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I. INTRODUCTION

Positronium is an unstable bound system consisting of an
electron and a positron. In the nonrelativistic limit its energy
is given by

E0 = −
m�2

4n2 , �1�

which results from the nonrelativistic Schrödinger equation
with a Coulomb potential. However, in order to meet the
accuracy of the experiments, the theory has to account for
relativistic effects as well as for those coming from quantum
electrodynamics �QED�.

For positronium the most precisely measured transitions
are the hyperfine splitting of the ground state �1,2�, the 1S-2S
interval �3,4�, and the 2S-2P transitions �5–9�. At the same
time, most of the theoretical efforts have been devoted to
calculation of the energy of S and P states. For a recent
comparison of the theoretical and the experimental results,
see, for example, Ref. �10�. For a general review on QED
bound-state calculations see, for example, Ref. �11�. The
complete energy spectrum of positronium up to O�m�5� can
be found in Ref. �12�. The energy levels for S states with
m�6 accuracy were obtained in Refs. �13,14� and with the
same accuracy for P states in Ref. �15� �corrected in Ref.
�14��.

We present an analytical calculation of the O�m�6� cor-
rections to the spectrum of positronium for states with arbi-
trary angular momentum number l�0. For P states our for-
mulas are in agreement with those from Ref. �15� �corrected
in Ref. �14��. The corrections for states with l�1 are also
obtained here. Since the presented method allows for a sys-
tematic treatment of two-body systems consisting of compo-
nents that have comparable masses it will also be useful in
the case of antiprotonic atoms, which are of great interest
now. For a recent review on antiprotonic atoms, see, for ex-
ample, Ref. �16�.

The rest of this paper is organized as follows. In Sec. II
we outline the method of calculation. Section III contains
details of the calculation of the effective Hamiltonian. Sec-
tion IV is devoted to the presentation of a perturbative cal-
culation of the corrections to the energy levels. In Sec. V we

present our O�m�6� analytical formulas, a complete analyti-
cal formula for the l�0 energy levels to O�m�5�, and the
numerical values of D state energy levels to O�m�6�.

II. FRAMEWORK OF THE CALCULATION

In the first stage of the calculation we obtain an effective
Hamiltonian for electron-positron system of O�m�6�. Let us
briefly recall the formal method of derivation of an effective
Hamiltonian. We follow the path shown in Refs. �17,18�. In
the first step the many-body Lagrangian is constructed from
the Foldy-Wouthuysen �FW� single-particle Hamiltonian �the
FWH� �in our case; the FWHs for an electron and a posi-
tron�. The use of the FWH instead of the Dirac Hamiltonian
and, consequently, the use of the Schrödinger-Pauli wave
function instead of the Dirac one, helps to control orders in
which various photon-exchange processes contribute to the
energy levels. In the next step the equal-time retarded Green
function of the system is considered �similar to the one used
in Ref. �19��. The Fourier transform of this Green function in
the time variable �t�− t� allows one to define an effective
Hamiltonian as

G�E� �
1

E − H0 − ��E�
�

1

E − Heff
, �2�

where ��E� is a two-particle self-energy operator, which can
be described in terms of various photon-exchange processes.
A correction to the energy level is a pole of the G�E� func-
tion; therefore it can be expressed as �see Ref. �11��

�E = E − E0 = �����E0���� + �����E0�
1

�E0 − H0��
��E0����

+ ������E0���������E0���� + ¯ , �3�

where ��� is an eigenstate of H0. The last term in Eq. �3�
contributes at orders higher than O�m�6� so it is not consid-
ered in this paper. The relevant contributions are calculated
with the help of QED perturbation theory.

In our calculation we treat a positron as an electron with
opposite charge. There are no contributions of photon-
annihilation processes to energy levels at O�m�6� for the
states with l�0. The calculations of contributions due to
one-photon-annihilation virtual processes can be found in
Refs. �20� �at O�m�6�� and �21� �at O�m�6 ln ���. In addi-
tion, in Appendix C we present a simple derivation of an*jacek.zatorski@fuw.edu.pl
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effective potential operator at O�m�6� arising because of
relativistic corrections to leading-order one-photon-
annihilation amplitude. As far as annihilation processes in-
volving more that one photon are concerned, a power count-
ing argument shows that for l�0 they contribute at orders
higher than O�m�6�.

The corrections to the energy levels are calculated with
the help of the ordinary quantum-mechanical perturbation
theory, where the solutions of the Schrödinger equation with
the Coulomb potential are the unperturbed states. We use an
effective O�m�6� Hamiltonian to calculate corrections in the
first order of perturbation theory, whereas the Breit-Pauli
Hamiltonian �Eq. �85�� gives rise to O�m�6� corrections in
the second order of perturbation theory.

III. CALCULATION OF THE EFFECTIVE HAMILTONIAN

A. Foldy-Wouthuysen Hamiltonian

We start with the Foldy-Wouthuysen transformation �22�
of the Dirac Hamiltonian in an external electromagnetic
field,

H = �� · �� + �m + eA0, �4�

where �� = p� −eA� . The FW transformation F gives a new
Hamiltonian

HFW = eiF�H − i�t�e−iF, �5�

which decouples the upper and lower components of the
Dirac wave function. Below, we use the result from Ref.
�17�, namely, we take the FW Hamiltonian up to O�m�6� for
an electron,

HFW
�−� = eA0 +

1

2m
��2 − 2es� · B� �

−
1

8m3 ��4 − 2es� · B� �2 − 2�2es� · B� �

−
1

8m2 �e�� · E� + 2es� · �E� � �� − �� � E� ��

−
e

4m3 �s� · p�s� · E� + s� · E� s� · p�� −
3

16m4 �p2�� �eA0� � p� · s�

+ �� �eA0� � p� · s�p2� +
1

128m4†p
2,�p2,eA0�‡

−
3

64m4 �p2�2�eA0� + �2�eA0�p2� +
1

16m5 p6, �6�

where s�=	� /2 and 	i is the Pauli matrix. HFW
�+� for a positron

is obtained simply by changing the sign of the electric charge
e→−e in the above expression. Different parts of HFW

�
� carry
different orders of the constant � and in the following calcu-
lation we select the appropriate terms to get the effective
operators of O�m�6�.

B. Construction of the effective Hamiltonian

We consider the following many-body Lagrangian den-
sity:

L = ���i�t − HFW
�−� �� + ���i�t − HFW

�+� �� + LEM, �7�

where the symbols � and � refer to the fields of the electron
and positron, respectively. LEM is the Lagrangian of the elec-
tromagnetic field. With the help of Eq. �3� we construct an
effective operator �H that satisfies the condition

����H��� = �����E0���� , �8�

and �H does not depend on the state ���. The typical contri-
bution has the form of a one-photon exchange between elec-
tron and positron, that is,

�����E0���� = − 2e2	 d4k

�2��4i
G��k�

�
���j1
��k�eik�·r�1

1

E0 − H0 − k0 + i�
j2



��− k�e−ik�·r�2��
+ ���j2

��k�eik�·r�2
1

E0 − H0 − k0 + i�
j1



��− k�e−ik�·r�1��� . �9�

The factor of 2 is present in front of the above integral since
typically currents j1 and j2 come from different terms in the
FWH and in such cases one should also take into account a
contribution with reversed currents. Additionally, the last
term on the right-hand side �RHS� of Eq. �9� accounts for
another possible ordering of the currents.

Modified rules for the interaction vertices result from the
definition of the ja

� currents. Namely, this current is defined
as a coefficient that couples to the annihilation part of A�

���
�eik�·r�−ik0tâ��k��+H.c. in the Lagrangian �Eq. �7��. For ex-

ample, the current operator j0�k�� has an expansion

j0�k�� = 1 +
i

2m
s��k� � p�� −

1

8m2k�2 + ¯ , �10�

where the first coefficient comes from the first term in HFW
in Eq. �6�, the other two come from the fourth term in HFW,
and the ellipsis indicates higher-order terms. We emphasize
that the electric charges of particles are omitted here as they
have already been included in front of the integral in Eq. �9�.
Similarly,

j��k�� =
p�

m
+

i

m
s� � k� , �11�

where we do not take into account the terms coming from the
two-photon-exchange processes, i.e., the terms that are qua-
dratic in fields. These are to be treated separately.

We work in the Coulomb gauge, in which the photon
propagator takes the form
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G��k� =�−
1

k�2
, � =  = 0,

− 1

k0
2 − k�2 + i�


�ij −
kikj

k�2 � , � = i, = j .�
�12�

Many contributions will be calculated in the nonretardation
approximation which is realized by putting k0=0 in both the
photon propagator and j�k�. In this case, the spectral integral
of 1 / �E0−H0−k0+ i�� can be performed by means of
Sokhotsky’s formula, that is,

1

x 
 x0 + i�
= � i���x − x0� + PV
 1

x − x0
� , �13�

where PV is the Cauchy principal value functional, i.e., it
acts on a test function f�x� as follows

PV
 1

x − x0
� f = lim

�→0+

	

−�

x0−� f�x�
x − x0

dx + 	
x0+�

� f�x�
x − x0

dx� .

�14�

In Eq. �13� we substitute x=−k0, x0=�E=H0−E0, and obtain

	 dk0

2�i

1

− �E − k0 + i�
→ −

1

2
. �15�

This result is a consequence of the observation that in the
case of the above integral the PV functional from
Sokhotsky’s formula vanishes as there is no k0 in the nu-
merator. By means of substitution �15�, the amplitude �9� in
the nonretardation approximation reads

�����E0���� = e2	 d3k

�2��3G��0,k�����j1
��k�eik�·r�1

�j2
�− k�e−ik�·r�2��� + �1 ↔ 2� , �16�

where the symbol �1↔2� stands for a term which is the
same as the preceding one except for a reversed order of
particle indices.

In the final stage of calculation, we use the center-of-mass
reference frame �CMRF�. All operators are to be rewritten in
terms of the electron-positron relative position operator and
the appropriate momentum operator. We introduce the rela-
tive position vector r�,

r� = r1
� − r2

� , �17�

where r�1 and r�2 refer to the positions of the electron and
positron, respectively. The appropriate momentum vector
reads

p� = p1
� = − p2

� . �18�

Additionally, we introduce the total spin operator S� ,

S� = s��1� + s��2�, �19�

where s��a�, where a=1,2, is an individual particle spin op-
erator.

C. Calculation of the effective operators

The O�m�6� Hamiltonian �H�6�� will be presented as the
sum

H�6� = �
i=0,9

�Hi. �20�

We start with the kinetic energy correction which comes
from the last term in HFW

�−� and HFW
�+� in Eq. �6�,

�H0 =
p1

6

16m5 +
p2

6

16m5 =
p6

8m5 . �21�

It is already an effective operator since it does not contain a
photon field. Expectation values of all the effective operators
will be calculated in the next section.

�H1 is the contribution coming from the sixth, seventh,
and eighth terms in HFW

�−� �and HFW
�+� �, i.e.,

HFW,1
�−� = HFW,1A + HFW,1B + HFW,1C, �22�

where:

HFW,1A = −
3

16m4 �p2�� �eA0� � p� · s� + �� �eA0� � p� · s�p2� ,

HFW,1B =
1

128m4†p
2,�p2,eA0�‡ ,

HFW,1C = −
3

64m4 �p2�2�eA0� + �2�eA0�� . �23�

Let us construct a one-photon-exchange amplitude of the
form of Eq. �16�. We start with the first operator in Eq. �23�.
The appropriate contribution to the current reads

j1A
0 �k�� =

3

16m4 i�p2�k� � p�� · s� + �k� � p�� · s�p2� . �24�

As will become clear soon, to obtain an effective operator of
O�m�6� it is sufficient to substitute only one current, in Eq.
�16�, with the help of Eq. �24�. For the second current we
substitute the lowest-order expansion �see Eq. �10��, that is,
j0�k��=1. Therefore, according to Eq. �16�, the effective op-
erator reads

�H1
A = e2 3

16m4 	 d3k

�2��3G00�k���ip1
2�k� � p�1� · s1

�

+ i�k� � p�1� · s1
� p1

2�eik�·r�

+ e2 3

16m4 	 d3k

�2��3G00�k��eik�·r2
�
�ip2

2�k� � p�2� · s2
�

+ i�k� � p�2� · s2
� p2

2�e−ik�·r1
�

. �25�

Now, in the second row we commute eik�·r2
�

to the left-hand
side �LHS� and change the sign of the resulting position
vector r�. Next, we express the sum of the spin operators in

terms of the total spin operator S� . Additionally, we substitute
the momentum and position operators of the electron and
positron with the momentum and position operators in the
CMRF �see Eq. �18��. In this way we obtain
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�H1
A = − e2 3

16m4 	 d3k

�2��3

1

k�2
�ip2�k� � p�� · S�

+ i�k� � p�� · S�p2�eik�·r�. �26�

In the next step we perform the integral with the help of the
relation

e2

i
	 d3k

�2��3

k�

k�2
eik�·r� = −

e2

4�
�� 
1

r
� = �� V�r� , �27�

where V is the nonrelativistic Coulomb potential

V = −
�

r
. �28�

We also introduce the static electric field

eE� = − �� 1V = �� 2V = �
r�

r3 . �29�

After integration the effective operator H1
A can be expressed

as

�H1
A = −

3

16m4S� · �p2eE� � p� + eE� � p�p2� . �30�

Since the operators p� and 1 /r are of O�m�� when acting on
���, we can see that �H1

A is, indeed, of O�m�6�. Let us notice
now that �H1

A could be obtained from HFW,1A in Eq. �23� by
the substitution eA0→V. Moreover, it can be seen that a
nonretardation contribution of the form shown in Eq. �16�
that involves only the A0 fields �also when there is an opera-
tor acting on A0� can be obtained simply by the substitution
eA0→V. In particular, �H1

B and �H1
C can be calculated in this

way. Hence

�H1 = −
3

16m4S� · �p2eE� � p� + eE� � p�p2� +
1

64m4†p
2,�p2,V�‡

−
3

32m4 �p2�2V + �2Vp2� . �31�

The next effective operator ��H2� arises when both par-
ticles interact through the fourth term in HFW

�−� in Eq. �6�, that
is,

HFW,2
�−� = −

1

8m2 �e�� · E� + 2es��E� � p� − p� � E� �� �32�

for an electron, and similarly for a positron �e→−e�. We

recall that E� =−�� A0−�0A� and write the relevant contribution
to the current as

j2
0 = −

1

8m2 �k�2 − 2s��ik� � p� − ip� � k��� . �33�

The effective operator can be calculated in the nonretardation
approximation:

�H2 = − �	 d3k

�2��3

1

k2

4�

64m4 �k2 − 4is�2 · p� � k��eik�·r�

��k2 + 4is�1 · p� � k�� . �34�

One can integrate the above expression with the help of for-
mula �27�. The result is

�H2 =
�

m4

�

16
�2�3�r�� +

�

m4

i�

4
S� · �p� � �3�r��p��

+
�

m4

1

4
�s�2 � p��i��ij

3
4��3�r�� +

1

r3
�ij − 3
rirj

r2 ��
��s�1 � p�� j . �35�

The �H3 operator is due to a process in which one particle
interacts by the fifth term in Eq. �6�, which for an electron is
�and correspondingly for a positron�

HFW,3
�−� = −

e

4m3 �s� · p�s� · E�̇ + s� · E�̇ s� · p�� , �36�

while a second particle interacts through the term eA0. The
appropriate contribution to the current reads

j3
0 =

1

4m3 �s� · p�s� · k�k0 + s� · k�k0s� · p�� . �37�

The operator �H3 should be calculated including the retarda-
tion effect. We return to the one-photon-exchange contribu-
tion �Eq. �9�� and write

�H3 =
e2

4m3 	 d4k

ik�2�2��4

� 
�s�1 · p�1s�1 · k�eik�·r�1 + eik�·r�1s�1 · k�s�1 · p�1�

�
k0

E0 − H0 − k0 + i�
e−ik�·r�2

− eik�·r�2
k0

E0 − H0 − k0 + i�
�s�1 · p�1s�1 · k�e−ik�·r�1

+ e−ik�·r�1s�1 · k�s�1 · p�1�� + �1 ↔ 2� . �38�

In order to integrate over the variable k0, we perform a Her-
mitian symmetrization �H3→ 1

2 ��H3+�H3
†� and then

�k�↔−k�� symmetrization to �dk3. After applying this proce-
dure, we can proceed with the help of the Cauchy theorem
and obtain

	 dk0

2�i

 k0

− �E − k0 + i�
−

k0

− �E − k0 − i�
� = �E = H0 − E0.

�39�

Therefore
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�H3 =
e2

8m3 	 d4k

k�2�2��3
� ��s�1 · p�1s�1 · k�eik�·r�1 + eik�·r�1s�1 · k�s�1 · p�1�

��H0 − E0�e−ik�·r�2 + eik�·r�2�H0 − E0��s�1 · p�1s�1 · k�e−ik�·r�1

+ e−ik�·r�1s�1 · k�s�1 · p�1�� + �1 ↔ 2� . �40�

After commuting the operator �H0−E0� with e−ik�·r�i and sim-
plification of the double-spin operators, �H3 reads

�H3 =
�

32m4 	 d4k

�2��3

4�

k�2
†p1

2,�p2
2,e−ik�·r��‡ + �1 ↔ 2� .

�41�

Finally, the above operator is expressed in the CMRF as

�H3 =
�

16m4�p2,�p2,
1

r
�� . �42�

The operator �H4 is obtained when one particle interacts
through the second term in Eq. �6�, namely,

HFW,4A
�−� = −

e

m
p� · A� −

e

m
s� · B� . �43�

We recall the relation B� =�� �A� and see that the contribution
to the current reads

j�4A = −
1

m
p� −

i

m
s� � k� . �44�

A second particle interacts by the relativistic corrections
from the third term,

HFW,4B
�−� = −

1

8m3 ��4 − 2es� · B� �2 − 4�2es� · B� �

→
e

4m3 �p2p� · A� + p2s� · B� � +
e

4m3 �p� · A� p2 + s� · B� p2� .

�45�

The first expression in parentheses in the second row gives
the current

j�4B1 =
1

4m3 p2p� +
i

4m3 p2s� � k� . �46�

An almost identical contribution comes from the second ex-
pression in parentheses in Eq. �45�. The operator �H4 can be
treated in the nonretardation approximation; therefore

�H4 = − e2	 d3k

�2��3Gij�0,k���
 1

m
p�1 +

i

m
s�1 � k��eik�·r�1

�
 1

4m3 p2
2p�2 −

i

4m3 p2
2s�2 � k��e−ik�·r�2

+ 
 1

m
p�1 +

i

m
s�1 � k��eik�·r�1
 1

4m3 p2
2e−ik�·r�2p�2

−
i

4m3e−ik�·r�2p2
2s�2 � k��� + �1 ↔ 2� . �47�

One can integrate the last expression with the help of the
formula

G̃��r�� =	 d3k

�2��3G��0,k��e−ik�·r�

=
1

4��−
1

r
, � =  = 0,

1

2r

�ij +

rirj

r�2 � , � = i,  = j ,� �48�

where G̃��r�� is the position representation of a photon
propagator. It is convenient to introduce the static vector po-
tentials �17�

eA1
i =

�

2r

�ij +

rirj

r2 � pj

m
−

�

m

�s�2 � r��i

r3 ,

eA2
i = −

�

2r

�ij +

rirj

r2 � pj

m
+

�

m

�s�1 � r��i

r3 . �49�

These static potentials arise when an integral of the follow-
ing form is performed:

eA1,2
i = − e2	 d3k

�2��3Gij�0,k��
 1

m
p2,1,j 


i

m
�s�2,1 � k�� j�eik�·r�,

�50�

where the upper signs on the LHS of the above equations
refer to the field eA1

i . Finally, we obtain

�H4 =
e

4 �
a=1,2

�pa
2p�aA� a + p�aA� apa

2 + pa
2s�a��� a � A� a�

+ s�a��� a � A� a�� . �51�

The next operator ��H5� is the first example of a contri-
bution of a two-photon-exchange process. More specifically,
it arises when one particle interacts twice through the term
HFW,4A

�−� �see Eq. �43�� and the other particle interacts through
the term

HFW,5 =
e2

2m
A� 2. �52�

Generally, a contribution involving two-photon exchange has
the following form:

�����E0���� = 4e4	 	 d4k

�2��4i

d4u

�2��4i
G��k�G���u�

� ���j1
��k�eik�·r�1

1

E0 − H0 − k0 + i�
j2

�− k�

� e−ik�·r�2j2
��u�eiu� ·r�2

1

E0 − H0 − u0 + i�

�j1
��− u�e−iu� ·r�1�� + �1 ↔ 2� , �53�

where the factor of 4 in front of the above integral accounts
for equivalent amplitudes that also contribute. In the case of
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�H5 one current, say j�1, is given by Eq. �44�. The second

current comes from a single A� field operator in Eq. �52�. The
effective operator �H5 can be calculated in the nonretarda-
tion approximation; therefore we exploit Eq. �15� to integrate
over k0 and u0. We obtain

�H5 = e4	 	 d3k

�2��3

d3u

�2��3Gij�0,k��Gmn�0,u�� � j1
i �k�eik�·r�1j2

j

��− k�e−ik�·r�2j2
m�u�eiu� ·r�2j1

n�− u�e−iu� ·r�1 + �1 ↔ 2� . �54�

The above expression is a product of two integrals, where
each of them has the form of the integral in Eq. �50�. Again
it follows that, in order to get an effective operator, one can

simply substitute fields A� a with static potentials from Eq.
�49�. Hence,

�H5 = �
a=1,2

e2

2
A� a

2. �55�

The operator �H6 is another example of a two-photon-
exchange contribution. In this case one particle couples to
the term

HFW,6 =
e2

4m2s��E� � A� − A� � E� � , �56�

which is a part of the fourth term of the FW Hamiltonian in
Eq. �6�. The other particle couples once to the term HFW,4A

�−�

�see Eq. �43�� and once to eA0. We can use the nonretardation
approximation for Eq. �53�, which means that we can simply
substitute fields with their static forms. The result is

�H6 = �
a=1,2

e2

4m2s�a�E�a � A� a − A� a � E�a� . �57�

The next term ��H7� is due to a process when each par-
ticle is coupled to the HFW,4A term �see Eq. �43��. This is
one-photon exchange with retardation. One can see that only
the transverse part of the photon propagator is involved in
the calculation; therefore

�H7 = e2	 d4k

�2��4i

1

k0
2 − k�2 + i�


�ij −
kikj

k�2 �
�
j1

i �k�eik�·r�1
1

E0 − H0 − k0 + i�
j2

j �− k�e−ik�·r�2

+ j2
i �k�eik�·r�2

1

E0 − H0 − k0 + i�
j1

j �− k�e−ik�·r�1� . �58�

First, we will deal with the �k0 integral. Although the above
currents j1 ,j2 do not contain any powers of k0 we consider a
more general situation, that is, we consider the integral

	 dk0

�2��i
1

k0
2 − k�2 + i�

f�k0�
E0 − H0 − k0 + i�

=	 dk0

�2��i
1

2k0
 1

k0 − �k − i��
+

1

k0 + �k − i���
�

f�k0�
E0 − H0 − k0 + i�

, �59�

where f�k0� may contain at most one power of k0 and k
= �k��. In order to perform integration we notice that in the
Im k0�0 complex half plane the function of interest has only
one pole, which is at the point k0=k− i�. We encircle this half
plane with a half circle of radius R→�. With the help of
simple power counting, one can see that the integral over this
half circle vanishes. Finally, we can use the Cauchy theorem
to tackle the integral in Eq. �59�,

	 dk0

�2��i
1

k0
2 − k�2 + i�

f�k0�
E0 − H0 − k0 + i�

=
1

2k

f�k�
E0 − H0 − k

.

�60�

By virtue of the above relation �H7 reads

�H7 = e2	 d3k

�2��3

1

2k
�ij −
kikj

k�2 �
j1
i �k��eik�·r�1

1

E0 − H0 − k

�j2
j �− k��e−ik�·r�2 + j2

i �k��eik�·r�2
1

E0 − H0 − k
j1

j �− k��e−ik�·r�1� .

�61�

Next, we proceed with the retardation expansion, that is, we
expand

1

E0 − H0 − k
= −

1

k
+

H0 − E0

k2 −
�H0 − E0�2

k3 + ¯ �62�

and identify the third term as the one that gives corrections
of O�m�6�; however, with one remark. Namely, one has to
subtract the divergent term arising �see the �H7

A operator be-
low�. We substitute the appropriate currents into Eq. �61�,
perform the nonretardation expansion, and obtain

�H7 =
e2

m2 	 d3k

�2��3

1

2k4
�ij −
kikj

k�2 ��p�1 + is�1 � k��eik�·r�1

��H0 − E0�2�p�2 − is�2 � k��e−ik�·r�2 + �1 ↔ 2� . �63�

For the sake of clarity we split this expression into three
parts with no-spin, single-spin, and double-spin terms, re-
spectively:

�H7 = �H7
A + �H7

B + �H7
C. �64�

The nonspin part reads
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�H7
A =

e2

m2 	 d3k

�2��3

1

2k4
�ij −
kikj

k�2 �
� p1

i �eik�·r�1�H0 − E0�2e−ik�·r�2 − �H0 − E0�2�p2
j + �1 ↔ 2� ,

�65�

where we have subtracted lower-order terms responsible for
infrared divergence �see Ref. �17��. To obtain the effective
operator we use the commutator identity from Ref. �17�,

eik�·r�a�H0 − E0�2e−ik�·r�b − �H0 − E0�2

= �H0 − E0��eik�·�r�a−r�b� − 1��H0 − E0� + �H0 − E0�

�� pb
2

2m
,eik��r�a−r�b� − 1� + �eik��r�a−r�b� − 1,

pa
2

2m
��H0 − E0�

+ � pb
2

2m
,�eik��r�a−r�b� − 1,

pa
2

2m
�� , �66�

and the formula

	 d3k
4�

k4 
�ij −
kikj

k2 ��eik�·r� − 1� =
1

8r
�rirj − 3�ijr2� . �67�

We can express the �H7
A operator in terms of the operators in

the CMRF,

�H7
A = −

�

8m2
�pi,V�
rirj − 3�ijr

2

r
�V,pj� − �pi,V�

�� p2

2m
,
rirj − 3�ijr

2

r
�pj − pi� rirj − 3�ijr

2

r
,

p2

2m
��V,pj�

+ pi� p2

2m
,� rirj − 3�ijr

2

r
,

p2

2m
��pj� . �68�

The single-spin part is given by the expression

�H7
B =

ie2

4m2 	 d3k

�2��3

1

k4 �eik�·r�1�H0 − E0�2e−ik�·r�2�s�1 � k��p�2

− p�1�s�2 � k��eik�·r�1�H0 − E0�2e−ik�·r�2� + �1 ↔ 2� . �69�

In order to integrate the above expression over k�, we use Eq.
�66� and the integral

	 d3k

2�2

k�

k4eik�·r� =
i

2

r�

r
. �70�

In the CMRF �H7
B reads

�H7
B =

�

8m2��
S� �
r�

r
�i

,p2��V,pi� + �pi,V��p2,
S� �
r�

r
�i�

+ � p2

2
,�
S� �

r�

r
�i

,p2��pi + pi� p2

2
,�
S� �

r�

r
�i

,p2��� .

�71�

The double-spin part is

�H7
C = e2	 d3k

�2��32k4

�s�1 � k���s�2 � k��
m2 eik�·r�1�H0 − E0�2e−ik�·r�2

+ �1 ↔ 2� . �72�

With the help of Eq. �66� one gets

�H7
C = −

�

4m4�p2,�p2,s�1s�2
2

3r
+ s1

i s2
j 1

2r

 rirj

r2 −
�ij

3
��� .

�73�

The next retardation correction ��H8� arises when one
particle couples to the term in Eq. �43� and the second par-
ticle couples to the term

�HFW,8 =
e

4m2s��E� � p� − p� � E� � . �74�

Only the transverse part of the photon propagator is involved
here; therefore the operator reads

�H8 = � e2

4m3 	 d4k

�2��4i

1

k0
2 − k�2 + i�


�ij −
kikj

k�2 ��− ik0�

� �eik�r�1p�1 � s�1 + p�1 � s�1eik�·r�1�i 1

E0 − H0 − k0 + i�

��p�2 − is�2 � k�� je−ik�·r�2 + H.c.� + �1 ↔ 2� . �75�

One can exploit Eq. �60� to perform the integral over k0 and
obtain

�H8 = �−
ie2

8m3 	 d3k

�2��3
�ij −
kikj

k�2 � � �eik�r�1p�1 � s�1 + p�1

� s�1eik�·r�1�i 1

E0 − H0 − k
�p�2 − is�2 � k�� je−ik�·r�2 + H.c.�

+ �1 ↔ 2� . �76�

Now, we proceed with the retardation expansion in Eq. �62�.
In the present case we substitute 1 / �E0−H0−k�→ �H0
−E0� /k2 and commute �H0−E0� to the left. The result is

�H8 = �−
ie2

8m3 	 d3k

�2��3k2
�ij −
kikj

k�2 � � �eik�r�1p�1 � s�1 + p�1

� s�1eik�·r�1,
p1

2

2m
+ V�i

�p�2 − is�2 � k�� je−ik�·r�2 + H.c.�
+ �1 ↔ 2� . �77�

With the help of Eq. �50� one can recognize the static mag-
netic field in the above integral. Additionally, the term with

the commutator of V produces static electric field E� . There-
fore
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�H8 = �
a=1,2

e2

4m2s�a�E�a � A� a − A� a � E�a�

+
ie

8
�A� a�p�a � s�a� + �p�a � s�a�A� a,pa

2� . �78�

�H9 is the sum of one- and two-loop corrections,

�H9 = HL1 + HL2, �79�

which requires a separate treatment. We take this correction
from Ref. �17� and adopt it for the positronium. For the states
with l�0 the operator HL1 vanishes and we can write

�H9 = HL2 = −
�3

�2m2

s2
i s1

j

r3 
�ij − 3
rirj

r2 ��2a�2� + �a�1��2�

+
2�3

�2m2r3S��r� � p��a�2�, �80�

where:

� =
�

�
a�1� + 
�

�
�2

a�2� + ¯ , �81�

a�1� =
1

2
, �82�

a�2� =
3

4
��3� −

�2

2
ln�2� +

�2

12
+

197

144
, �83�

� is the anomaly of the electron’s magnetic moment, and ��z�
is the Riemann zeta function.

IV. CORRECTIONS TO THE ENERGY LEVELS

In this section we present the calculation of the correction
to the energy levels �E�6��. We use the ordinary quantum-
mechanical perturbation theory. The total perturbed Hamil-
tonian reads

H = H0 + H�4� + H�5� + H�6� + ¯ . �84�

Let us consider the basis consisting of the states
��n , j , l ,s , jz��. The unperturbed Hamiltonian H0 is degenerate
with respect to the quantum numbers �j , l ,s , jz�. According to
the general theory, if one want to use these states in pertur-
bation calculus then one should check whether the perturbed
Hamiltonian is diagonal in that basis. In order to show that
this is the case, first let us consider the operator H�4� in the
first order of perturbation theory. For states with l�0 the
Breit-Pauli Hamiltonian reads �see, e.g., Ref. �25�, Sec. 84�

H�4� = −
p4

4m3 −
�

2m2r
�p2 + n� · �n� · p��p�� +

3�

2m2r3L� · S�

+
3�

2m2r3
�S� · n��2 −
1

3
S�2� . �85�

It contains the spin-orbital term �S� ·n��2 which has nonzero
matrix elements between the states for which the difference
in the quantum number l is ��l�=0,2. However, with the help

of the results presented in Appendix B and Eq. �180�, one
can show that after all

�n, j,l,s, jz� 1

r3
�S�n��2 −
1

3
S�2��n, j,l 
 2,s, jz = 0. �86�

Moreover, H�4� removes the degeneracy with respect to the
number l. Owing to this fact, there is no need to solve the
secular equation in the case of the H�6� operator, which con-
tains some nondiagonal terms with respect to the number l.
According to the ordinary perturbation theory we can write

E�6� = ���H�6���� + ���H�4� 1

�E0 − H0��
H�4���� . �87�

We recall the notation ���= �n , j , l ,s , jz� and add the remark
that owing to symmetry properties the energy corrections do
not depend on the number jz. In the following section we
proceed with the first-order perturbation theory using the ef-
fective Hamiltonian derived in the last section. For simplic-
ity, below we put m=1 and �=1.

A. First-order corrections

Let us start with �E0= ���H0���, where H0 is given by Eq.
�21�. We use the relations

p2 = H0 +
1

r
, �88�

H0��� = E0��� , �89�

� 1

r
H0

1

r
 = E0� 1

r2 + � 1

r4 , �90�

and get

�E0 = E0
3 + 3E0

2� 1

r
 + 3E0� 1

r2 + � 1

r3 + � 1

r4 .

�91�

In the above formula and below, the expectation values are
calculated for the state ���. In Appendix A we present the
expectation values for various operators, starting with 1 /rk.

The next correction is given by �E1= �H1� with H1 from
Eq. �31�. First, we rewrite this effective operator in terms of
more familiar operators. We use a definition of the orbital

angular momentum operator L� =r�� p� and the fact that
�2�1 /r�=−4��3�r��. In this way we get

�H1 = −
3

32
�p2S�L� + S�L�p2� +

1

64
�p4V + Vp4 − 2p2Vp2�

−
12�

32
�p2��3��r�� + ��3��r��p2� . �92�

Let us notice that the last term on the RHS of the above
equation vanishes for the states with l�0. By virtue of the
relations �88�–�90�, we may write
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�E1 = −
3

8

E0� 1

r3S� · L� + � 1

r4S� · L� −
1

32
� 1

r4� .

�93�

In the rest of this paper we use the following notation: S� ·L�

= 1
2 �j�j+1�− l�l+1�−s�s+1��, L�2= l�l+1�, and S�2=s�s+1�,

where j , l ,s are the appropriate quantum numbers.
The next correction comes from the operator �H2 in Eq.

�35�. For the states with l�0 this operator can be written as

�H2 =
�

8
p��3�r��p� +

i�

4
S� · �p� � �3�r��p��

+
1

4
�s�2 � p��i��ij

3
4��3�r�� +

1

r3
�ij − 3
rirj

r2 ���s�1 � p�� j .

�94�

Now, let us notice that the terms with Dirac � function and
two p� operators vanishes for the states with l�1. Because of
this fact the analytical formulas for l=1 and for l�1 are
different. For the case l=1 we calculate E2 in a different
manner, namely, we use the identity

���H��� = Tr�H������� �95�

and a set of identities for P states from Ref. �23�:

�3P0��3P0� = �Pi��Pj�
1

2
�ijS�

2 − SiSj� ,

1

3�
jz

�3P1, jz��
3P1, jz� = �Pi��Pj�

1

2
SiSj ,

1

5�
jz

�3P2, jz��
3P2, jz� = �Pi��Pj�

1

10
�2�ijS�

2 − 3SiSj + 2SjSi� ,

1

3�
jz

�1P1, jz��
1P1, jz� = �Pi��Pj��ij
1 −

1

2
S�2� , �96�

where

�r��Pi� =
ri

r
Rn1�r� , �97�

and Rnl is the radial part of the �r� ��� wave function. In order
to tackle the terms containing the Dirac � function we exploit
the formula

�Pj�pk�
�3��r��pl�Pi� =

� jk�il

72

�n − 1��n + 1�
4�n5 . �98�

Then we use a symbolic computer program �24� to trace over
spin variables, differentiate, and integrate over r� variables.
The formulas for P states are

�E2�n 1P1� = −
1

1920n5 +
1

1280n3 ,

�E2�n 3P0� = −
7

960n5 +
9

1280n3 ,

�E2�n 3P1� = −
1

256n5 +
1

256n3 ,

�E2�n 3P2� =
19

19 200n5 −
7

6400n3 . �99�

Now, we will calculate E2 for states with l�1. As mentioned
before, in this case all the terms containing the Dirac � func-
tion vanish and �H2 reduces to

�H2 =
1

4
�s�2 � p��i 1

r3
�ij − 3
rirj

r2 ��s�1 � p�� j

=
1

4
�iab� jcds2

as1
cpb 1

r3
�ij − 3
rirj

r2 �pd. �100�

Similar terms containing a double-spin operator occur fre-
quently throughout this paper. In order to tackle them, we

exchange the s1 ,s2 operators for the total spin operator S� .
This can be done with the help of the observation that, if the
expectation value �s1

i s2
j Tij� satisfies the condition �s1

i s2
j Tij�

= �s1
i s2

j Tji� and Tij is a spin-independent operator, then

�s1
i s2

j Tij� = � 1

2

SiSj −

1

2
�ij −

i

2
�ijkSk�Tij

=
1

2
�SiSjTij� −

1

4
�Tr�T�� . �101�

We have obtained an expression containing a double-total-
spin operator, which can be handled by means of the general
theory concerning tensor corrections �26,27� �see Appendix
B�. In the case of �H2 we recognize

Tac =
1

4
�iab� jcdpb 1

r3
�ij − 3
rirj

r2 �pd. �102�

After some algebra the following result is obtained �for l
�1�:

�E2 =
1

16
� 1

r5�3L�2 + 4S�2 − 6 − 3S� · L� − 6�S� · L� �2

− 15��j,l,s�� +
1

24
� 1

r4�2S�2 − 3 − 3��j,l,s��

+
E0

24
� 1

r3�2S�2 − 3 − 3��j,l,s�� , �103�

where we have introduced the symbol

��j,l,s� =
1

3

2L�2S�2 − 3S� · L� �1 + 2S� · L� �

4L�2 − 3
, �104�

which origin is shown in Appendix B. Let us notice that,
even though the expectation value of the operator 1 /r5 is
divergent for the states with l�2, the correction �E2 for l
=1 still can be obtained from Eq. �103�. In order to do that,
first, one should reduce the factors �l−1� in �E2 and then
substitute l=1. Similar situations appear for the other effec-
tive operators.

The next correction is
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�E3 =
1

16
��p2,�p2,

1

r
�� . �105�

By the virtue of relations �88�–�90� we obtain

�E3 =
1

8
� 1

r4 . �106�

The next correction is �E4. First, we put the �H4 operator
from Eq. �51� in a different form. Namely, we split it into
four terms:

�H4 = �H4
�1� + �H4

�2� + �H4
�3� + �H4

�4�, �107�

where

�H4
�1� =

1

4
p2pi
�ij

r
+

rirj

r3 �pj +
1

4
pi
�ij

r
+

rirj

r3 �pjp
2,

�108�

�H4
�2� = −

1

2
p2pi�S� � A� II�i −

1

2
pi�S� � A� II�ip2, �109�

�H4
�3� =

1

4
p2S� · ��� � A� I� +

1

4
S� · ��� � A� I�p2, �110�

H4
�4� = −

1

2
p2�s1

� ��� � �s�2 � A� II�� + s�2��� � �s1
� � A� II���

−
1

2
�s1

� ��� � �s�2 � A� II�� + s�2��� � �s1
� � A� II���p2.

�111�

Here we have split the static magnetic field from Eq. �50�
into

A1
i = AI

i − 2�s�2 � A� II�i, �112�

A2
i = − AI

i + 2�s�1 � A� II�i, �113�

where:

AI
i =

�

2r

�ij

r
+

rirj

r3 � pj

m
, �114�

AII
i =

�

2m

ri

r3 . �115�

In order to calculate �H4
�1�� one can commute operators until

the momentum operators form either �ri /r�pi=�r or p2 opera-
tors. The result is

�H4
�1�� =

1

2
E0

2� 1

r
 + E0� 1

r2 −
1

2
E0� 1

r
�r

2 +
1

2
� 1

r3
+

1

8
� 1

r4 −
1

2
� 1

r2�r
2 −

1

4
� 1

r3�r . �116�

The appropriate expectation values can be found in Appen-
dix A. The operator �H4

�2� can be written as

�H4
�2� = −

1

4
p2pi �S

� � r�i

r3 −
1

4
pi �S

� � r�i

r3 p2; �117�

therefore

��H4
�2�� = −

1

4
�p2L� · S�

r3  −
1

4
�L� · S�

r3 p2
= −

E0

2
� 1

r3L� · S� −
1

2
� 1

r4L� · S� . �118�

Similarly,

��H4
�3�� = −

E0

2
� 1

r3L� · S� −
1

2
� 1

r4L� · S� = ��H4
�2�� .

�119�

In the first step of the calculation of ��H4
�4�� we use the for-

mula given by Eq. �101�. Then with the help of relation �88�
the operator �H4

�4� can be written as

�H4
�4� =

1

2

E0 +

1

r
�
�ij −

3rirj

r2 �SiSj

r3 . �120�

According to the theory of tensor corrections �see Appendix
B� we obtain

�H4
�4� = −

3

2
E0� 1

r3��j,l,s� −
3

2
� 1

r4��j,l,s� . �121�

Finally, �E4 reads

�E4 = 
1

2
−

1

2
L�2�� 1

r4 + 
1 −
1

2
L�2E0�� 1

r3 + 2E0� 1

r2
+ E0

2� 1

r
 − 
E0� 1

r3 + � 1

r4�
L� · S� +
3

2
��j,l,s�� .

�122�

The next correction to the Hamiltonian �Eq. �55�� reads

�H5 = �
a

e2

2
Aa

2 =
1

2
�AI

i − 2�s�2 � A� II�i�2

+
1

2
�− AI

i + 2�s�1 � A� II�i�2. �123�

It can be expressed in terms of operators A� I and A� II defined
by Eq. �112�:

�H5 = A� IA� I − A� I�S� � A� II� − �S� � A� II�A� I + 2�s�1 � A� II��s�1 � A� II�

+ 2�s�2 � A� II��s�2 � A� II� . �124�

Calculation of this correction is similar to what we have
done before; therefore we skip the details and present the
result:

�E5 = E0� 1

r2 + � 1

r3 + 
3

4
L�2 −

1

2
L� · S� +

3

2
�� 1

r4 .

�125�

The next operator can be written as
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�H6 = �
a=1,2

e2

2
A� a

2 = �H6
�1� + �H6

�2�, �126�

where

�H6
�1� =

1

4
S�
A� I �

r�

r3 −
r�

r3 � A� I� , �127�

�H6
�2� = s�1
 r�

r3 � �s�2 � A� II�� + s�2
 r�

r3 � �s�1 � A� II�� .

�128�

The operator H6
�1� can be treated in a similar way as H4

�2�,
whereas a double-spin operator H6

�2� can be calculated by
means of Eq. �101�. The total �E6 reads

�E6 = −
L� · S�

4
� 1

r4 −
1

2
� 1

r4 +
S�2

3
� 1

r4 −
1

2
��j,l,s�� 1

r4 .

�129�

The operator �H7
�A� from Eq. �68� can be treated in a simi-

lar fashion as �H4
�1� from Eq. �107�; namely, one can com-

mute operators until they form either of the operators
�ri /r�pi=�r or p2. After this rather tedious procedure we ob-
tain

�E7
�A� = − � 1

r
E0

2

4
− � 1

r2E0 + � 1

r3
E0

4
L�2 −

E0

4
−

1

2
�

+ � 1

r4
3

2
L�2 −

7

8
� − � 1

r5 3

2

1 +

1

4
L�2�l − 1��l + 2��

−
1

4
� 1

r2�r
2 +

1

4
� 1

r3�r −
3

4
� 1

r3�r
2 +

3

2
� 1

r4�r
−

E0

4
� 1

r
�r

2 , �130�

where all necessary expectation values are presented in Ap-
pendix A.

The single-spin part �H7
�B� �Eq. �71�� can be treated with

the help of the relations

�S� �
r�

r
,p2��V,p�� = 2

S� · L�

r4 ,

�p� ,V��p2,S� �
r�

r
� = 2

S� · L�

r4 , �131�

and the result is

��H7
B� =

S� · L�

4
� 1

r4 . �132�

Now, we turn to the double-spin part, which is

�H7
C = −

1

4
�p2,�p2,s�1s�2

2

3r
+ s1

i s2
j 1

2r

 rirj

r2 −
�ij

3
��� .

�133�

By virtue of relation �88�, the above correction can be writ-
ten as

��H7
C� = −

s�1 · s�2

3
� 1

r4 −
1

16
�s1

i s2
j�1

r
,�p2,

1

2r

�
 rirj

r2 −
�ij

3
��� , �134�

where

s�1 · s�2 =
1

2

S�2 −

3

2
� . �135�

The second term on the RHS of Eq. �134� can be treated with
the help of Eq. �101� and basic commutator identities, yield-
ing

�E7
C = � 1

r4
1

4
−

S�2

6
−

1

8
��j,l,s�� . �136�

In the case of the next correction, �E8, we notice that the
appropriate operator �see Eq. �78�� can be written as

�H8 = �
a=1,2


1

4
s�a�E�a � A� a − A� a � E�a� +

i

8
�A� a�p�a � s�a�

+ �p�a � s�a�A� a,pa
2�� = �H5 + �H8

�2�, �137�

where

�H8
�2� = �

a=1,2

i

8
�A� a · �p�a � s�a� + �p�a � s�a� · A� a,pa

2� .

�138�

The expectation value of �H8 is similar to expressions we
have calculated before; therefore we just write the total re-
sult, which is

�E8 = �E5 + � 1

r4
1

4
−

L� · S�

8
+

1

4
��j,l,s� −

S�2

6
� ,

�139�

where �E5 is given by Eq. �125�.
We write here only those parts of �H9 �see Eq. �79�� that

contribute to the states with l�0. Therefore

�H9 = −
1

�2

s2
i s1

j

r3 
�ij − 3
rirj

r2 ��2a�2� + �a�1��2�

+
2

�2r3S� · �r� � p��a�2�. �140�

As before, for the single-spin part one can use the relation

L� =r�� p� and for the double-spin part one uses Eq. �101�. In
this way one obtains
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�E9 = � 1

r3
2a2
S� · L�

�2 + �2a2 + a1
2���j,l,s�

3

2�2� ,

�141�

which is the last correction coming from the first order of
perturbation theory.

B. Second-order corrections

Now, we turn to the second-order corrections, that is, we
calculate corrections of the form

�E�6� = ���H�4� 1

�E0 − H0��
H�4��� . �142�

The Breit Hamiltonian for l�0 �see Eq. �85�� can be ex-
pressed as

H�4� = −
1

4
H0

2 + �
i=1

5

Ri, �143�

where:

R1 = −
5

4

1

r2 , �144�

R2 = −
3

4

1

r
H0, �145�

R3 = −
3

4
H0

1

r
, �146�

R4 =
1

2r3 �L�2 + 3L� · S� − S�2� , �147�

R5 =
3

2r3 �S� · n��2. �148�

The term with operator H0
2 vanishes in the second order of

perturbative calculation so it does not occur below. We also
introduce the reduced Green function

G =
1

�En − H0��
= �

k�n,j,l,s,jz

�k, j,l,s, jz��k, j,l,s, jz�
En − Ek

.

�149�

The sum of the corrections coming from second order of
perturbation theory can be written as

�E�6� = �
i�j

Rij + �
i

Rii, �150�

where

Rij = �RiGRj + RjGRi�, i � j , �151�

Rii = �RiGRi� . �152�

Let us start the calculation with R11:

R11 = 
5

4
�2� 1

r2G
1

r2 = 
5

4
�2

�E22, �153�

where

�Enm = ��
1

rnG
1

rm +
1

rmG
1

rn , n � m = 1,2,3,

� 1

rnG
1

rn , n = 1,2,3. �
�154�

The values of �Enm are calculated in Appendix A.
Since the calculation of the next term is typical for the

second-order corrections, we present it at length so later we
can proceed faster:

R12 =
15

16
� 1

r2G
1

r
H0 +

1

r
H0G

1

r2
=

15

16

E0� 1

r2G
1

r
 + � 1

r
�H0 − E0 + E0�G

1

r2�
=

15

16

E0� 1

r2G
1

r
+

1

r
G

1

r2 + � 1

r
������� − 1�

1

r2�
=

15

16

E0�E12 + � 1

r
� 1

r2 − � 1

r3� , �155�

where we have used the following identity:

�H0 − E0�G = ������ − 1 . �156�

Several corrections can be obtained in a similar way;
therefore we drop the details and list the results:

R13 = R12, �157�

R14 = −
5

8
�L�2 + 3L� · S� − S�2��E23, �158�

R22 = 
3

4
�2

E0
E0�E11 + � 1

r
2

− � 1

r2� , �159�

R23 = 
3

4
�2
2E0

2�E11 + 2E0� 1

r
2

− 2E0� 1

r2 − � 1

r4� ,

�160�

R24 =
3

4
�L�2 + 3L� · S� − S�2�
E0�E13 + � 1

r
� 1

r3 − � 1

r4� ,

�161�

R33 = 
3

4
�2�H0

1

r
GH0

1

r
 = R22, �162�

R34 = R24, �163�

R44 =
1

4
�E33�L�2 + 3L� · S� − S�2�2. �164�

JACEK ZATORSKI PHYSICAL REVIEW A 78, 032103 �2008�

032103-12



We turn now to the terms that contain R5. Let us start with

R15 = −
15

8
� 1

r2G
�S� · n��2

r3 +
�S� · n��2

r3 G
1

r2 . �165�

In the first step, we expand the operator G in the amplitude

� 1

r2G
�S� · n��2

r3 
=� 1

r2 �
k�n,j�,l�,s�,jz�

�k, j�,l�,s�, jz���k, j�,l�,s�, jz��
En − Ek

�S� · n��2

r3  .

�166�

The matrix element of the operator �S� ·n��2 does not vanish
only for the states for which the difference in the quantum

number l is ��l�=0,2. Additionally, operator �S� ·n��2 is diag-
onal in the numbers j, s, and jz; therefore

� 1

r2G
�S� · n��2

r3  = � 1

r2G
1

r3��l��S� · n��2��l� , �167�

where ��l� is the spin-orbital part of the state, that is, ��l�
= �j , l ,s , jz� and the numbers j, s, jz are fixed. In order to
calculate the spin-orbital part of the above expression we
invoke the result derived in Appendix B:

�Tijs
isj� = �n,l�f�r��n,l���j,l,s� , �168�

where Tij is a symmetric and traceless tensor. We can see that

��l��S� · n��2��l� = ��l�
ninj −
1

3
�ij�SiSj��l +

1

3
S�2;

�169�

hence

��S� · n��2� � ��l��S� · n��2��l� = ��j,l,s� +
1

3
S�2. �170�

Finally,

R15 = −
15

8
�E23��S� · n��2� . �171�

We also write the corrections which can be easily obtained in
a similar way:

R25 = −
9

8
��S� · n��2�
E0�E13 + � 1

r
� 1

r3 − � 1

r4� ,

�172�

R35 = R25, �173�

R45 =
3

2
�L�2 + 3L� · S� − S�2��E33��S� · n��2� . �174�

The next correction needs a separate treatment. In the first
step we split it as below:

R55 = 
3

2
�2��S� · n��2

r3 G
�S� · n��2

r3  = A1 + A2 + A3,

�175�

where

A1 =�n,l� 1

r3 �
k�n

�k,l��k,l�
En − Ek

1

r3�n,l���l��S� · n��2��l��2,

A2 =�n,l� 1

r3 �
k�n

�k,l + 2��k,l + 2�
En − Ek

1

r3�n,l
����l��S� · n��2��l+2��2,

A3 =�n,l� 1

r3 �
k�n

�k,l − 2��k,l − 2�
En − Ek

1

r3�n,l
����l��S� · n��2��l−2��2. �176�

Next, we calculate the necessary radial expectation values.
We already have one �see Eq. �A21��, namely,

�n,l� 1

r3 �
k�n

�k,l��k,l�
En − Ek

1

r3�n,l = �E33. �177�

The next radial term reads

GL,L+2 =�n,l� 1

r3 �
k�n

�k,l + 2��k,l + 2�
En − Ek

1

r3�n,l
= �n,l� 1

r3

1

�E0 − Hl+2��
1

r3�n,l , �178�

where Hl is the radial part of the Hamiltonian, that is,

Hl = −
�2

�r2 −
2

r

�

�r
+

l�l + 1�
r2 −

1

r
. �179�

In order to obtain GL,L+2 we will generalize the trick from
Ref. �15� to an arbitrary number l. In the first step, we rep-
resent the operator 1 /r3 in the special forms

1

r3 = Hl�̂ − �̂Hl+2,

1

r3 = �̂Hl − Hl+2�̂ , �180�

where Hl is the radial part of the Hamiltonian �see Eq. �180��
and

�̂ = a1Dr +
b1

r
+ c1,

�̂ = − a1Dr +
b1

r
+ c1, �181�

where Dr=1 /r+�r. The coefficients above are

a1 = −
1

6�2 + 3l + l2�
,

O�M�6� CORRECTIONS TO ENERGY LEVELS OF … PHYSICAL REVIEW A 78, 032103 �2008�

032103-13



b1 = −
3 + 2l

6�2 + 3l + l2�
,

c1 = −
1

12�6 + 13l + 9l2 + 2l3�
. �182�

In the next step, we substitute decomposition �180� into Eq.
�178� and obtain

GL,L+2 = ��Hl�̂ − �̂Hl+2�
1

�E0 − Hl+2��
��̂Hl − Hl+2�̂�

= E0��̂�̂� − ��̂Hl+2�̂� , �183�

where we have used the identity

E0 − Hl+2

�E0 − Hl+2��
= 1 − �n,l + 2��n,l + 2� . �184�

After some algebra we get

��̂�̂� = c1
2 + a1

2E0 + �a1
2 + 2b1c1�� 1

r
 − L�2a1

2� 1

r2
− a1b1� 1

r2 + b1
2� 1

r2 �185�

and

��̂Hl+2�̂�

= c1
2E0 + a1

2E0
2 + �a1

2E0 + 2b1c1E0�� 1

r


+ �a1c1 + c1
2�l − L�2a1

2E0 − a1b1E0 + b1
2E0 + a1

2�lE0�

�� 1

r2 + �− a1
2 + 2a1b1 + a1

2�l + 2b1c1�l − 2a1c1

��L�2 + �l��� 1

r3 + �3�2 + l��3 + l�a1
2 − 4�2 + l�

��3 + l�a1b1 + b1
2 − L�2a1

2�l + a1b1�l + b1
2�l�� 1

r4 ,

�186�

where �l= �l+2��l+3�− l�l+1�.
The last radial element is obtained in a similar way:

GL,L−2 = ��Hl�̂ − �̂Hl−2�
1

�E0 − Hl−2��
��̂Hl − Hl−2�̂�

= E0��̂�̂� − ��̂Hl−2�̂� . �187�

This time the decomposition of 1 /r3 reads

1

r3 = Hl�̂ − �̂Hl−2,

1

r3 = �̂Hl − Hl−2�̂ , �188�

where

�̂ = a2Dr +
b2

r
+ c2,

�̂ = − a2Dr +
b2

r
+ c2, �189�

and the coefficients are

a2 = −
1

6�l − 1�l
,

b2 = −
1 − 2l

6�l − 1�l
,

c2 = −
1

12l�1 − 3l + 2l2�
. �190�

If we additionally substitute �l→ �̃l=−l�l+1�+ �l−2��l−1�
then we can use the previous results and write

��̂�̂� = c2
2 + a2

2E0 + �a2
2 + 2b2c2�� 1

r
 − L�2a2

2� 1

r2
− a2b2� 1

r2 + b2
2� 1

r2 �191�

and

��̂Hl−2�̂� = c2
2E0 + a2

2E0
2 + �a2

2E0 + 2b2c2E0�� 1

r


+ �a2c2 + c2
2�̃l − L�2a2

2E0 − a2b2E0 + b2
2E0 + a2

2�̃lE0�

�� 1

r2 + �− a2
2 + 2a2b2 + a2

2�̃l + 2b2c2�̃l

− 2a2c2�L�2 + �̃l��� 1

r3 + �3�l − 2��l − 1�a2
2

− 4�l − 2��l − 1�a2b2 + b2
2 − L�2a2

2�̃l + a2b2�̃l

+ b2
2�̃l�� 1

r4 . �192�

Now, we turn to matrix elements of the operator �S� ·n��2

�see Eq. �176��

�L+2�j,l,s� = ��l��S� · n��2��l+2�

=��l�
ninj −
1

3
�ij�
sisj −

S�2

3
�ij���l+2 .

�193�

As before, we calculate this expression with the help of the
theory recalled in Appendix B. We use the formula

�n,l,s, j, jz��T�1��2� · T�2��2��00�n,l + 2,s, j, jz�

= �− 1�s+l+jW6j�j,s,l;2,l + 2,s� · �n,l�T�1��2��n,l + 2��s�T�2�

��2��s� , �194�
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where the notation is the same as in the Appendix. The new quantity here is the reduced matrix element

�n,l�T�1��2��n,l + 2� =�2 + 3l + l2

3 + 2l
�195�

and the specific value of the Wigner 6-j symbol �see Ref. �26��

W6j�j,s,l − 2;2,l,s� = �− 1�w�6w�w + 1��w − 2j − 1��w − 2j��w − 2s − 1��w − 2s��w − 2l + 1��w − 2l + 2�
2l�− 3 + 2l��− 2 + 2l��2l − 1��1 + 2l�2s�1 + 2s��2 + 2s��3 + 2s��2s − 1�

, �196�

where w= j+ l+s. After some reduction the following formula is obtained:

�L+2�j,l,s� =
1

4
��− j + l − s��1 − j + l − s��1 + j + l − s��2 + j + l − s�

�3 + 2l�2�5 + 12l + 4l2�
� ��1 − j + l + s��2 − j + l + s��2 + j + l + s��3 + j + l + s� .

�197�

The next necessary matrix element is

�L−2�j,l,s� =��l�
ninj −
1

3
�ij�
sisj −

S�2

3
�ij���l−2

= �L+2�j,l − 2,s� . �198�

The last equation follows from the Hermiticity of the appro-
priate operator. Finally, we can write

R55 = �E33���j,l,s� +
1

3
S�2� + GL,L+2�L+2�j,l,s�

+ GL,L−2�L−2�j,l,s� . �199�

We have now all of the corrections so we can write the total
value of the O�m�6� correction to the energy levels.

V. RESULTS AND SUMMARY

First, we present the energy levels up to O�m�5� from
Ref. �12�. Next, we write our formulas for the O�m�6� cor-
rections to the energy levels. Finally, we present the numeri-
cal values for the D-state energy levels to O�m�6�.

A. Analytical formulas

The general formula E�5��n , j , l ,s� is split into four cases.
For readability, we use L to denote the quantum number of
the orbital angular momentum �instead of l�. For L�0,

E�5��n,L,L,0�

= −
m�2

4n2 +
m�4

8

 11

8n4 −
4

�1 + 2L�n3�
−

2m�5

3�n3 
 7

16L�L + 1��2L + 1�
+ ln�k0�n,L��� ,

�200�

E�5��n,L − 1,L,1�

= −
m�2

4n2 +
m�4

8

 11

8n4 −
2�4L2 + L − 1�

L�1 + 2L��2L − 1�n3�
−

2m�5

3�n3 
 − 12L2 − 23L + 10

16L�1 + L��1 − 2L��1 + 2L�
+ ln�k0�n,L��� ,

�201�

E�5��n,L,L,1�

= −
m�2

4n2 +
m�4

8

 11

8n4 −
2�1 + 2L + 2L2�

L�1 + L��1 + 2L�n3�
−

2m�5

3�n3 
 10

16L�1 + L��1 + 2L�
+ ln�k0�n,L��� ,

�202�

E�5��n,L + 1,L,1�

= −
m�2

4n2 +
m�4

8

 11

8n4 −
2�1 + 2L + 2L2�

L�1 + L��1 + 2L�n3�
−

2m�5

3�n3 
 − 12L2 − L + 21

16L�1 + L��1 + 2L��3 + 2L�
+ ln�k0�n,L��� ,

�203�

where ln�k0�n ,L�� is the Bethe logarithm.
Now, we present the O�m�6� corrections to the energy

levels. First, we write the results for the P states. They are
presented separately due to the presence of terms in �H2 �see
Eq. �94�� that do not vanish for L=1 and vanish for L�1, as
mentioned before. The formulas are

�E�6��n 1P1� = m�6
−
69

512n6 +
23

120n5 −
1

12n4 +
163

4320n3� ,
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�E�6��n 3P0� = m�6
−
69

512n6 +
119

240n5 −
1

3n4 −
833

4320n3

−
a1

2 + 6a2

24�2n3 � ,

�E�6��n 3P1� = m�6
−
69

512n6 +
77

320n5 −
25

192n4 +
553

17 280n3

+
a1

2 − 2a2

48�2n3 � ,

�E�6��n 3P2� = m�6
−
69

512n6 +
559

4800n5 −
169

4800n4

+
17 977

432 000n3 +
− a1

2 + 18a2

240�2n3 � , �204�

where a1 and a2 are defined in Eqs. �82� and �83�. These
results are in agreement with those from �15� �corrected in
Ref. �14��.

Below we present formulas for L�1. For the states with
S=0 and J=L the correction reads

�E�6��n,L,L,0� = m�6
 f1

n3 +
g1

n4 +
h1

n5 −
69

512n6� , �205�

where

f1 =
3 + 48L + 64L2 + 32L3 + 16L4

16L�1 + L��2L − 1��1 + 2L�3�3 + 2L�
, �206�

g1 = −
3

4�1 + 2L�2 , �207�

h1 =
20L2 + 20L − 17

8�2L − 1��1 + 2L��3 + 2L�
. �208�

For the states with S=1 and J=L−1 the correction reads

�E�6��n,L − 1,L,1� = m�6
 f2

n3 +
1

n3

a1
2 + 2a2�4L − 1�
8L�1 − 4L2��2 +

g2

n4

+
h2

n5 −
69

512n6� , �209�

where

f2 = �15 − 5L − 235L2 + 242L3 + 1537L4 − 581L5 − 3926L6

− 2020L7 − 40L8 − 144L9 + 416L10 + 448L11

+ 128L12�/�80L3�1 + L��3 + 2L��4L2 − 1�3� , �210�

g2 = −
3 − 6L − 21L2 + 24L3 + 48L4

16L2�2L − 1�2�1 + 2L�2 , �211�

h2 =
495 − 1137L − 1496L2 + 3500L3 + 2400L4 − 128L5 − 64L6

480�1 − 2L�2L�1 + 2L��3 + 2L�
. �212�

For the states with S=1 and J=L the correction reads

�E�6��n,L,L,1� = m�6
 f3

n3 +
1

n3

a1
2 − 2a2

8L�1 + L��1 + 2L��2 +
g3

n4

+
h3

n5 −
69

512n6� , �213�

where

f3 = �15 + 85L + 140L2 + 107L3 + 112L4 + 261L5 + 459L6

+ 506L7 + 488L8 + 384L9 + 176L10 + 32L11�/

��80L3�1 + L�3�1 + 2L�3�3 + 2L��2L − 1�� , �214�

g3 = −
3 + 12L + 24L2 + 24L3 + 12L4

16L2�L + 1�2�1 + 2L�2 , �215�

h3 = −
495 + 348L − 860L2 − 2360L3 − 1120L4 + 32L5

480L�L + 1��1 + 2L��3 + 2L��2L − 1�
.

�216�

For the states with S=1 and J=L+1 the correction reads

�E�6��n,L + 1,L,1�

= m�6
 f4

n3 −
1

n3

a1
2 − 2a2�5 + 4L�

8�1 + L��1 + 2L��3 + 2L��2

+
g4

n4 +
h4

n5 −
69

512n6� , �217�

where
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f4 = �− 45 + 190L + 4247L2 + 18398L3 + 36114L4 + 36559L5 + 17474L6 − 1300L7 − 8776L8 − 7824L9 − 3936L10 − 1088L11

− 128L12�/�80L�1 + L�3�2L − 1��1 + 2L�3�3 + 2L�3� , �218�

g4 = −
12 + 84L + 195L2 + 168L3 + 48L4

16�1 + L�2�1 + 2L�2�3 + 2L�2 , �219�

h4 =
− 900 − 2571L + 2556L2 + 6260L3 + 2720L4 + 256L5 + 64L6

480�1 + L��2L − 1��1 + 2L��3 + 2L�2 . �220�

B. Numerical results

Table I presents numerical values of the corrections to the
energies of positronium 3 2S+1DJ levels. For the numerical
evaluations we use the CODATA 2006 recommended
values of the fundamental constants �28�, i.e., R�

=10 973 731.568 527�73�m−1, �=1 /137.035 999 679�94�,
and c=299 792 458. The value of the Bethe logarithm is
taken from Ref. �29�, ln�k0�3,2��=−0.005 232 148 140 883.
Our estimation of O�m�7� correction is based on the leading
logarithmic term for the hydrogen atom found in Ref. �30�.
In the case of positronium it reads

�E�7� =
�7

�

4

3
ln
�2

2
�� 1

r4 . �221�

Numerical evaluation of the above correction for the 3 D
states gives �E�7��20�10� Hz. The uncertainty of the
O�m�7� correction is assumed to be half of the �E�7� and its
value is negligible as compared with the total theoretical
uncertainty ��. The latter is due to an uncertainty of the
Rydberg constant.

C. Summary

We have obtained the complete analytical formulas for the
O�m�6� corrections to the positronium spectrum of states
with L�0. For the P states, formulas �204� are in agreement
with those from Ref. �15� �corrected in Ref. �14��.

The method we have used in this paper is well suited for
derivation of QED effective Hamiltonians for atomic sys-
tems consisting of two constituents of comparable masses. In
particular, it seems that a high accuracy can be achieved for
the energy levels of the antiproton-nucleus system, but with

two remarks. First, a system should be in a state with orbital
angular momentum high enough to neglect non-QED inter-
actions. Second, some additional effort is needed to treat the
large anomalous magnetic moments of proton and antiproton
as well as to account for the vacuum polarization. The latter
is negligible for light systems, e.g., positronium, but may be
important for the antiproton-nucleus system.
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APPENDIX A: EXPECTATION VALUES

1. First-order perturbation theory expectation values

In this appendix we list the expectation values that occur
throughout this paper. For simplicity we put m=1 and �=1.
Let us start with the expectation values that can be found, for
the case of the hydrogen atom, in Ref. �31�:

� 1

r
 =

1

2n2 , �A1�

� 1

r2 =
1

4

1


l +
1

2
�n3

, �A2�

TABLE I. Contribution to the energies of positronium 3 2S+1DJ levels �in MHz�. �E�n� is a contribution of
O�m�n�. The last row presents the total theoretical uncertainty ��.

3 1D2 3 3D1 3 3D2 3 3D3

E0 −182 768 997.797 8 −182 768 997.797 8 −182 768 997.797 8 −182 768 997.797 8

�E�4� −554.223 0 −1 094.928 4 −662.364 1 −245.248 5

�E�5� −0.187 9 0.278 6 −0.313 5 −1.067 2

�E�6� 0.001 4 0.016 3 0.008 6 −0.012 9

� −182 769 552.207 3 −182 770 093.791 9 −182 769 660.474 0 −182 769 242.766 3

�� 0.001 2 0.001 2 0.001 2 0.001 2
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� 1

r3 =
1

8

1

l
l +
1

2
��l + 1�n3

, �A3�

� 1

r4 =
1

32

− l�1 + l� + 3n2


l −
1

2
�l
l +

1

2
��l + 1�
l +

3

2
�n5

, �A4�

� 1

r5 =
1

8

1 − 3l�1 + l� + 5n2

�l − 1�l�l + 1��l + 2��2l − 1��2l + 1��3 + 2l�n5 .

�A5�

Next, we list the expectation values containing the �r opera-
tor for the states with l�0:

� 1

r2�r = 0, �A6�

� 1

r3�r =
1

64

− l�1 + l� + 3n2


l −
1

2
�l
l +

1

2
��l + 1�
l +

3

2
�n5

, �A7�

� 1

r4�r =
1

8

1 − 3l�1 + l� + 5n2

�l − 1�l�l + 1��l + 2��2l − 1��2l + 1��3 + 2l�n5

+
1

2
�R2

r2 �
r=0

, �A8�

� 1

r
�r

2 =
1 + 2l − 2n

8�1 + 2l�n4 , �A9�

� 1

r2�r
2 =

− 1 + 2l + 2l2 − 2n2

8�− 3 − 2l + 12l2 + 8l3�n5 , �A10�

� 1

r3�r
2 =

− 1 + 2l + 2l2 − 2n2

16l�− 3 − 5l + 10l2 + 20l3 + 8l4�n5 . �A11�

One can derive the above formulas by performing appropri-
ate integration by parts and with the help of the radial Hamil-
tonian �see Eq. �179��. In addition, we use the following
relation which holds for l=1:

�Rnl
2

r2 �
r=0

=
1

72n3 −
1

72n5 . �A12�

For l�1 the RHS of the above equation vanishes.

2. Second-order perturbation theory expectation values

Below we derive the values of �Enm �see Eq. �154��,
which occur frequently in the second order of perturbation
theory. We use here the trick from Ref. �15�, namely, we
consider the Hamiltonian with the Kramers potential,

HK = −
p2

m
−

�

r
+

�

r2 , �A13�

which has the eigenvalues

EK��,�� = −
2m�2

2�2k + l + �8m�/2h2 + �2l + 1�2�2
,

�A14�

where the following relation between quantum numbers
holds: �k+ l+1�=n and n is the principal quantum number.
Now, we observe that �Enm for n ,m=1,2 can be obtained as
the appropriate perturbation corrections to the Hamiltonian
H0, that is,

�E11 = 
 �2

��2EK��,���
�=1,�=0

= −
1

4n2 , �A15�

�E12 = �E21 = 
 �2

����
EK��,���

�=1,�=0
= −

1

2�1 + 2l�n3 ,

�A16�

�E22 = 
 �2

��2EK��,���
�=1,�=0

= −
1

8

 6

�1 + 2l�2n4 +
4

�1 + 2l�3n3� . �A17�

Next, we calculate �E13, �E23, and �E33. First, we represent
1 /r3 as

1

r3 =
1

2L�2

 1

r2 − �Dr,H0�� , �A18�

where Dr=1 /r+�r, and use the relation p2=−Dr
2+L�2 /r2.

Now, we perform the calculation of �E13 in detail so the next
cases can proceed faster:

�E13 = � 1

r
G

1

r3 +
1

r3G
1

r


=� 1

r
G

1

2L�2

 1

r2 − �Dr,H0�� + H.c.
=

1

2L�2

�E12 − � 1

r
G�Dr,H0 − E0�

− ��Dr,H0 − E0�G
1

r
�

=
1

2L�2

�E12 − � 1

r
�I − �������Dr

+ �Dr�I − �������
1

r
�

=
1

2L�2

�E12 + ��Dr,

1

r
�� = −

1

n3

3

4l�1 + l��1 + 2l�
.

�A19�

In a similar way one obtains
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�E23 = −
1

n3

1 + 6l + 6l2

4l2�1 + l�2�1 + 2l�3 −
1

n4

3

4l�1 + l��1 + 2l�2

�A20�

and

�E33 =
1

n3

3 + 5l − 55l2 − 120l3 − 60l4

16l3�1 + l�2�1 + 2l�3�− 3 + l + 8l2 + 4l3�

−
1

n4

3

16l2�1 + l�2�1 + 2l�2

+
1

n5

3

128
l −
1

2
�l
1

2
+ l��1 + l�
3

2
+ l� . �A21�

APPENDIX B: MATRIX ELEMENTS
OF TENSOR OPERATORS

Let us recall here the theory of matrix elements of the
form

A = �TijS
iSj� , �B1�

where Tij is a symmetric and traceless tensor which does not
contain any spin operators. We adopt the general theory of
tensor corrections �26,27�. The crucial formula is

�n1�,n2�,l�,s�, j��T�1��k� · T�2��k��00�n1,n2,l,s, j�

= �− 1�max�s�,s�+min�l�,l�+jW6j�j,s�,l�;k,l,s� · �n1�,l��T
�1�

��k��n1,l��n2�,s��T
�2��k��n2,s� , �B2�

where

�1� T�i��k� denotes a spherical tensor of order k;
�2� �T�1��k� ·T�2��k��00=�q=−k

k T�1��k ,q� ·T�2�*�k ,q� denotes
a scalar product of spherical tensors, and the number q
� �−k , . . . ,k� enumerates the components of a spherical ten-
sor;

�3� W6j�j ,s� , l� ;k , l ,s� is the Wigner 6j symbol;
�4� the quantity �n� , j��T�k��n , j� denotes the reduced ma-

trix element of tensor T, where j is the total angular momen-
tum number in the sector where the operator T acts and n
denotes other quantum numbers.

The components of the spherical tensor appear in the fol-
lowing relation with Tij:

T�2,0� = −�3

2
T33,

T�2, 
 1� = 
 �T13 
 iT23� ,

T�2, 
 2� = −
1

2
�T11 − T22 
 2iT12� , �B3�

and one can write the equality between contractions of the
tensors

�T�1��k� · T�2��k��00 = Tij
�1� · T�2�ij . �B4�

We are interested in finding appropriate formulas for the case
of k=2. In full, the appropriate Wigner 6j symbol reads

W6j�j,s,l;2,l,s� =
�− 1� j+s+l2�6L� · S��2L� · S� + 1� − 4S�2L�2�

��2s − 1�2s�2s + 1��2s + 2��2s + 3��2l − 1�2l�2l + 1��2l + 2��2l + 3��1/2 �B5�

and the reduced matrix element can be computed from the
equation

���, j�,m��T�k,q���, j,m� = ik�− 1�max�j�,j�−m�W3j�j�,k, j ;

− m�,q,m����, j�,�T�k���, j� ,

�B6�

where W3j�j� ,k , j ;−m� ,q ,m� denotes the Wigner 3j symbol.
It is sufficient to compute the LHS of the above equation for
one specific value of the quantum number m and then one
immediately obtains ��� , j� , �T�k��� , j� for arbitrary m. In
our case the proper Wigner 3j symbol equals

W3j�j,2, j ;− m,0,m� =
�− 1�l−m�2�3m2 − j�j + 1���

��2j + 3��2j + 2��2j + 1�2j�2j − 1��1/2 .

�B7�

Let us use this theory and compute an important example
which occurs several times in the calculation. That is, we
consider the correction

�n, j,l,s� f�r�
ninj −
1

3
�ij�SiSj�n, j,l,s

= �n, j,l,s� f�r�
ninj −
1

3
�ij�
SiSj −

1

3
�ijS�2��n, j,l,s ,

�B8�

where ni=ri /r and f�r� is a function of distance r alone. We
identify the tensors

Tij
�1� = f�r�
ninj −

1

3
�ij� ,
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Tij
�2� = 
SiSj −

1

3
�ijS�2� �B9�

and obtain the reduced matrix elements of the appropriate
spherical tensors,

�n,l�T�1��2��n,l� = −
1

3
�3

2
��2l + 2��2l + 1�2l

�2l + 3��2l − 1�
�n,l�f�r��n,l� ,

�B10�

�n,s�T�2��2��n,s� =
1

6
�3

2
��2s + 3��2s + 2��2s + 1�2s�2s − 1� .

�B11�

Now, we collect all the pieces together in Eq. �B2� and get
the result

�n, j,l,s�Tijs
isj�n, j,l,s� = �n,l�f�r��n,l���j,l,s� , �B12�

where

��j,l,s� =
1

3

2L�2S�2 − 3S� · L� �1 + 2S� · L� �

4L�2 − 3
. �B13�

APPENDIX C: ONE-PHOTON-ANNIHILATION
EFFECTIVE POTENTIAL

In this appendix we present the derivation of an effective
potential operator at O�m�6� arising owing to relativistic cor-
rections to the leading-order one-photon-annihilation virtual
process amplitude. Our calculations are based on a method
described in Sec. 83 of Ref. �25�. We use natural units c=1
and �=1. Let us start with the electron-positron annihilation
amplitude, i.e.,

M = e2�v̄�p+���u�p−��G��p+ + p−��ū�p−���v�p+��� ,

�C1�

where p
 are the momentum four-vectors attributed to the
positron and electron, respectively. The bispinors u and v
are, respectively, positive- and negative-energy solutions of
the free Dirac equation in momentum representation. We use
bispinors that satisfy the standard normalization ū�p�u�p�
=1, which differs from the normalization used in Ref. �25�.
We are going to construct an effective nonrelativistic poten-
tial operator which reproduces annihilation amplitude �C1�.
For the calculations we choose the Feynman gauge in which
the photon propagator is

G��k� =
g�

k2 + i�
=

g�

�2 − k�2 + i�
, �C2�

where

k� = p�+ + p�− = p�+� + p�−� , �C3�

�2= ��++�−�2, and �
 is the energy of the positron and elec-
tron, respectively. The dispersion relation for a free particle
is

� = m�1 + 
 p�

m
�2

= m +
p�2

2m
+ ¯ . �C4�

We work in the CMRF, in which by definition k� =0� . Conse-
quently, in this reference frame a nonrelativistic expansion of
a photon propagator can be written

G��k� =
g�

4m2 −
g�

16m4 �2p�−
2 + 2p�+�

2� + ¯ . �C5�

As we want to construct a nonrelativistic effective operator
that acts on Pauli spinors, we need an appropriate nonrela-
tivistic expansion of the Dirac bispinors. The appropriate for-
mulas within desired accuracy read

u�p� = 
�1 − p�2/�8m2��w
�	� p� /2m�w

� �C6�

and

v�p� = 
 �	� p� /2m�w�

�1 − p�2/�8m2��w�
� , �C7�

where two-component spinors satisfy the normalization
w†w=w�†w�=1.

Now we calculate the Coulomb part of the amplitude
�C1�. Since we work in the CMRF it is easy to see that

v̄�p+��0u�p−� =
1

2m
�w†	� · p�+w− + w†	� · p�−w−�

=
w†	� · k�w−

2m
= 0. �C8�

As a consequence of this result, the Coulomb part of the
amplitude �C1� vanishes. In order to calculate the transverse
part of the annihilation amplitude we need the following con-
tractions:

v̄�p+��iu�p−� = w†	iw− +
1

4m2w†�p�+	� �	i�p�−	� �w−

−
p+

2

8m2 �w†	iw−� −
p−

2

8m2 �w†	iw−� �C9�

and

ū�p−���iv�p+�� = w−�
†	iw� +

1

4m2w−�
†�p�−� · 	� �	i�p�+� · 	� �w�

−
p−�

2

8m2 �w−�
†	iw�� −

p+�
2

8m2 �w−�
†	iw�� . �C10�

The first terms on the RHS of Eqs. �C9� and �C10� lead to
corrections of lower order; therefore we neglect them in fur-
ther calculation. If we substitute Eqs. �C5�, �C9�, and �C10�
in the amplitude �C1� we obtain

M�2� =
e2

16m4 �3�w†	� w−��p�−
2 + p�+�

2��w−�
†	� w�� + �w†	iw−�

��w−�
†�p�+�	� �	i�p�+�	� �w�� + �w†�p�−	� �	i�p�−	� �w−�

��w−�
†	iw��� = MA

�2� + MB
�2� + MC

�2�. �C11�
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In order to extract an effective operator we need to express
the amplitude �C11� in terms of the electron and positron
spinors w− ,w−� and w+ ,w+�, respectively. Moreover, in the am-
plitude, the spinors of different particles should not be con-
tracted. Let us start with the term

MA
�2� =

3e2

16m4 �w†	� w−��p�−
2 + p�+�

2��w−�
†	� w�� . �C12�

First, we separate spinors of different types with the help of
the completeness relation for the Pauli matrices,

	� �� · 	� �� = −
1

2
	� �� · 	� �� +

3

2
������. �C13�

Second, we introduce the positron’s bispinors. The charge-
conjugated wave function reads

�c = C�̄T, �C14�

where in the standard representation the matrix C is

C = i�2�0 = 
 0 − i	2

− i	2 0
� . �C15�

It follows that the charge-conjugated two-component spinor
reads

w+ = − i	2w†T. �C16�

In addition, the following relations hold:

w† = − iw+
T	2,

w = i	2w+
†T. �C17�

With the help of the relations �C17� it is easy to check that

�w†w�� = �w+�
†w+� ,

�w†	iw�� = − �w+�
†	iw+� . �C18�

By a virtue of relations �C13� and �C18� we obtain

MA
�2� = �w−�

†w+�
†�
 3e2

32m4 �3 + 	� + · 	� −���p�−
2 + p�+�

2��w−w+� .

�C19�

After elementary reductions of the products of Pauli matri-
ces, we can write

MB
�2� =

e2

16m4 �2�w†	iw−��w−�
†	 jw��p+i� p+j�

− �w†	� w−� · �w−�
†	� w��p�+�

2� . �C20�

In order to put the spinors in Eq. �C20� in the desired order,
we need a relation more general than �C13�. It can be
checked that

�w†	� · a�w−��w−�
†	� · a�w�� =

1

2
�w+

†w+���w−
†w−��a�2

+
1

2
a�2�w+

†	� w+�� · �w−
†	� w−��

− �w+
†	iw+���w−

†	 jw−��aiaj ,

�C21�

provided that the vector a� commutes with 	� . With the help of
identity �C21� we can write MB

�2� in the desired form,

MB
�2� =

e2

16m4 �w−�
†w+�

†�
1

2
�3 + 	� + · 	� −� · p�+�

2 − 	i	 jp+i� p+j� �
��w−w+� , �C22�

where 	� =	� ++	� − and 	

i act on w
, respectively. Similarly,

MC
�2� =

e2

16m4 �w−�
†w+�

†��1

2
�3 + 	� + · 	� −�p�−

2 − 	i	 jp−ip−j�
��w−w+� . �C23�

Finally, the amplitude �C11� reads

M�2� =
e2

16m4 �w−�
†w+�

†��4

3
�3 + 	� + · 	� −��p�−

2 + p�+�
2�

− 
	i	 j −
1

3
�ij	�

2��p−ip−j + p+i� p+j� ���w−w+� .

�C24�

Now we can write an effective operator that reproduces the
amplitude �C24�,

Veff =
e2

4m4�−
2

3
S�2�p�−

2 + p�+�
2� + 
SiSj −

1

3
�ijS�

2�
��p−ip−j + p+i� p+j� �� . �C25�

In the position representation,

Ṽeff�r�� =
��

m4 �−
2

3
S�2���3��r��p�2 + p�2��3��r��� + 
SiSj −

1

3
�ijS�

2�
����3��r��pipj + pipj�

�3��r���� , �C26�

where the operators r�, p� , and S� are defined by Eqs. �17�–�19�.
Owing to the fact that the traceless symmetric tensor part of
operator �C25� vanishes for S states, we find a agreement
between our result and the one from Ref. �20�. Clearly, the
expectation value of Veff vanishes for l�0 states.
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