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Space and momentum representation analysis of Hartman’s effect in wave packet transmission
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The Hartman effect is analyzed in both the position and momentum representations of the problem. The
importance of Wigner tunneling and deep tunneling is singled out. It is shown quantitatively how the barrier
acts as a filter for low momenta (quantum speed up) as the width increases, and a detailed mechanism is

proposed. Superluminal transmission is also discussed.
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I. INTRODUCTION

Not surprisingly, quantum wave packet dynamics show
distinctive features when compared to classical dynamics.
However, they also show intriguing peculiarities when faced
against seemingly equivalent time-independent quantum
treatments. One of them is the so-called Hartman effect (HE)
[1], namely, the independence of the tunneling time with the
value of the barrier width. This effect is thought to be of
general validity and takes place in a wide variety of scatter-
ing conditions [2]. The mechanism is attributed to the spe-
cific role of the plane wave components which combine in
the transmitted wave defining a larger propagation velocity.
In the words of Landauer and Martin [3], the barrier acts as
a wave packet accelerator with respect to the propagation
velocity before collision. Several authors have focused their
attention on HE [4,5], including extensions to take into ac-
count wave packet time spreading [6], multiple barriers [7],
wells [8], absorbing potentials [9], quantum networks [10],
and even the negative HE [11]. Most of these works are
based on analysis relying in plane waves. Recent interpreta-
tions resort to a saturation in the penetration depth of the
tunneled wave function for sufficiently wide barriers [12].
However, Winful [13] has considered a complementary view
in terms of energy storage of electromagnetic waves [14,15];
this allowed us to question some previous results [7] con-
cerning superluminality. HE takes place due to a reshaping
mechanism similar to that in weak quantum measurements,
and causality prevents supervelocities for a potential not sup-
porting bound states [16]. Very recently, Chen and Liu [17]
discussed superluminal transversal times in terms of interfer-
ence between multiple finite wave packets.

This controversy and others [18] points towards the need
for complementary interpretational views of HE, which is the
purpose of the present paper. We use the momentum as a
primary magnitude, thus obtaining a better insight for the
HE, that is important in many atomic and molecular applica-
tions.

The combined use of position and momentum representa-
tions also proves instrumental to focus on tunnel “tagging”
or classification within HE. In this respect, two main re-
gimes, direct and deep tunneling [19,20], should be distin-
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guished. See, for example, Heller [21] for outstanding ex-
amples in dynamics, spectroscopy, and photochemistry.
Transmission for those energies lying above the barrier is
called direct or Wigner (since this is frequently associated to
classical trajectories starting from a Wigner quantum me-
chanical distribution in phase space) tunneling. Other authors
regard this as shallow tunneling [22]. On the other hand,
energy components of a wave packet lying below the energy
barrier give rise to transmission by deep tunneling, a process
which connects classically disjoint regions of phase space
[20,22,23]. This is important for low temperatures, high elec-
tronic energy barriers, weak intersite electronic coupling, off
resonance, or breakdown of the Franck-Condon approxima-
tion [24]. It has also been of interest in semiclassical me-
chanics, where it has been treated both with real and
complex-valued quantities [23]. Finally, we would like to
point out that other wave packet studies are available thanks
to recent advances in femtosecond physics [25].

The organization of the paper is as follows. In Sec. II we
focus on the theoretical tools used in our study. Some results
are then presented and discussed in Sec. III. Finally, in Sec.
IV we summarize our main conclusions and ideas for future
developments.

II. THEORY

The problem considered in this work is that of a minimum
uncertainty Gaussian wave packet set to collide against a
potential barrier. In the first part of the paper, the central
(maximum) momentum value and its width parameter are
selected so that no appreciable fraction of the wave packet
has a significant momentum above that corresponding to the
maximum of the potential barrier. Accordingly, the transmis-
sion is a purely quantum mechanical process, and we are
considering essentially deep tunneling events. In the second
part, the value of the momentum is increased, so that the
amount of Wigner or direct tunneling grows. In this way, we
get a better characterization of the transmitted particle quan-
tum speed up, as well as the intensity of the transmitted
packet. The role of both Wigner and deep tunneling events
will be described in detail.
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The propagation algorithm that will be used has been de-
scribed elsewhere [26,27]; we then give only a brief descrip-
tion of it to make the paper self-contained. The packet is
described in terms of a suitable basis set as

N
Y1) = 2 (0l ep)e ™, (1)
j=1

where just one spatial dimension has been indicated, being
the extension straightforward. The initial wave packet, @y(x),
is chosen as a harmonic coherent-state (atomic units will be
used throughout the paper)

@o(x) = (2a/77)”4 exp[— a(x - x0)2 +ipox—xp)],  (2)

giving (xg,p,) the position of the center of the packet and «
is related to its width. The basis set we used consists of the
(orthogonal) primitive functions diagonalizing the position
operator X with equally spaced eigenvalues, i.e., a set of
eigenfunctions £|x)=x|x;), (x]x)=58; where {|x)}, i
=1,...,N are Dirac-delta functions in the position represen-
tation. This requires starting from a sinc discrete variable
representation (DVR) original basis prior to diagonalizing
the position operator. This procedure leads to an especially
simple propagation algorithm [26], which in matrix form can
be written as

y(0)=L"-T-L-j, 3)

where y() is the N-vector giving the total wave function at
the grid points at time ¢, T is the diagonal matrix with ele-
ments e~57 j=1,...,N, L is the eigenvectors matrix associ-
ated to the DVR-stationary basis change, and j is the vector
corresponding to the initial wave packet, with components
corresponding to its value at each grid position. Matrices j,
L, and L matrices are computed only once, prior to start the
time propagation. Consequently, any step in the time propa-
gation amounts to updating matrix T according to the new
value for the time variable. Thus, y(¢) is obtained by simple
matrix multiplication. Convergence is ensured by repeating
the calculation with an increasing number of primitive basis
functions (equivalent to reducing the grid increment Ax), un-
til results become stable.

In the present paper we also use the momentum represen-
tation. This can be easily achieved in our case by Fourier
transformation

y,()=F-L"-t-L-y,, (4)

where y ,(#) is the wave function amplitude in the momentum
space, F is the Fourier transform matrix,

an =Ax eXP(— ixmpn) ’ (5)

where p, is the nth discrete momentum. [Notice that Eq. (5)
arises from a simple rectangular algorithm for the numerical
integration of Fourier transforms.] Numerical convergence,
in both position and momentum, is controlled by simply
changing the position space increment Ax.

III. RESULTS AND DISCUSSION

A wave packet with (xq,py)=(~1.5,7) hitting a square
barrier located between x=0 and x=BW with a height of
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FIG. 1. (Color online) Four different time snapshots describing
the wave packet passage across a square barrier. Three different
values of the barrier width BW=0.1 (red dashed line), 0.3 (green
dotted line), and 0.6 (blue full line) are considered.

V=50 (which corresponds to 10 a.u. in momentum units) is
considered first. Figure 1 shows some time snapshots of the
transmission across barriers of different widths, in position
space. The time snapshots corresponding to the three barrier
widths have been plotted superimposed, so as to show the
differences existing in the transmission process, as BW gets
larger. At the beginning (¢=0.1) no differences in the wave
packets motion are observed. Afterwards (¢=0.2 and 0.3), the
initial stages of the overlap between the wave packet with
the barrier begin, and then again no important differences
among the three cases are found. One feature is worth stress-
ing, however. The reflected part of the wave packet shows
the same interference pattern for the three cases. Surpris-
ingly, all maxima and minima describing interference appear
located at the same positions, the only difference being that
the corresponding intensities are larger as BW increases. It is
clear that the barrier as a whole, not just the left wall, influ-
ences the reflected part of the packet. Moreover, this takes
place in a very interesting way. The transmitted intensity,
which decreases as BW increases, makes the corresponding
reflected wave more intense. However, the reflected wave
appears to “come back” in a time interval which is indepen-
dent of the value of BW. The corresponding modulus, how-
ever, grows with this parameter. In other words, a change in
the barrier width has the only effect of changing the intensity
of the maxima and minima, but not their general structure,
i.e., their location in position space, as a function of time.
For longer times (¢=0.4) the transmitted part of the three
packets considered develops. Their intensities and the prob-
ability areas they define with the horizontal axis decreases
with BW. More interestingly, it is observed that the position
of the maximum of the transmitted packet shifts toward
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FIG. 2. (Color online) Same as Fig. 1 but in momentum repre-
sentation. The vertical blue trace corresponds to the barrier height
location in momentum units.

larger values, at equal times, the larger BW is. These two
joint characteristics, namely, the simultaneous decrease in
the transmitted area and the peak shifting towards larger po-
sitions, may be regarded as the position representation ver-
sion of the HE. This shows the advantage of considering the
complete wave packet time evolution, instead of just discuss-
ing the individual plane-wave components, when analyzing
this type of phenomena.

Figure 2 is analogous to Fig. 1 but in the momentum
representation. Accordingly, it consists of a series of snap-
shots describing the wave packet transmission in momentum
coordinates. The first picture (¢=0.1) depicts the initial stages
of the process, where the packet (momentum distribution)
changes only very slightly. For t=0.2 (second snapshot) the
wave packet begins to be distorted, evidencing the well-
known wiggles due to interference between the positive and
negative momentum components of the wave packet. This
effect is clearly seen in our momentum space picture, where
it is found that the negative momenta develop a rather small
area, compared to the wave packet intensity at the left of the
barrier in the position representation (compare with the
equivalent snapshot in Fig. 1). We are then led to conclude
that this part of the packet contains both positive and nega-
tive momenta, i.e., components of the packet traveling for-
ward and backward. In the third snapshot (¢=0.3) the colli-
sion with the barrier has progressed to a large extent.
Negative momenta span now a more substantial area than the
positive momenta, indicating that the reflection is close to
being completed. Interestingly enough is that the region cor-
responding to positive momenta shows a bimodal distribu-
tion for the values of BW considered, with the areas decreas-
ing as the barrier width gets larger. This is the low-energy
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equivalent of the Brouard-Muga effect [28], previously
shown for a packet which experiences transmission over a
small potential energy barrier. Finally, the last snapshot
(t=0.45) shows the situation when the transmission is com-
plete. The overall (positive plus negative) momentum distri-
bution is clearly bimodal, being close to a Gaussian in both
negative and positive momenta sections. The positive mo-
menta displays a dramatic decrease in the area as BW gets
larger. This is the momentum representation version of the
HE. Before moving on, it is worth considering how the cen-
tral momentum of both reflected and transmitted parts of the
wave packet changes as a function of time. At early times in
the transmission process, the central momentum of the re-
flected part of the packet decreases with time. This clearly
shows that the slowest components of the reflected part starts
to contribute much later to the momentum distribution. On
the other hand, the central momentum of the transmitted part
behaves completely different. At the earliest times the maxi-
mum appears at lower values of the momentum. At interme-
diate times a bimodal distribution develops, the first maxi-
mum being lower, whereas the second maximum appears at
much larger values. Finally, late times display the survival, in
the transmitted packet, of just the right maximum of the
original bimodal distribution, the left one having been trans-
ferred to the reflected part of the packet. This effect can be
interpreted as a quantum slowdown.

Let us consider now the time dependence of the momen-
tum distributions that we have just presented. Actually, what
we are seeking is to explain the differences among the results
obtained for the different values of the barrier width that we
have used. For this purpose we will make use of the wave
functions time derivative as a function of the elapsed time.
Figure 3 shows such results in momentum space for two
different values of BW=0.1 and 0.3. Fewer values of this
parameter are considered now for the sake of clarity, al-
though the conclusions drawn are of general validity. The
wave function time derivative gives a clear indication on
non-negligible momenta experiencing a substantial change in
amplitude, as a consequence of the dynamical process. In
particular, our results for the time dependence clearly indi-
cates the presence of two effects. First, the transfer from
positive to negative momentum values is mediated by a sud-
den pulse, which propagates backwards (from positive to
negative momenta). In addition, this pulse is more intense for
larger values of the barrier width. Even when this difference
in intensity is not too big, it is very persistent in time. The
second remarkable effect is the existence of a radiatinglike
backwards change in momentum amplitude for large values
of the momentum. This radiation takes place when the wave
packet reaches the end of the square barrier, i.e., when it
collides with the barrier right edge. Consequently, this radia-
tion appears at later times for larger values of BW.

Figure 4 shows the transmission probability as a function
of the barrier width, for several values of the central incident
wave packet momentum. These results provide a quantifica-
tion of the amount of transmission, based on complete nu-
merical wave packet calculations. Moreover, they put in the
right context the likelihood of “superluminal” transmission
for massive particles (albeit on a pure nonrelativistic con-
text), since they explicitly show that, above a given value of
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FIG. 3. (Color online) Upper panels: Time snapshots for the density. Lower panels: Time snapshots for the momentum density (thin lines)
and the momentum density time derivative (thick panels). Two values of the barrier width have been selected. WB=0.1 (red dotted lines) and

0.3 (blue solid lines).

BW, the true numerically converged transmission amplitude
is so small that virtually no particles emerge at the right part
of the barrier. In other words, the price to pay to get super-
luminality is that the intensity of the packet is so much de-
pleted that no transmitted particles are able to propagate that
fast. However, Fig. 4 provides some useful additional infor-
mation. In it we show with a solid line the results corre-
sponding to the actual full quantum calculations, with a dot-
ted line the Wigner or direct transmission probability, i.e., the
area at large times lying at the right of the barrier height
momentum space, and with a dashed line the results corre-
sponding to the r=0 area located to the right of the barrier
height in the momentum representation, i.e., the classical
transmission of a momentum distribution classically mimick-
ing the initial quantum wave packet. This classical, “right”
transmission probability is found to be much larger than both
the full quantum and the Wigner ones, thus showing that
antitunneling plays a major role in the process. This is by no
means counteracted by deep tunneling. Whereas this deep
tunneling may be rigorously calculated as the infinite time
area for positive momenta lying below the barrier height (see
the t=0.45 case of Fig. 2), it also corresponds, in the present
case, to the difference between Wigner and actual transmis-
sion cases. Hence, deep tunneling is larger the smaller is the
barrier width, whereas it becomes negligible for sufficiently
wide barriers. Then, it may be concluded that an increase in
the barrier width depletes only the deep tunneling events.

Figure 5 shows results for the central momentum of the
transmitted density as a function of the barrier width, for
several values of the central incident wave packet momen-
tum. Two main conclusions can be drawn from this figure.
First, it is noticed that the transmitted momentum gets larger
as the barrier width is increased for those initial momenta
having a sufficiently large contribution from deep tunneling
momenta. Second, it is observed that this central momentum
tends toward a nearly constant value for very large barrier
widths, irrespective of the initial central momentum of the
wave packet. The reason for such behavior can be found in
the nearly negligible tail of the wave packet, allowing for
direct tunneling transmission. As the barrier gets wider, the
momentum components transmitting through deep tunneling
get essentially deployed, so that only those components of
the initial wave packet, transmitting by means of direct tun-
neling, do lead to a transmitted packet. Moreover, it is found
that the maximum speedup, i.e., the maximum shown by
every trace in Fig. 5, approximately corresponds to the bar-
rier height. Actually, this maximum value is higher than the
barrier height (10 a.u. in our case), but it gets lower as the
lower incident central momentum is decreased. Conse-
quently, it appears as if the maximum speedup represents an
upper bound to the barrier height, this bound being lower for
lower values of the incident central momentum. One may
reverse the above argument, and state that it is (approxi-
mately) possible to infer the barrier height from speedup
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FIG. 4. (Color online) Transmission probability as a function of
the barrier width for several values of the wave packet central mo-
mentum (indicated in the graph): (solid line) full quantum calcula-
tion, (dotted line) results for the momenta above the barrier height,
(dashed line) area to the right to the barrier height in momentum
representation for t=0, thus corresponding to the classical
transmission.

measurements for those systems in which it is possible to
tune the barrier width. This may be an possible alternative to
the search for inflexion points in excitation function mea-
surements.

Figure 6 is similar to Fig. 2 above but for the Eckart
barrier [29]. Three different values of the widths have been
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FIG. 5. (Color online) Central (most probable) momentum of
the transmitted wave packet as a function of the barrier width, for
several values of the initial central momentum of the packet p,=6,
7,8, 9, and 10.
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FIG. 6. (Color online) Same as Fig. 3 for three Eckart barriers of
increasing width. The arrows indicate the position of the maxima, in
order to evidence their shifting to larger positions for larger barrier
widths.

considered, chosen in such a way that the potential maxima
are located at the same position. The interest of this study, in
which a different type of potential is used, is to determine
whether the HE arises as a consequence of the specific fea-
tures of the square barrier, or rather the filtering effect for
tunneling momenta is a much more general feature. Actually,
since for the Eckart case the barrier height is not constant, it
would be surprising to find different outcomes for the HE.
Results in Fig. 6 show that this is not the case. Rather, it is
observed that the existence of a filtering effect similar to that
found for the square barrier, in which wider barriers lead to
faster transmitted wave packets. The only difference being
that for the Eckart barrier the frequency of the reflected
wiggles is lower. Consequently, one may state that the HE is
not a phenomenon specific of square barriers, and then it
should be expected in general potential profiles. This opens
the possibility of extrapolating the consequences of the HE,
in either time, position or momentum domains, to the realm
of atomic and molecular physics, including chemical reac-
tions.

IV. SUMMARY AND CONCLUSIONS

Summarizing, we have presented a theoretical study of
the HE, providing a complementary view to those contained
in previous literature. For this purpose, we have used both
the position and momentum space representations, in order
to have a better understanding of the underlying dynamics.
The second approach has shown to be very informative,
since it allows a clear-cut distinction between the direct and
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deep tunneling events, and also to propose (through consid-
eration of the wave function time derivative) the detailed
mechanism by which quantum transmission decreases as the
barrier width gets larger.

The present view suggest several alternative possible ex-
perimental measurements involving tunneling. First, a com-
parison between incident and transmitted central momenta
should evidence a quantum speed up proportional to the tra-
versed barrier width. To perform this measurement it is nec-
essary to: (1) an initial coherent state showing typical widths
(in both position and momentum) comparable to the size of
the barrier, (2) an initial mean momentum located well below
the barrier height so that tunneling is dominant, (3) a light
particle (to maximize tunneling), and (4) a detector for the
transmitted products with enough velocity (momentum) res-
olution able to measure the quantum speed up. Second, the
quantum speed up of the transmitted particle may be re-
versed. Measuring its amount of speed up one should be able
to infer the barrier width, after a straightforward deconvolu-
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tion procedure. Since information on the barrier height is
frequently available from scattering excitation function mea-
surements, the present proposal provides a simple prospec-
tive method to increase the overall experimental knowledge
of suitable physical process. Third, the existence of a quan-
tum speed up on the transmitted particle (p-space version of
the HE) might have an influence in reaction rates of complex
processes. This effect is normally not taken into account in
the usual plane wave treatments.
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