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Multipartite Bell-type inequalities are derived for general systems. They involve up to eight observables with
arbitrary spectra on each site. These inequalities are closely related to the algebras of quaternions and
octonions.
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I. INTRODUCTION

In their famous paper Einstein, Podolsky, and Rosen
�EPR� suggested a Gedankenexperiment �1�. As they be-
lieved, it would prove the incompleteness of quantum me-
chanics. An interesting analysis of this problem was given by
Bohr �2�, who did not agree with EPR. Almost 30 years later,
in 1964, in his remarkable paper Bell proposed a quantitative
test which should resolve the problem of completeness of
quantum mechanics �3�. He showed that the assumptions of
the EPR arguments lead to some restrictions on multipartite
correlations, which are now referred to as Bell inequalities. If
Bohr’s arguments are correct, then these inequalities can be
violated. In the 1980s the first experimental violations of
these inequalities were demonstrated �4,5�, and so the dis-
pute was resolved in Bohr’s favor.

There exist many different Bell-type inequalities. Most of
them deal with dichotomic observables or with generaliza-
tions to observables with more general discrete spectra, for
example, see �6�. On the other hand, in the original EPR
paper the situation of observables with a continuous spec-
trum was considered. Presently, the theory of Bell-type in-
equalities is not well established for observables with arbi-
trary spectra.

The first multipartite Bell-type inequality, valid for arbi-
trary observables, has been obtained recently �7�. In the sim-

plest, bipartite, case with two observables Âj, B̂j on each site
�j=1,2� it reads as

���Â1 + iB̂1��Â2 + iB̂2���2 = �Â1Â2 − B̂1B̂2�2 + �B̂1Â2 + Â1B̂2�2

� ��Â1
2 + B̂1

2��Â2
2 + B̂2

2�� . �1�

The original proof is based on ignoring local commutators in
the quantum mechanical analog of a classical inequality. In
some sense such a procedure is ambiguous, since only those
commutators appearing explicitly are ignored. Furthermore,
no direct proof was given that the resulting inequality is
fulfilled for any separable quantum state—only in this case it
should be called Bell-type. For dichotomic observables it
was shown that the inequality �1� cannot be violated for a

two-qubit system �8�. More recently it has also been proven
that, for measuring two quadratures on each site, this in-
equality can never be violated �9�.

In this paper we give a strict and unambiguous proof of
general Bell-type inequalities, including their relation to the
separability problem. It allows us to consider up to eight
arbitrary observables at each site, for a complex quantum
system. The multipartite extension of the inequalities is
based on the algebra of quarternions and octonions. The re-
cently proposed inequalities �7� will appear as special cases
of our approach.

The paper is structured as follows. In Sec. II we present
the main idea to derive Bell-type inequalities from square
identities and provide all possible square identities. Based on
the Euler four-square identity, in Sec. III we obtain a bipar-
tite Bell-type inequality with four observables per site, which
can be extended to the multipartite case by using the algebra
of quaternions. In Sec. IV the Degen eight-square identity is
used to derive a bipartite Bell-type inequality with eight ob-
servables per site, which can be extended to many parties by
applying the algebra of octonions. The relation of our in-
equalities to quantum nonlocality is discussed in Sec. V. In
Sec. VI we summarize our results.

II. SQUARE IDENTITIES

Let us start to prove that each bipartite separable state
satisfies the inequality �1�. This approach also allows us to
obtain Bell-type inequalities with four and eight observables
on each site. First, we prove a more general statement: If

F̂1 , . . . , F̂N and Ĝ are Hermitian operators such that some �in
general, multipartite� states �̂m, m=0,1 , . . ., satisfy the in-
equality

�F̂1�2 + ¯ + �F̂N�2 � �Ĝ� , �2�

then arbitrary mixtures �i.e., convex combinations� of these
states also satisfy this inequality. The proof is based on the
inequality

�	
m=0

+�

pmxm�2

� 	
m=0

+�

pm�xm�2, �3�

where xm are arbitrary complex numbers and pm is a prob-
ability distribution, i.e., pm�0 and 	m=0

+� pm=1. This inequal-
ity simply expresses the non-negativity of the variance of a
random variable.
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Let us now take a convex combination �̂=	m=0
+� pm�̂m and

estimate the left-hand side of the inequality �2�. According to
the inequality �3� we have

�F̂l�2 = 
	
m=0

+�

pm�F̂l�m�2

� 	
m=0

+�

pm�F̂l�m
2 , �4�

where �F̂l�m is the average value on the state �̂m. Now we
can estimate the left-hand side of �2� as follows:

	
l=1

N

�F̂l�2 � 	
m=0

+�

pm	
l=1

N

�F̂l�m
2 � 	

m=0

+�

pm�Ĝ�m = �Ĝ� . �5�

So, we have obtained the desired result.
Now we can easily prove the inequality �1� for separable

states. Here we have k=2 and F̂1= Â1Â2− B̂1B̂2, F̂2= B̂1Â2

+ Â1B̂2, and Ĝ= �Â1
2+ B̂1

2��Â2
2+ B̂2

2�. We must show that the in-
equality �1� is valid for all factorizable states. Then we ob-
tain

�Â1Â2 − B̂1B̂2�2 + �B̂1Â2 + Â1B̂2�2

= ��Â1�2 + �B̂1�2���Â2�2 + �B̂2�2�

� ��Â1
2 + B̂1

2��Â2
2 + B̂2

2�� . �6�

The equality in this chain is valid since only squares remain
in the sum and mixed terms cancel each other. The last step,
the inequality, is valid since it just expresses the fact that the
variance of an observable is non-negative. We conclude that
each convex combination of factorizable states, i.e., each
separable state, satisfies the inequality �1�.

We see that the key point in our proof of the inequality �1�
is the estimation �6�, which can be divided into two steps.
The first step, the equality, can be expressed as the following
square identity:

�a1a2 − b1b2�2 + �a1b2 + b1a2�2 = �a1
2 + b1

2��a2
2 + b2

2� . �7�

The second step is valid due to the non-negativity of the
variance of observables. Having an identity of the form

�a1
2 + b1

2 + ¯ ��a2
2 + b2

2 + ¯ � = x2 + y2 + ¯ , �8�

where all the sums contain the same number n of terms and
x ,y , . . . are bilinear functions of al ,bl , . . . , l=1,2, we can im-
mediately write a Bell-type inequality

�X̂�2 + �Ŷ�2 + ¯ � ��Â1
2 + B̂1

2 + ¯ ��Â2
2 + B̂2

2 + ¯ �� ,

�9�

where X̂ , Ŷ , . . . are the Hermitian operators obtained
by replacing al ,bl , . . . by arbitrary Hermitian operators

Âl , B̂l , . . . , l=1,2 in the bilinear forms x ,y , . . ., respectively.
Let us again formulate the reasons why this inequality is
valid for all separable states. First, it is of the form �2�, i.e., if
it is valid for some states, it is also valid for their mixtures.
Second, it is valid for all factorizable states due to the iden-
tity �8� and non-negativity of the variances of observables. It
follows that it is valid for all mixtures of any factorizable
states, i.e., for all separable states.

Which square identities exist? The case of n=2 was con-
sidered above. There are also square identities for n=4 and
n=8, for more details we refer to �10�. The first one is known
as the Euler four-square identity, which reads as follows:

�a1a2 − b1b2 − c1c2 − d1d2�2 + �b1a2 + a1b2 − d1c2 + c1d2�2 + �c1a2 + d1b2 + a1c2 − b1d2�2 + �d1a2 − c1b2 + b1c2 + a1d2�2

= �a1
2 + b1

2 + c1
2 + d1

2��a2
2 + b2

2 + c2
2 + d2

2� . �10�

The second one is referred to as the Degen eight-square identity, which is given by

�a1a2 − b1b2 − c1c2 − d1d2 − e1e2 − f1f2 − g1g2 − h1h2�2 + �b1a2 + a1b2 + d1c2 − c1d2 + f1e2 − e1f2 − h1g2 + g1h2�2

+ �c1a2 − d1b2 + a1c2 + b1d2 + g1e2 + h1f2 − e1g2 − f1h2�2 + �d1a2 + c1b2 − b1c2 + a1d2 + h1e2 − g1f2 + f1g2 − e1h2�2

+ �e1a2 − f1b2 − g1c2 − h1d2 + a1e2 + b1f2 + c1g2 + d1h2�2 + �f1a2 + e1b2 − h1c2 + g1d2 − b1e2 + a1f2 − d1g2 + c1h2�2

+ �g1a2 + h1b2 + e1c2 − f1d2 − c1e2 + d1f2 + a1g2 − b1h2�2 + �h1a2 − g1b2 + f1c2 + e1d2 − d1e2 − c1f2 + b1g2 + a1h2�2

= �a1
2 + b1

2 + c1
2 + d1

2 + e1
2 + f1

2 + g1
2 + h1

2��a2
2 + b2

2 + c2
2 + d2

2 + e2
2 + f2

2 + g2
2 + h2

2� . �11�

The famous Hurwitz theorem states that there are no other identities of such a form �10�.

III. BELL-TYPE INEQUALITIES WITH FOUR OBSERVABLES

The inequality corresponding to the identity �10� is

�Â1Â2 − B̂1B̂2 − Ĉ1Ĉ2 − D̂1D̂2�2 + �B̂1Â2 + Â1B̂2 − D̂1Ĉ2 + Ĉ1D̂2�2 + �Ĉ1Â2 + D̂1B̂2 + Â1Ĉ2 − B̂1D̂2�2

+ �D̂1Â2 − Ĉ1B̂2 + B̂1Ĉ2 + Â1D̂2�2 � ��Â1
2 + B̂1

2 + Ĉ1
2 + D̂1

2��Â2
2 + B̂2

2 + Ĉ2
2 + D̂2

2�� . �12�
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This is a bipartite Bell-type inequality with four observables
on each site. To extend it to the general multipartite case it is
natural to use the algebra of quaternions. Here we follow the
quaternionic quantum mechanics �QQM� approach �11�. Ap-
plications of QQM to entanglement in two-qubit systems can
be found in �12�. The algebra of quaternions has dimension 4
over the reals, so each quaternion q can be written as q=x
+ iy+ ju+kv in a unique way, where x, y, u, and v are reals.
The multiplication rules for the imaginary units i, j, and k
are i2= j2=k2=−1, ij=−ji=k, jk=−kj= i, ki=−ik= j. The
conjugation q* of the quaternion q is defined as q*=x− iy
− ju−kv. The norm of q is defined in the standard way as
�q � =�q*q. The identity �10� simply expresses the fact that
the norm is multiplicative: �q�q� � = �q� 
q�� for arbitrary
quaternions q� and q�. The norm also satisfies the triangle
inequality �q1+q2 � � �q1 � + �q2�. The inequality �1� is formu-
lated using the operators of the form f̂ = Â+ iB̂, which is a
general form of a non-Hermitian operator. We extend the
class of operators acting on the state space of the system to
quaternionic operators of the form q̂= Â+ iB̂+ jĈ+kD̂, where
Â, B̂, Ĉ, and D̂ are ordinary Hermitian operators. Since the
algebra of quaternions is noncommutative, care must be
taken when defining the product of quaternions with opera-
tors. We define this product such that, if q̂m= Âm+ iB̂m+ jĈm

+kD̂m are quaternionic operators acting on different degrees
of freedom m=1, . . . ,n, then

�q̂1 ¯ q̂n� = �q̂1� ¯ �q̂n� �13�

for each completely factorizable state. Let us calculate the
average value of the product j f̂ , where the operator f̂ has
been defined above, resulting in

�j f̂� = j� f̂� = j��Â� + i�B̂�� = j�Â� − ij�B̂� = �Â − iB̂�j = � f̂†j� .

�14�

Here we have used the fact that the numbers �Â� and �B̂� are
real and due to this they commute with j. The same is valid
with respect to the other imaginary unit k. We see that the
natural way to define the product of the quaternion q with the

operator f̂ is qf̂ = f̂�x+ iy�+ f̂†�ju+kv�. In particular, if F̂ is a

Hermitian operator, then we have qF̂= F̂q, so the quater-
nionic operators q̂ defined above behave as if the operators

Â, B̂, Ĉ, and D̂ were ordinary real numbers. This guarantees
that the equality �13� is fulfilled for all factorizable states.

The same idea we used to prove the inequality �2� allows
us to prove the following statement: If q̂m are quaternionic

operators and F̂m are Hermitian operators, acting on different

degrees of freedom, such that ��q̂m��2� �F̂m�, m=1, . . . ,n,
then each completely separable state satisfies the inequality

��q̂1 ¯ q̂m��2 � �F̂1 ¯ F̂n� . �15�

Here we need the factorization property �13�, multiplicativity
of the norm and the triangle inequality. Since we can esti-
mate ��q̂m��2 as

��q̂m��2 = �Âm�2 + �B̂m�2 + �Ĉm�2 + �D̂m�2

� �Âm
2 + B̂m

2 + Ĉm
2 + D̂m

2 � , �16�

we can take F̂m= Âm
2 + B̂m

2 + Ĉm
2 + D̂m

2 . Upon taking the product
of quaternionic operators q̂1 , . . . , q̂n, the left-hand side of the
inequality �15� will be a sum of four squares of average
values of some observables. Then the inequality �15� is a
multipartite Bell-type inequality with four observables on
each site. In the case of n=2 it is the inequality �12�.

IV. BELL-TYPE INEQUALITIES
WITH EIGHT OBSERVABLES

Based on the Degen eight-square identity �11�, we obtain
the inequality

�Â1Â2 − B̂1B̂2 − Ĉ1Ĉ2 − D̂1D̂2 − Ê1Ê2 − F̂1F̂2 − Ĝ1Ĝ2 − Ĥ1Ĥ2�2 + �B̂1Â2 + Â1B̂2 + D̂1Ĉ2 − Ĉ1D̂2 + F̂1Ê2 − Ê1F̂2 − Ĥ1Ĝ2 + Ĝ1Ĥ2�2

+ �Ĉ1Â2 − D̂1B̂2 + Â1Ĉ2 + B̂1D̂2 + Ĝ1Ê2 + Ĥ1F̂2 − Ê1Ĝ2 − F̂1Ĥ2�2 + �D̂1Â2 + Ĉ1B̂2 − B̂1Ĉ2 + Â1D̂2 + Ĥ1Ê2 − Ĝ1F̂2 + F̂1Ĝ2

− Ê1Ĥ2�2 + �Ê1Â2 − F̂1B̂2 − Ĝ1Ĉ2 − Ĥ1D̂2 + Â1Ê2 + B̂1F̂2 + Ĉ1Ĝ2 + D̂1Ĥ2�2 + �F̂1Â2 + Ê1B̂2 − Ĥ1Ĉ2 + Ĝ1D̂2 − B̂1Ê2 + Â1F̂2

− D̂1Ĝ2 + Ĉ1Ĥ2�2 + �Ĝ1Â2 + Ĥ1B̂2 + Ê1Ĉ2 − F̂1D̂2 − Ĉ1Ê2 + D̂1F̂2 + Â1Ĝ2 − B̂1Ĥ2�2

+ �Ĥ1Â2 − Ĝ1B̂2 + F̂1Ĉ2 + Ê1D̂2 − D̂1Ê2 − Ĉ1F̂2 + B̂1Ĝ2 + Â1Ĥ2�2

� ��Â1
2 + B̂1

2 + Ĉ1
2 + D̂1

2 + Ê1
2 + F̂1

2 + Ĝ1
2 + Ĥ1

2��Â2
2 + B̂2

2 + Ĉ2
2 + D̂2

2 + Ê2
2 + F̂2

2 + Ĝ2
2 + Ĥ2

2�� . �17�

TABLE I. The multiplication table of imaginary units of
octonions.

i1 i2 i3 i4 i5 i6 i7

i1 −1 i4 i7 −i2 i6 −i5 −i3

i2 −i4 −1 i5 i1 −i3 i7 −i6

i3 −i7 −i5 −1 i6 i2 −i4 i1

i4 i2 −i1 −i6 −1 i7 i3 −i5

i5 −i6 i3 −i2 −i7 −1 i1 i4

i6 i5 −i7 i4 −i3 −i1 −1 i2

i7 i3 i6 −i1 i5 −i4 −i2 −1
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It is a bipartite Bell-type inequality with eight observables on
each site. To get a general multipartite inequality we need to
use the algebra of octonions. Note that applications of octo-
nions in quantum mechanics have been considered for the
quantum Hall effect �13�. Moreover, based on the algebraic
properties of octonions the secure continuous-variable quan-
tum key distribution can be significantly improved �14�. The
algebra of octonions is an eight-dimensional algebra over the
reals, so each octonion o can be written as

o = x0 + x1i1 + x2i2 + x3i3 + x4i4 + x5i5 + x6i6 + x7i7 �18�

in a unique way, where xl, l=0, . . . ,7 are reals and il, l
=1, . . . ,7 are imaginary units, whose multiplication rules are
given by Table I. The conjugation o* of the octonion �18� is
defined as

o* = x0 − x1i1 − x2i2 − x3i3 − x4i4 − x5i5 − x6i6 − x7i7.

�19�

The norm �o� is also defined in the standard way as

�o� = �o*o = �x0
2 + x1

2 + x2
2 + x3

2 + x4
2 + x5

2 + x6
2 + x7

2. �20�

The Degen eight square identity �11� expresses the fact that
this norm is multiplicative, �o�o� � = �o� 
o��. This norm also
satisfies the triangle inequality �o1+o2 � � �o1 � + �o2�. We can
define octonionic operators as

ô = Â + i1B̂ + i2Ĉ + i3D̂ + i4Ê + i5F̂ + i6Ĝ + i7Ĥ , �21�

where Â , . . . , Ĥ are Hermitian operators. Here we identify the
first imaginary unit i1 with the standard complex unit i. For
the product of the other imaginary units with ordinary opera-

tors f̂ we have the relation il f̂ = f̂†il, l=2, . . . ,7. But now the
product is not associative, so whenever we deal with a prod-
uct of more than two terms we must explicitly group the
terms.

Now we can generalize the inequality �15� as follows: If

ôm are octonionic operators and F̂m are Hermitian operators
acting on different degrees of freedom such that ��ôm��2

� �F̂m�, m=1, . . . ,n, then each completely separable state
satisfies the inequality

��ô1 ¯ ôn��2 � �F̂1 ¯ F̂n� , �22�

for all Cn possible groupings of the terms on the left-hand
side �we did not show the brackets explicitly�, where Cn is
the nth Catalan number, which is explicitly given as Cn

= �2n−2�! / �n!�n−1�!�. Here we can take F̂m= Âm
2 + B̂m

2 + Ĉm
2

+ D̂m
2 + Êm

2 + F̂m
2 + Ĝm

2 + Ĥm
2 . Upon taking the product of

ô1 , . . . , ôn, the left-hand side of the inequality �22� will be a
sum of eight squares of average values of some observables.
Then the inequality �22� is the multipartite Bell-type inequal-
ity with eight observables on each site. In the case of n=2 it
reduces to the inequality �17�.

V. RELATION TO QUANTUM NONLOCALITY

The inequalities �1�, �12�, and �17� can be also obtained in
another way. The integral form of the inequality �3� reads as

�� p���X���d��2

�� p����X����2d� , �23�

where p��� is a probability distribution on a measurable set
�, and X��� is a real- or complex-, quaternion- or octonion-
valued function of ���. The set � can be thought of as a
set of hidden variables, which completely specify the state
under study. The inequality �23� simply states that ��X��2
� ��X�2�.

Let us take instead of X the operator X̂, which is a product

of ordinary non-Hermitian operators f̂m, quaternionic opera-
tors q̂m or octonionic operators ôm defined in �21�, acting on
different degrees of freedom m=1, . . . ,n, and find the quan-
tum mechanical analog of the quantity �X�2. For example, in
the case of ordinary non-Hermitian operators, we have

f̂m
† f̂m = Âm

2 + B̂m
2 + i�Âm,B̂m� . �24�

In a local hidden variable theory all commutators must be

zero, so �X�2 must be replaced by the product �m=1
n �Âm

2

+ B̂m
2 �. Analogously, in the case of quaternionic operators we

make use of the replacement

�X�2 ⇒ �
m=1

n

�Âm
2 + B̂m

2 + Ĉm
2 + D̂m

2 � . �25�

In the octonionic case, we use the replacement

�X�2 ⇒ �
m=1

n

�Âm
2 + ¯ + Ĥm

2 � . �26�

Then we again arrive at the inequalities �1�, �12�, and �17�,
respectively. This approach may appear to be simpler than
the one we started with, but it is ambiguous and does not
strictly relate the obtained inequalities to separability.

It is noteworthy that the inequalities �1�, �12�, and �17�
form a hierarchy—the inequality �1� is a special case of �12�,
which is in turn a special case of �17�. As shown in �7�, the
inequality �1� can be violated. Thus it is clear that our in-
equalities �12� and �17� can be violated as well. Any viola-
tion of these inequalities is a clear signature of quantum non-
locality and hence of entanglement.

VI. SUMMARY AND CONCLUSIONS

To summarize, we have obtained Bell-type inequalities
for observables with a general spectrum. They apply to mea-
surements of up to eight observables per site for arbitrary
systems. The derivation of the inequalities has been based on
square identities. The multipartite forms of these inequalities
are related to the algebras of quaternions and octonions.

Let us conclude with some remarks on the tightness of our
inequalities. In the case of observables with discrete spectra,
their pairwise, triplewise, etc., average values �with no two
observables referring to the same degree of freedom�, calcu-
lated for all separable states, form a convex polytope. It can
be represented as an intersection of a finite number of half-
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spaces. Bell inequalities are exactly the linear inequalities
which describe these half-spaces, so that they are tight in
the sense that one cannot sharpen them. In the general case
of observables with arbitrary spectra the corresponding set is
no longer a polytope, i.e., it is not an intersection of a finite
number of half-spaces. Our inequalities are not linear, so it

is a more complicated problem to say whether they are tight
or not.
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