4
�1 + 2���N�N	 + 	��

2�1
+ 2 − N	

+
1

4
�2� − 3��1 +

1

2
�6� − 1��2 −

1

4
�1 + 2���1�2

+ ��4
2

2
+ �4� +

�4

2
��4� + 1�	L2 + �� . �20�

Equation �19� is a linear homogeneous second-order dif-
ferential equation with four singularities z=−1,1 ,z0 ,�, all
regular. So, Eq. �19� belongs to the class of Fuchsian equa-
tions, and can be transformed into the canonical form of
Heun’s equation, having regular singularities at z
=0,1 ,�0 ,� �33,34�. The simple change of variable

� =
z + 1

2

leads to the following canonical form of Heun’s equation:

d2f���
d�2 + � c

�
+

e

� − 1
+

d

� − �0
	df���

d�
+ � ab� + q

��� − 1��� − �0�	 f���

= 0, �21�

with the parameters

a =
3

2
−

�1

4
+

�2

2
−

�̃

2
,

b =
3

2
−

�1

4
+

�2

2
+

�̃

2
, c = 1 + �2, d = 2, e = 1 −

�1

2
, �0 =

2�

2� − 1
,

q = −
1

1 − 2�
�1 + �N

4
− 3	� −

N�N − 1�
4

�4� +
��1

2
+ �1 − 3���2 +

��1�2

2
− �4�L2 − �� ,

�̃ =
�N − 1

2
	2

��4 − 1�2 +
1

1 − 2�
���1 − 2���1 − 2�4� − �4

2�4� + 1��L2 + 4�� , �22�

which are linked by the Fuchsian condition

a + b + 1 = c + d + e . �23�

In the neighborhood of �=0, the two linearly independent
solutions of Eq. �21� are �34�

f1��� = H��0,q,a,b,c,d;�� , �24�

f2��� = �1−cH��0,q�,1 + a − c,1 + b − c,2 − c,d;�� , �25�

where

q� = q − �1 − c��d + �0�1 + a + b − c − d�� .

H��0 ,q ,a ,b ,c ,d ;�� is the Heun function defined by the se-
ries
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H��0,q,a,b,c,d;�� = 1 −
q

c�0
� + �

n=2

�

Cn�n, �26�

where the coefficients Cn are determined by the difference
equation

�n + 2��n + 1 + c��0Cn+2 = ��n + 1�2��0 + 1� + �n + 1�

��c + d − 1 + �a + b − d��0�

− q�Cn+1 − �n + a��n + b�Cn,

�27�

with the initial conditions

C0 = 1, C1 =
− q

c�0
, and Cn = 0, if n � 0.

Now, we can write the solution of the deformed
Schrödinger equation �9� for the N-dimensional 1 /R2 poten-
tial. Thus, by using Eq. �18� the solution �N���, which is
regular �finite� in the neighborhood of �=0, is given by

�N��� = AN��1/2��1−�N/2�+�2��1 − ���1/4��5+�N−1��4−�1�

�H��0,q,a,b,c,d;�� , �28�

where AN is a normalization constant.
This formula generalizes that of Ref. �1�, which can be

recovered in the special case, N=3 and l=0.
In the following section, we study in more detail the two-

dimensional �2D� case, by considering a dipole in the pres-
ence of a cosmic string.

III. DIPOLE DYNAMICS IN A COSMIC STRING
BACKGROUND

Consider a particle of mass M, dipole moment D, moving
in the background field of a cosmic string. In nonrelativistic
quantum theory the interaction between the dipole and the
cosmic string is described by the potential �3,7–9�

V�R� =
�1 − �2�D2

48��2R2 cos 2� , �29�

where � is the angle between the string and the dipole mo-
ment and �=1−4G��1 characterizes the cosmic string,
with � as the linear mass density of the string, and G as the
gravitational constant.

The potential �29� is computed by considering the electro-
magnetic self-energy of the dipole due to the nonflat geom-
etry. The space-time metric of the cosmic string background
in cylindrical coordinate �R ,� ,z� is �3,7–9�

ds2 = dt2 − dR2 − �2R2d�2 − dz2. �30�

Because of the cylindrical symmetry of the space, the
motion of the particle along the z direction is a free particle
motion. By considering a cosmic string of infinite length
along the z direction, one must only discuss the motion of the
particle on the plane perpendicular to the z direction.

The wave function of the dipole reads as follows: �2�p��
=e−im��2�p�. The radial part, �2�p�, can be computed di-
rectly from Eq. �28� by setting N=2, and taking 4�

= M�1−�2�D2

24��2�2 cos 2�. We obtain the following expression:

�2��� = A2�m/2�1 − ���1/4��5+�4−
�1 + �4�2+4�4
2m2�

�H��0,q2,a2,b2,c2,d;�� , �31�

with the parameters

a2 =
1

4
�6 + 2m − 
�1 + �4�2 + 4�4

2m2� −
1

2
�̃2,

b2 =
1

4
�6 + 2m − 
�1 + �4�2 + 4�4

2m2� +
1

2
�̃2,

c2 = 1 + m, d = 2, e2 = 1 −
1

2

�1 + �4�2 + 4�4

2m2, �0 =
2�

2� − 1
,

q2 =
− 1

1 − 2�
�1 −

�

2
�5 + �4� + m�1 − 3�� − ��4m2 +

�

2
�m + 1�
�1 + �4�2 + 4�4

2m2 − �	 ,

�̃2 =
1

4
��4 − 1�2 +

1

1 − 2�
�4� + ��1 − 2���1 − 2�4� − �4

2�4� + 1��m2� . �32�

We now study the special case m=0 �ground state�, and
for convenience we take 	�=0. In this case one has e2=0

and q2=−a2b2, so Heun’s equation �21� reduces to a hyper-
geometric equation �1� and the wave function becomes
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�2��� = A�1 − ��F�a2
*,b2

*,c2
*;

�

�0
	 , �33�

where

a2
* = 1 −

�̃2
*

2
, b2

* = 1 +
�̃2

*

2
,

c2
* = 1, �̃2

* =
 4�

�1 − 2��
,

� =
�	 + 	��p2

�	 + 	��p2 + 1
, �0 =

2�

2� − 1
. �34�

We are now ready to investigate the existence of bound
states. Let us observe that, since cos 2� varies from −1 to +1,
the parameter � of the dipole in the cosmic string back-
ground can be positive or negative. The author of Ref. �9�
considered the repulsive case, i.e., ��

�
4 , and using the

method of self-adjoint extensions �10�, found that the system
would have a bound state in a weakly repulsive potential
�0�4��1�. This bound state would be a consequence of a
“quantum anomaly” �10�.

As discussed in detail in Ref. �1� for the 3D case, the
physical eigenfunctions of the Hamiltonian must behave at
large momenta as p2�2�p�p→�=0. This boundary condition
emerged naturally from the integral equation corresponding
to the differential equation. It determines the physical behav-
ior of the wave function in this asymptotic region. We obtain
from Eq. �33� the following quantization condition:

F�a2
*,b2

*,c2
*;

2� − 1

2�
	 = 0. �35�

In order to examine the existence of bound states for the
dipole in a cosmic string background, we have plotted the
hypergeometric function in Eq. �35� as a function of �=
−M	E for fixed 4�= M�1−�2�D2

24��2�2 cos 2�. The energy eigenval-
ues �n are determined by the zeros of the function
F�a

2
* ,b

2
* ,c

2
* ; 2�−1

2� � of Eq. �35�. Figure 1 shows that there are
no bound states for a weakly repulsive potential. The param-
eters are taken identical to that used in Ref. �9�, namely �
=� /12, D=1, �=0.2 for the dashed curve and �=� /8, D
=1.6, �=0.2 for the solid curve. In Ref. �9� one predicts one
bound state depending on the value of the self-adjoint exten-
sions parameter ���. In quantum mechanics with a minimal
length, for any value of 	 and 	�, there is no bound state in
the weakly repulsive potential. Figure 2 shows that in the
case �=� /4 �absence of interaction, i.e., �=0� the cosmic
string cannot bind the dipole. In Ref. �9�, on the other hand,
one bound state exists even if the strength of the potential is
zero. Figures 3 and 4 show the appearance of bound states
for �
� /4 �attractive potential�. The energy of the ground
state ��0� is finite; for �=−1 /20, �0=5�10−4 and for �=
−3 /2, �0=0.52. As in Ref. �8� for ordinary quantum me-
chanics, there are many almost identical, excited states with
��0 �accumulation point�. In Fig. 4, we can see the energy
of the first excited state.

For the sake of completeness, we consider now the case
where �


�
4 ��=
4� is now imaginary� and a sufficiently

small deformation parameter 	 such that �=−	ME�1. The
quantization condition �35� yields the following expression
for the energy levels �1�:

En =
− �2

M��
2	�2
exp� 2

�2
�� − �n +

1

2
	��� ,
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�2 = 
− 4�, � = arg� ��i�2�

��1 +
i�2

2
	�� i�2

2
	� , �36�

as one has

�En� �
1

M	
, n = 0,1,2, . . . .

This expression is similar to what was obtained in Ref.
�8�, in which a cutoff a is introduced by hand to regularize
the interaction at short distances. In the above equation, the
minimal length ��R�min=�
2	 plays the same role as a. The
author interpreted the extra parameter a as characterizing the
radius of the string. We argue here that this elementary
length can be associated in this problem considered with the
finite size of the cosmic string.

IV. SUMMARY AND CONCLUSION

The problem of the N-dimensional singular inverse square
potential has been solved exactly for all values of the orbital
momentum quantum number in the framework of quantum
mechanics with a minimal length. In the momentum repre-
sentation, the wave function is a Heun function for any di-
mension N, and reduces to a hypergeometric function in
some special cases. This result generalizes that of Ref. �1�.
As an application, we have considered a dipole in a cosmic
string background. This system is described by a two-
dimensional 1 /R2 potential in nonrelativistic quantum
theory, where the coupling constant depends on the angle
between the string and the dipole moment ���. We have
given the eigenfunctions of the Hamiltonian in the presence
of a minimal length, and the corresponding bound states
equation. We find that the cosmic string cannot bind the di-
pole for ��

�
4 . This result is in contrast with that of Ref. �9�.

In the case where �

�
4 we found that there exist many

bound states and the energy spectrum is bounded from be-
low. We gave an expression for the energy levels of bound
states in the limit 	 ,	��1. Our results agree with what was
obtained in Ref. �8�, where the same problem is solved using
the standard regularization technique by a cutoff �a� at short
distances. The minimal length appears to be a natural regu-
lator and plays the same role as a. We argue with the author
of Ref. �8� that this elementary length should be viewed as
characterizing the finite radius of the cosmic string.
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