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We explore the subtle relationships between partial separability and entanglement of subsystems in multi-
qubit quantum states and give experimentally accessible conditions that distinguish between various classes
and levels of partial separability in a hierarchical order. These conditions take the form of bounds on the
correlations of locally orthogonal observables. Violations of such inequalities give strong sufficient criteria for
various forms of partial inseparability and multiqubit entanglement. The strength of these criteria is illustrated
by showing that they are stronger than several other well-known entanglement criteria (the fidelity criterion,
violation of Mermin-type separability inequalities, the Laskowski-Zukowski criterion, and the Diir-Cirac cri-
terion) and also by showing their great noise robustness for a variety of multiqubit states, including N-qubit
Greenberger-Horne-Zeilinger states and Dicke states. Furthermore, for N=3 they can detect bound entangled
states. For all these states, the required number of measurement settings for implementation of the entangle-
ment criteria is shown to be only N+ 1. If one chooses the familiar Pauli matrices as single-qubit observables,
the inequalities take the form of bounds on the antidiagonal matrix elements of a state in terms of its diagonal

matrix elements.
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I. INTRODUCTION

The problem of characterizing entanglement for multipar-
tite quantum systems has recently drawn much attention. An
important issue in this problem is that, apart from the ex-
treme cases of full separability and full entanglement of all
particles in the system, one also has to face the intermediate
cases in which only some particles in the system are en-
tangled and others not. The latter states are usually called
“partially separable” or, more precisely, “k-separable” when
they take the form of a mixture of states that factorize when
the N-partite system is partitioned into k subsystems (k
<N) [1-4]. In this paper we will focus on multiqubit sys-
tems only. We propose a classification of partially separable
states for such systems, slightly extending the classification
introduced by Diir and Cirac [2]. This classification consists
of a hierarchy of levels corresponding to the k-separable
states for k=1, ...,N, and within each level various classes
are distinguished by specifying under which partitions of the
system the state is separable or not.

Several experimentally accessible conditions to character-
ize k-separable multiqubit states have already been proposed,
e.g., by Laskowski and Zukowski [5], Mermin-type separa-
bility inequalities [1,6—10], or in terms of entanglement wit-
nesses [ 11]. However, these conditions do not distinguish the
various classes within the levels. Separability conditions that
do distinguish some of these classes in the hierarchy were
developed by Diir and Cirac. Here we present separability
conditions that extend and strengthen all the conditions just
mentioned.

These conditions take the form of sets of inequalities that
bound the correlations for standard Bell-type experiments
(involving at each site measurement of two orthogonal spin
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observables). They form a hierarchy with bounds that de-
crease by a factor of 4 for each level k in the partial separa-
bility hierarchy. For the classes within a given level, the in-
equalities give state-dependent bounds, differing for each
class. Violations of the inequalities provide strong sufficient
criteria for various forms of inseparability and multiqubit
entanglement.

We demonstrate the strength of these conditions in two
ways: First, by showing that they imply several other general
separability conditions, namely the fidelity criterion [12-14],
the partial separability conditions just mentioned, i.e., the
Laskowski-Zukowski condition (with a strict improvement
for k=2, N), the Diir-Cirac condition, and the Mermin-type
separability inequalities. We also show that the latter are
equivalent to the Laskowski-Zukowski condition.

Second, we compare the conditions to other state-specific
multiqubit entanglement criteria [11,15,16] both for their
white noise robustness and for the number of measurement
settings required in their implementation. In particular, we
show (i) detection of bound entanglement for N=3 with
noise robustness for detecting the bound entangled states of
Ref. [3] that goes to 1 for large N (i.e., maximal noise ro-
bustness), (ii) detection of the four qubit Dicke state with
noise robustness 0.84 and 0.36 for detecting it as entangled
and fully entangled, respectively, (iii) great noise and deco-
herence robustness [17,18] in detecting entanglement of the
N-qubit Greenberger-Horne-Zeilinger (GHZ) state where for
colored noise and for decoherence due to dephasing the ro-
bustness for detecting full entanglement goes to 1 for large
N, and lastly, (iv) better white noise robustness than the sta-
bilizer witness criteria of Ref. [11] for detecting the N-qubit
GHZ states. In all these cases it is shown that only N+1
settings are needed.

Choosing the familiar Pauli matrices as the local orthogo-
nal observables yields a convenient matrix element represen-
tation of the partial separability conditions. In this represen-
tation, the inequalities give specific bounds on the
antidiagonal matrix elements in terms of the diagonal ones.
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Further, some comments will be made along the way on how
these results relate to the original purpose [19] of Bell-type
inequalities to test local hidden-variable (LHV) models
against quantum mechanics. Most notably, when the number
of parties is increased, there is not only an exponentially
increasing factor that separates the correlations allowed in
maximally entangled states in comparison to those of local
hidden-variable theories, but, surprisingly, also an exponen-
tially increasing factor between the correlations allowed by
LHV models and those allowed by nonentangled qubit states.

This paper is structured as follows. In Sec. II we define
the relevant partial separability notions and extend the hier-
archic partial separability classification of Ref. [2]. There we
also introduce the notions of k-separable entanglement and
of m-partite entanglement in order to investigate the relation
between partial separability and multipartite entanglement.
We then discuss four known partial separability conditions
discussed above. In Sec. III we derive partial separability
conditions for N qubits in terms of locally orthogonal observ-
ables. They provide the desired necessary conditions for the
full hierarchic separability classification. In Sec. IV the ex-
perimental strength of these criteria is discussed. We end in
Sec. V with a discussion of the results obtained.

II. PARTIAL SEPARABILITY AND MULTIPARTITE
ENTANGLEMENT

In this section we introduce terminology and definitions to
be used in later sections. We define the notions of
k-separability, a;-separability, k-separable entanglement, and
m-partite entanglement and use these notions to capture as-
pects of the separability and entanglement structure in mul-
tipartite states. We review the separability hierarchy intro-
duced by Diir and Cirac [2] and extend their classification.
We also discuss four partial separability conditions known in
the literature. These conditions will be strengthened in
Sec. III.

A. Partial separability and the separability hierarchy

Consider an N-qubit system with Hilbert space H=C?
®---®C2 Let a=(S,,...,S,) denote a npartition of
{1,...,N} into k disjoint nonempty subsets (k<N). Such a
partition corresponds to a division of the system into k dis-
tinct subsystems, also called a k-partite split [2]. A quantum
state p of this N-qubit system is k-separable under a specific
k-partite split ay [1-4] if and only if it is fully separable in
terms of the k subsystems in this split, i.e., if and only if

p=2p®_ i, pi=0, Xpi=1, (1)
i i

where p’n is a state of subsystem corresponding to S, in the
split ;. We denote such states as p € Dy} and also call them
ay-separable, for short. Clearly, Dy} is a convex set. A state
of the N-qubit system outside this set is called
ay-inseparable.

More generally, a state p is called k-separable [5,20-23]
(denoted as p e D5*P) if and only if there exists a convex
decomposition
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p=2pj®n:1pS”’ PJBO, EPJ=1’ (2)
J J

where each state ®ﬁ=1psf{> is a tensor product of k density
matrices of the subsystems corresponding to some such par-
tition a,((/), i.e., it factorizes under this split a,((j). In this defi-
nition, the partition may vary for each j, as long as it is a
k-partite split, i.e., contains k disjoint nonempty sets. Clearly
Dy is also convex; it is the convex hull of the union of all
Dyr for fixed values of k and N. States that are not
k-separable will be called k-inseparable. Note that a
k-separable state need not be ay-separable for any particular
split ay [24]; and even the converse implication need not
hold: If a state is biseparable under every bipartition, it does
not have to be fully separable, as shown by the three-partite
examples in Ref. [25]. Similar observations (using different
terminology) were presented in Refs. [20,21], but below we
will present a more systematic investigation.

The notion of k-separability naturally induces a hierarchic
ordering of the N-qubit states. Indeed, the sequence of sets
D is nested: DN*PCDYVPC .- C DL In other
words, k-separability implies €-separability for all € <k. We
call a k-separable state that is not (k+1)-separable
“k-separable entangled.” Thus each N-qubit state can be
characterized by the level k for which it is k-separable en-
tangled, and these levels provide a hierarchical ranking: at
one extreme end are the 1-separable entangled states which
are fully entangled (e.g., the GHZ states), at the other end are
the N-separable or fully separable states (e.g., product states
or the “white noise state” 1/2V).

Often, it is interesting to know how many qubits are en-
tangled in a k-separable entangled state. However, this ques-
tion does not have a unique answer. For example, take N
=4 and k=2 (biseparability). In this case two types of states
may occur in the decomposition (2), namely p{/! ® p!* and
p{i}® p{jk]} (i,j,k,[=1,2,3,4). A 2-separable entangled four-
partite state might thus be two- or three-partite entangled.

In general, an N-qubit state p will be called “m-partite
entangled” if and only if a decomposition of the state such as
in Eq. (2) exists such that each subset S©) contains at most m
parties, but no such decomposition is possible when all the k&
subsets are required to contain less than m parties [13]. [In
Refs. [20,21] this is called “not producible by (m—1)-partite
entanglement.”] It follows that a k-separable entangled state
is also m-partite entangled, with [N/k]<m<N-k+1. Here
[N/k] denotes the smallest integer which is not less than N/k.
Thus a state that is k-separably entangled (k<<N) is at least
[N/k|-partite entangled and might be up to (N—k+ 1)-partite
entangled.  Therefore  conditions  that  distinguish
k-separability from (k+ 1)-separability also provide condi-
tions for m-partite entanglement, but generally allowing a
wide range of values of m. For example, for N=100 and &
=2, m might lie anywhere between 50 and 99.

Of course, a much tighter conclusion about m-partite en-
tanglement can be drawn if we know exactly under which
splits the state is separable. This is why the notion of
ay-separability is helpful, since it provides these finer dis-
tinctions. For example, suppose that a 100-qubit state is
separable under the bipartite split ({1},{2,...,100}) but under
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FIG. 1. Schematic representation of the ten partial separability
classes of three-qubit states.

no other bipartite split. This state would then be 2-separable
(biseparable) but now we could also infer that m=99. On the
other hand, if the state were only separable under the split
({1,...,50},{51,...,100}), it would still be biseparable, but
only m-partite entangled for m=50.

Diir and Cirac [2] provided such a fine-grained classifica-
tion of N-qubit states by considering their separability or
inseparability under all k-partite splits. Let us introduce this
classification (with a slight extension) by means of the ex-
ample of three qubits, labeled as a,b,c.

Class 3. Starting with the lowest level k=3, there is only
one 3-partite split, a-b-c, and consequently only one class to
be distinguished at this level, i.e., Dg””c. This set coincides
with D3P,

Classes 2.1-2.8. Next, at level k=2, there are three bipar-
tite splits: a-(bc), b-(ac), and c-(ab) which define the sets
Dg'(bc), ’Dg'(‘“), and Dg'(”h) . One can further distinguish
classes defined by all logical combinations of separability
and inseparability under these splits, i.e., all the set-
theoretical intersections and complements shown in Fig. 1.
This leads to classes 2.2-2.8. Diir and Cirac showed that all
these classes are nonempty. To these, we add one more class
2.1: the set of biseparable states that are not separable under
any split. As we have seen, this set is nonempty too.

Class 1. Finally, at level k=1 there is again only one
(trivial) split (abc), and thus only one class, consisting of all
the fully entangled states, i.e., Dé’sep\Dg’“p.

We feel that the above extension is desirable since other-
wise the Diir-Cirac classification would not distinguish be-
tween class 2.1 and class 1. However, states in class 2.1 are
simply convex combinations of states that are biseparable
under different bipartite splits. Such states can be realized by
mixing the biseparable states and are conceptually different
from the fully inseparable states of class 1.

This three-partite example serves to illustrate how the
Diir-Cirac separability classification works for general N.
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Level k (1 <k<N) of the separability hierarchy consists of
all k-separable entangled states. Each level is further divided
into distinct classes by considering all logically possible
combinations of separability and inseparability under the
various k-partite splits. The number of such classes increases
rapidly with N, and therefore we will not attempt to list them.
In general, all such classes may be nonempty. As an exten-
sion of the Diir-Cirac classification, we distinguish at each
level 1 <k<N one further class, consisting of k-separable
entangled states that are not separable under any k-partite
split.

In order to find relations between these classes, the notion
of a contained split is useful [2]. A k-partite split ¢y is con-
tained in a [-partite split ¢, denoted as a; < ay, if a; can be
obtained from a; by joining some of the subsets of «;. The
relation < defines a partial order between splits at different
levels. This partial order is helpful because «;-separability
implies a,-separability of all splits a, containing «;. We will
use this implication below to obtain conditions for separabil-
ity of a k-partite split at level k£ from such conditions on all
(k—1)-partite splits at level k—1 this k-partite split is con-
tained in. Conditions at a lower level thus imply conditions
at a higher level.

The multipartite entanglement properties of k-separable or
ay-separable states are subtle, as can be seen from the fol-
lowing examples.

(i) Mixing states does not conserve m-partite
entanglement. Take N=3, then mixing the 2-partite
entangled 2-separable states [0)® (|00)+[11))/\2 and
|0)® (J00y—|11))/y2 with equal weights gives a 3-separable
state (|000)(000|+[011){011[)/2.

(i) An N-partite state can be m-partite entangled
(m<N) even if it has no m-partite subsystem whose (re-
duced) state is m-partite entangled [13,20]. Such states are
said to have irreducible m-partite entanglement [26]. Thus a
state of which some reduced state is m-partite entangled is
itself at least m-partite entangled, but the converse need not
be true.

(iii) Consider a biseparable entangled state that is only
separable under the bipartite split ({1},{2,...,N}). One
cannot infer that the subsystem {2,...,N} is (N—1)-partite
entangled. A counterexample is the three-qubit state
p=(|0)0]® P +[1)(1| @ P))/2 which is biseparable only
under the partition a-(bc), and thus bipartite entangled, but
has no bipartite subsystem whose reduced state is entangled.
Here Pibc) and P% denote projectors on the Bell states
|¢t)=%(|01) +110)) for parties b and c, respectively.

(iv) A state that is inseparable under all splits but which is
not fully inseparable (i.e, peDy*P with k>1 and
p & Uy Dy, Vay k) might still have all forms of m-partite
entanglement apart from full entanglement, i.e., it could be
m-partite entangled with 2<m=<N-1. Thus the state could
even have m-partite entanglement as low as 2-partite en-
tanglement, although it is inseparable under all splits. For
example, Téth and Giihne [21] consider a mixture of two
N-partite states where each of them is (([N/2])-separable ac-
cording to different splits. This mixed state is by construction
(IN/2])-separable, not biseparable under any split, yet only
2-partite entangled. See also the example in [24] which is
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(N-1)-separable and only 2-partite entangled.

(v) Lastly, N-partite fully entangled states exist where no
m-partite reduced state is entangled (such as N-qubit GHZ
state) and also where all m-partite reduced states are en-
tangled (such as the N-qubit W states) [27].

These examples serve to emphasize that one should be
very cautious in inferring the existence of entanglement in
subsystems of a larger system which is known to be
m-partite entangled or k-separable entangled for some spe-
cific value of m and k.

B. Separability conditions

We now review four separability conditions for qubits,
which will all be strengthened in the next section. These are
necessary conditions for states to be k-separable, 2-separable,
and «y-separable, respectively.

(1) Laskowski and Zukowski [5] showed that for any
k-separable N-qubit state p the antidiagonal matrix elements
(denoted by p; ;, where j=d+1-j, d=2") must satisfy

1\ _
maxln = (1), vpenhe @
J

This condition can be easily proven by the observation that
for any density matrix to be physically meaningful its antidi-
agonal matrix elements must not exceed 1/2. Therefore an-
tidiagonal elements of a product of k density matrices cannot
be greater than (1/2). By convexity, this results then holds
all k-separable states. Note that this condition is not basis
dependent.

It follows from Eq. (3) that if the antidiagonal matrix
elements of state p obey

<1>k <l)k+l
- = > = , 4
5 mjax|pu| 5 4)

then p is at most k-separable, i.e., k-separable entangled, and
thus at least m-partite entangled, with m=[N/k|.

The partial separability condition (3) does not yet explic-
itly refer to directly experimentally accessible quantities.
However, in the next section we will rewrite this condition in
terms of expectation values of local observables and show
that they are equivalent to Mermin-type separability in-
equalities.

(2) Mermin-type separability inequalities [1,6,8—10].
Consider the familiar Clauser-Horne-Shimony-Holt operator
for two qubits (labeled as a and b) which is defined by

M?P =X, ®X,+X,®Y,+Y,0X,-Y,®Y, (5

Here, X, and Y, denote two spin observables on the Hilbert
spaces H, and H, of qubit a and b. The so-called Mermin
operator [28] is a generalization of this operator to N qubits
[labeled as (a,b,...,n)], defined by the recursive relation

1

1
M= MYV @ (X, +Y,) + MYV @ (X, -Y,),

[\

(6)

where M’ is the same operator as M but with all X’s and ¥’s
interchanged.
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In the special case where, for each qubit, the spin observ-
ables X and Y are orthogonal, ie., {X;,Y;}=0 for i
e{a,...,n}, Nagata et al. [1] obtained the following
k-separability conditions:

k
(MNY2 4 (M V)2 < 2<N+3><1) . VpeDy?. (7)
4
As just mentioned, the next section will show that these in-

equalities are equivalent to the Laskowski-Zukowski in-
equalities. The quadratic inequalities (7) also imply the fol-

lowing sharp linear Mermin-type inequality for
k-separability:
1 k
|<M<N)>|<2<N+3>/2(5), Vpe Dy (8)

For k=N inequality (8) reproduces a result obtained by Roy
[10].

(3) The fidelity F(p) of a N-qubit state p with
respect to the generalized N-qubit GHZ state |\I’GHZ ")
= (|0)#N+ e/ 1)®N)/ V2 (a € R) is defined as

F(p) = max(q’GHz a|P|q’GHz @ (Pl |+ Paa) +

)

The fidelity condition [12—14] (also known as the projection-
based witness [11]) says that for all biseparable p,

F(p)<1/2, Vpe Dy (10)

In other words, F(p)>1/2 is a sufficient condition for full
N-partite entanglement. An equivalent formulation of Eq.
(10) is

Y p e DY, (11)

E Pj.j>

Jj#F1.d

2lprd =

Of course, analogous conditions may be obtained by re-
placing |‘I’ZHZ’Q) in the definition (9) by any other maximally
entangled state [14,29]. Exploiting this feature, one can re-
formulate Eq. (11) in a basis-independent form:

2max|pN| < X p» VpeDy (12)
i#jJ

Note that in contrast to the Laskowski-Zukowski condi-
tion and the Mermin-type separability inequalities, the fidel-
ity condition does not distinguish biseparability and other
forms of k-separability. Indeed, a fully separable state (e.g.,
|0®Y) can already attain the value F(p)=1/2. Thus the fidel-
ity condition only distinguishes full inseparability (i.e., k=1)
from other types of separability (k=2). However, as will be
shown in the next section, violation of the fidelity condition
yields a stronger test for full entanglement than violation of
the Laskowski-Zukowski condition.

(4) The Diir-Cirac depolarization method [2,4] gives nec-
essary conditions for partial separability under specific bipar-
tite splits. It uses a two-step procedure in which a general
state p is first depolarized to become a member of a special
family of states, called py, after which this depolarized state
is tested for a,-separability under a bipartite split a,. If the
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depolarized state py is not separable under «,, then neither is
the original state p, but not necessarily vice versa since the
depolarization process can decrease inseparability.

The special family of states py is given by

oN-14

Py = NI + Nl il + 25 N + [ X
j=1

),
(13)

with the so-called orthonormal GHZ-basis |1ﬂ]i)
= é|j0)i|j'1>), where j=j,j,"**jy_1 i in binary notation
(i.e., a string of N—1 bits), and j' means a bit-flip of j: j'
=j1ja"jnoys With ji=1,0 if j;=0,1. The depolarization pro-
cess does not alter the values of Ny =(¢; |p|¢5) and of \;
= |ply))+(&71pl47)) /2 of the original state p. The values
of j=jj»"*"jn-1 can be used to label the various bipartite
splits by stipulating that j=jj>***jn_1> j,=0,(1) corre-
sponds to the nth qubit belonging (not belonging) to the
same subset as the last qubit. For example, the splits a-(bc),
b-(ac), c-(ab) have labels j=10,01,11, respectively.

The Diir-Cirac condition [2] says that a state p is sepa-
rable under a specific bipartite split j if

ING = Nol <2\, & 2|py 4l < piy+ P11,

VpeD) I=d+1-1. (14)
For the states (13) this condition is in fact necessary
and sufficient. In the right-hand side of the second
inequality of Eq. (14) [ is determined from j using
Trl pl ) X |+ [ X 1= pro+ pi

Separability conditions for multipartite splits are con-
structed from the conditions (14) by means of the partial
order < of containment. As mentioned above, if a state is
a-separable, then it is also a,-separable for all bipartite
splits oy <a,. Therefore the conjunction of all
a,-separability conditions must hold for such a state.

Note that if [\j—N\g|>2 max; \;, the state is inseparable
under all bipartite splits, but this does not imply that it is
fully inseparable (cf. [24]). Indeed, this feature also exists for
states of the form (13) as the following example shows. Take
the following two members of the family (13) for N=3: for
p5 we choose A\j=1/2, N\j=0, N\g;=0, \jo=1/4, \;=0, and
for pg: )\3:1/2, Ng=0, N1 =0, Njp=0, Ajj=1/4. Tt follows
from condition (14) that pj is separable under split a-(bc)
and inseparable under other splits, while p’; is separable un-
der the split c-(ab) and inseparable under any other split.
Now form a convex mixture of these two states:
p3=aph+Bpi with a+B=1 and «,B € (0,1). This state pj is
still of the form (13), so that we can again apply condition
(14) to conclude that p; is not separable under any bipartite
split, yet biseparable by construction.

In the next section we give necessary conditions for
k-separability and oy-separability that are stronger than the
Laskowski-Zukowski condition (for k=2,N), the fidelity
condition, and the Diir-Cirac condition.
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II1. DERIVING PARTIAL SEPARABILITY CONDITIONS

This section presents separability conditions for all levels
and classes in the separability hierarchy of N-qubit states. We
start with the case of N=2, which has been treated more
extensively in [30]. We next move on to the slightly more
complicated case of three qubits, for which explicit separa-
bility conditions are given for each of the ten classes in the
separability hierarchy which were depicted in Fig. 1. Finally,
the case of N qubits is treated by a straightforward generali-
zation.

A. Two-qubit case: Setting the stage

For two-qubit systems the separability hierarchy is very
simple: there is only one possible split, and consequently just
one class at each of the two levels k=1 and 2, i.e., states are
either inseparable (entangled) or separable. Consider a sys-
tem composed of a pair of qubits in the familiar setting of
two distant sites, each receiving one of the two qubits, and
where, at each site, a measurement of either of two spin
observables is made. We will focus on the special case that
these local spin observables are mutually orthogonal. Let
(Xf,l),Ygl),Zgl ) denote three orthogonal spin observables on
qubit a, and (X(l),Y(bl),Z,(Jl)) on qubit b. (The superscript 1
denotes that we are dealing with single-qubit operators.) A
familiar choice for the orthogonal triples {X(V, Y1), Z(D} are
the Pauli matrices {0, o,,0_}; but note that the choice of the
two sets need not coincide. We further define Iﬁll; :=1. For all
single-qubit pure states |¢/) we have

K+ D+ =y, j=ab,  (15)
and for mixed states p
A2+ (Y2 @2 <2, j=ab.  (16)

We write X, X, or even XX, etc. as shorthand for X, ® X,
and (XX):=Ti{pX,® X,,] for the expectation value in a gen-
eral state p, and (XX)y :=(P|X,® X,|¥) for the expectation
in a pure state | V).

So, let two triples of locally orthogonal observables
{Xfll), Yff) ,Zfll)} and {Xf,l), Yﬁ”,ZE,l)} be given, where a,b label
the different qubits. We introduce two sets of four two-qubit
operators on H=C?>® (2, labeled by the subscript x=0, I:

1 1
X(()Z) = 5(x(1)X(1) — YWy, X(12) = 5(x(1)X(1) + YWy,

¥ iz Leyxm _ xym),

Yo o %(Y<1>X(1> + X0y, :

72 .= %(20)1(1)”(1)2(1))’ 79 = é(z(l)l(l)_l(l)z(l)),

12 = Laopn 20z )
2

(IO = 7070,

0| —

(17)

Here, the superscript label indicates that we are dealing with
two-qubit operators. Later on, Xf) will sometimes be notated
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as Xing’ and similarly for Y 2) R Z(z), and 1(2) This more ex-
tensive labeling will prove convenient for the multiqubit
generalization. Note that (X(2))2 (Y(z))2 (Z(z))2 (IQ))2 (2)
for x=0,1, and that all eight operators mutually antlcom-
mute. Furthermore, if the orientations of the two triples are
the same, these two sets form representations of the general-
ized Pauli group, i.e., they have the same commutation rela-
tions as the Pauli matrices on (2, i.e., [X(z) Y 2)] 2iZ 2), etc.
and

(X2 (YO (2D <Py, xe{0,1}, (18)

with equality only for pure states.
Assume for the moment that the two-qubit state is pure
where

[W)=[$)| 4. 10 obtain
XN+ (PN = )y + (YN

= —(<X Y+ YD+ Yy

——(<1“> ZDUL) =2

= (IPY% = 2Py = UP)s - (2P
(19)

This result for pure separable states can be extended to any
mixed separable state p e D3 by noting that the density
operator of any such state is a convex combination of the
density operators for pure product states, i.e., p

may thus write for such states:
X2 (v

R
< 2 pVX)T+ (x )
J

=2 V() -2
J

<UD -(ZPP, VpeD™, xy=0,l.

(20)

Here, (-); denotes an expectation value in the state |w - The
first inequality follows because \r(X(2 )2+<Y2)> are convex
functions of p for all x and the second because
V(P2 —(ZP)? are concave in p for all y. As shown in [30]
the right-hand side of this inequality is bounded by 1/2,
which follows by considering the equalities of Eq. (19).
However, for entangled states [e.g., for the Bell states |¢™)
=(|00) = and |¢~)=(|01)=[10))/2] the left-hand
side can attain the value of 1. Hence inequality (20) provides
a nontrivial bound for separable states, and thus a criterion
for testing entanglement.
In other words, for all separable 2-qubit states one has

PHYSICAL REVIEW A 78, 032101 (2008)

max <x<2>>2 +(r?)?

XE

1
< min (1(2)>2 (Z(2)> = -,
xe{0,1} 4

YV pe D3P (21)
In fact, the vahdlty of the ine uahtles (21) for all orthogonal
triples {X , fll),Zm} and {Xj, bl),Z )} provides a neces-
sary and sufficient condition for separability for two-qubit
states, pure or mixed. (See [30] for a proof.)

Note that, depending on whether the orientation of the
triples of local orthogonal observables is the same or not, the
inequalities on the left-hand side of Eq. (21) (leaving out the
upperbound 1/4) may be simplified. If we choose the orien-
tations for both parties to be the same, then the interesting
separability 1nequaht1es in Eq. (21) are (X(Z))2+<Y(2))
<<I(2)>2 <Z(2 >2 and (X 2)>2+<y(2)> <I(2 >2 (Z >2 whereas
the other inequalities in Eq. (21) become trivially true [cf.
Eq. (18)]. Choosing the orientations to be different reverses
this verdict.

To conclude this section we give an explicit form of
the separability inequalities (21) by choosing the Pauli
matrices {o,,0,,0.} for both triples {X(l) Y, D Z(l)} and
{X (1) .Y, (1) Z(x }. This choice enables us to write the inequali-
ties (21) in terms of the den51ty matrix elements on the stan-

<Y;>——21mp14, 2<I )= P11+P44,( <Z > P11~ P44,
(XP)=2Re py5, (YP)=-21Im py5, UP)=pyo+pss (Z0)
=pyo—pP33- S0, in this choice, we can write Eq. (21) as

L, pe D%'SEP.

sPy<min{p; 1pya.propsst < 16

(22)

In the form (22), it is easy to compare the result to
the separability conditions reviewed in Sec. II B. Assume
for simplicity that |p; 4| is the largest of all the antidia-
gonal elements |p;|. Then, for p e D3, and using (M?)?
+(M' D)2 = 8(<X(2 )2+<Y 2)>2) the Mermln -type separability
inequality (7) becomes |p1,4| <1/16, which is equivalent to
the Laskowski-Zukowski condition |p; 4| <1/4; the fidelity/
Diir-Cirac conditions read: 2|p; 4/ <p,,+ps3; and the con-
dition (22): |p;4]*<psops3. Using the trivial inequality
(Npap— \J'E)ZB0<:>2\‘"p2’2p3’3$p2’2+p3,3, we can then write
the following chain of inequalities:

sep

A
—4
4lpy 4 - (Pl1+P44)<2|P14|<2\’P22P33\P22+P33, (23)

A sep
where we used the symbols < and < to denote inequalities
that hold for all states, and for the separability condition
(22), respectively.

The Laskowski-Zukowski condition is then recovered by
comparing the first and fourth expressions in this chain, the
fidelity/Diir-Cirac conditions by comparing the second and
fourth expression, and a new condition—not previously
mentioned—can be obtained by comparing the first and third
term, whereas condition (22), i.e., the comparison between
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the second and third expression in Eq. (23), is the strongest
inequality in this chain, and thus implies and strengthens all
of these other conditions.

B. Three-qubit case

We now derive separability conditions that distinguish the
ten classes in the three-qubit classification of Sec. II A by
generalizing the method of Sec. III A. To begin with, define
four sets of three-qubit observables from the two-qubit op-
erators (17).

X = L0 4 y Oy )

X9 = %(X<1>X§]z> _yy@), )

1 1
Y(3 5(Y(l X(2 +X l)y(z)) Y(13) = E(Y(I)Xg) —X(l)Y(()z)),

1 1
70 5(Zm,«()z) FIVZOY 7 5(Z<1)1§)2)_1(1)Z§)2))’

15)3) = ([(1)152) + Z(])Zf)z)), _ Z(I)Zg)z)),

1
19 = 5(1“)182)

N | =

1 1
X9 = 5(Xu)X(lz) —yy?), x® .= 5(Xu)x(lz) + Yy,

1

1
Y(3 _(Y(l X(2 + X 1)y(2)) Yg3) = 5(y(1)X(12) —X(l)Y(lz)),

[\

1 1
Z9 = 5(Z(l)l<12) +I0Z2), 79 = 5(2(1)1(12)—1(1)2(12))’

1 1
1(23) = 5(1(1)1(12) + Z(I)Z(lz)), 1(33) = 5(1(1)1(12) —Z(I)Z(lz)), (24)
where XVXP=x" ® X , etc., a,b,c label the three qubits.
In analogy to the two-qubit case, we note that all these op-
erators anticommute and that if the orientations of the triples
for each qubit are the same, the operators in Eq. (24) yield

representations of the generalized Pauli group: [Xf),YS)]

max (X2 4+ (Y2 < min ¥y - (Z9)?2 <

xe{0,1} xe{0,1}

max (XP)? +(¥P)? < min (& Dy —(zy <

xe{2,3} xe{2,3}

PHYSICAL REVIEW A 78, 032101 (2008)

=2iZ)(C3), for x=0,1,2,3. For convenience, we will indeed
assume these orientations to be the same, unless noted oth-
erwise. Choosing orientations differently would yield similar
separability conditions, in the same vein as in the previous
section. Under this choice we have, for all k,

XN (YN (Z < (P2, Vpe D (25)

with equality only for pure states.

We now derive conditions for the different levels and
classes of the partial separability classification. Most of the
proofs are by straightforward generalization of the method of
the previous section and these will be omitted.

Suppose first that the three-qubit state is pure and sepa-
rable under split a-(bc). From the definitions (24) we obtain

XG4 (YY) = }t(<XE,”>2 HVIPDXG + (V)

— <X(13)>2 + <Y(l3)>2
— <I§)3)>2 _ <Z§)3)>2
1
=L (Y =25 = (26)7)

= (I —(Z9?, (26)

X2+ (r)? = <<x W DX+ (V)

:(X§3)>2+ (Y33)>2
_ <I(23)>2 _ <Z(23)>2

= L = I~ 22

- <Ig3)>2 _ <Z§)>2. (27)

Similarly, for pure states that are separable under split
b-(ac), we obtain analogous equalities by interchanging the
labels x=1 and x=3 (denoted as 1+« 3); and for split c-(ab)
by 1 2.

Of course, these equalities hold for pure states only, but
by the convex analysis of Sec. IIl A we obtain from Egs.
(26) and (27) inequalities for all mixed states that are bisepa-
rable under the split a-(bc):

!
4
L Y p e DI, (28)

For states that are biseparable under split b-(ac) the analogous inequalities with 1+ 3 hold, i.e.,

max (X2 + (y¥)2 < min (1”)2 (Z8y <

xe{0,3} xe{0,3}

max (XY + (Y32 < min (1) -z <
2}

xe{l,2} Xe

and for the split c-(ab) we need to replace 1+ 2:

, VpeDil, (29)

4>|~ 4>|~
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max (X2 4+ (y¥)2 < min <1 B2 _ (792 <

xe{0,2} xe{0,2}

max (X2 + (¥ < min (1”)2 (ZBy <

xe{l,3} xe{l3

PHYSICAL REVIEW A 78, 032101 (2008)

. VpeD5, (30)

¢_|~A ¢>|»~

A general biseparable state p € D%’Sep is a convex mixture of states that are separable under some bipartite split, i.e., p
_ . o o ONVE . ]
=P 1Pa-(be) F P2Pb-(ac) + P3Pe-(ap) With E_?-zlpj— 1. Since V(X 3))2+(Y(3 )% is convex in p we get from Egs. (28)—(30) for such a state:

(3)y2 (3)y2 (3)y2 y®) (3) (3)y2 3) y®)
N + (VY < p XG4 6, + PO, S, ey
) 7002 By (B2 (312 (32
<p1\/< P (e )_< >P (be) +p2\/(l Pp-(a )_<Z3 >p1)—(gc)+p3 \/<I2 >pc—(ab)_<Zz >pc—(ab). (31)
|
Here <'>Pu.<bc> means taking the expectation value in the state Vp e Dg-sep_ (35)

Pu-(be)» €tc. Analogous bounds hold for the expressions
abep T
VX212 for x=1,2,3.

From the numerical upper bounds in the conditions
(28)—(30) it is easy to obtain a first biseparability condition:

XNV (YN <1/4, VpeD*, xe{0,1,253}.
(32)

This is equivalent to the Laskowski-Zukowski condition (3)
for k=2, as will be shown below. However, a stronger
condition can be obtained by noting that \r(lf))z—(Zf))z is
concave in p so that

PN =B AP, =2
(3)\2 (3)\2 (3)\2 (3)
;L — (2 >p(b)<\<1y>—<zy>.

(33)

After taking a sum over y # x in Eq. (33), the left-hand side
of Eq. (33) is larger than the right-hand side of Eq. (31). This
yields a stronger condition for biseparability of three-qubit
states

f f
V) 4+ (r)2 = 2 V) =20,
yFX
Vpe Dg'sep, x,y €{0,1,2,3}. (34)

That Eq. (34) is indeed a stronger than Eq. (32) will be
shown below using the density matrix representation of this
condition. If one would alter the orientation of the orthogo-
nal triple of observables for a certain qubit, then the right-
hand side of Eq. (34) changes by adding either 1, 2, or 3
(modulo 3) to x in the sum on the right-hand side, depending
on for which qubit the orientation was changed.

Next, consider the case of a 3-separable state, p € D3 .
One might then use the fact that this split is contained in all
three bipartite splits a-(bc), b-(ac), and c-(ab) to conclude
that the inequalities (28)—(30) must hold simultaneously.
Thus 3-separable states must obey

1
max{(X;")? + (V)% < minf(1Y? - (2% < 7

However, a more stringent condition holds by virtue of the
following equalities for pure 3-separable states:

<X§)3)>2+<Y(()3)>2= %6(<X((11)>2+<Y£11)>2)(<X§91)>2+<Y;;1)>2)

XY+ (VP = () + (v
= XY+ (Y = X0+ (V). (36)

U ) = <y = AP Ay
(2 =1 - P = - Y
= () (). (37)

From these equalities for pure states it is easy to obtain, by a
convexity argument similar to previous cases, an upper
bound of 1/16 instead of 1/4 in Eq. (35):

a7+ (V) < minf(1 - () < 1

Vp e DI (38)

We have thus obtained different conditions for each of the
ten classes in the full separability classification of three qu-
bits, summarized in Table I.

Violations of these partial separability conditions give
sufficient conditions for particular types of entanglement.
For example, if inequality (38) is violated, then the state
must be in one of the biseparable classes 2.1-2.8 or in class
1, which implies that the state is at least 2-partite entangled;
if Eq. (34) violated it is in class 1 and thus fully inseparable
(fully entangled), and so on.

In order to gain further familiarity with the above separa-
bility inequalities, we choose the ordinary Pauli matrices
{a oy,0,} for the locally orthogonal observables
{x{ D , YW ZY " and formulate them in terms of density ma-
trix elements in the standard z basis. Inequalities (28)—(30)
now read successively:
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max{|p; |*,|ps 5|} < min{p, 4ps 5.p1 158} < 1/16 ¥ p e Do (39)
. b} 3 b}
max{|py 7110361’} < min{ps 2077, p3 3p6.6} =< 1/16
max{|p; g|%.]p3 6/} < min{ps 36 6,01 105 8} =< 1/16 Vv p e Dl (40)
. k) 3 b}
max{|p, -|*.|ps s} < min{p; ,p7 7.p4 4ps 5} < 1/16
max{|p; |*.|p>7°} =< min{p; ,p7 7.p1 1p5 5} < 1/16 ¥ p e D) @1)
. ’ 3 .
max{|p; 6|, pa s} =< min{p; 3p6 6. ps 4ps 5} < 1/16
For a general biseparable state we can rewrite Eq. (32) as
max{|py s.|p27]: P36l lpasl } < 174, V¥ p e DI*P. (42)

It can easily be seen that this is equivalent to Laskowski-Zukowski’s condition (3) for k=2. The condition (34) for bisepara-
bility yields

!/ y/ ,/

|P1,8| S NpP2op77+NP33P6,6 T VPa4P5,5
/ /’ r/

|P2,7| < VP1,1P8,8 + VP3,3P6,6 + VP4.4P5 5
!’ / /

P36l =< Vp1.1Ps.s + VP22p7.7+ VPaaps.s

[ |
lpasl < Vp11pss+ \/92,2137,7 + VP3,3P6,6

. VpeDte (43)

Finally, condition (35) for general 3-separable states becomes

2 2
) il

maX{|P1,8 P27 P3,6|2’

Note that the separability inequalities (39)-(44) all give
bounds on antidiagonal elements in terms of diagonal ele-
ments.

We will now show that these bounds improve upon the
separability conditions discussed in Sec. II B. We focus on
the antidiagonal element p, g (i.e., we suppose that this is the
largest antidiagonal matrix element) since this is easiest for
comparison. However, the same argument holds for any
other antidiagonal matrix element.

The Diir-Cirac conditions in terms of |p; g| read as fol-
lows. For partial separability under the split a-(bc): 2|p; g
<p44+pss. under the split b-(ac): 2|p; 5| <ps33+pse and
lastly under the split c-(ab): 2|p; g/ <ps,+ps7. Next, the

TABLE I. Separability conditions for the ten classes in the sepa-
rability classification of three-qubit states.

Class Separability conditions
1 (25)

2.1 (34)

22 (28)

2.3 (29)

2.4 (30)

2.5 (28) and (29) but not (30)
2.6 (28) and (30) but not (29)
2.7 (29) and (30) but not (28)
2.8 [(28)-(30)] < (35)

3 (38)

2 .
94,5| S mln{Pl,1Ps,s,P2,2P7,7’P3,396,69P4,4P5,5} =

o V p e DI, (44)

Laskowski-Zukowski condition (3) gives for p e Dg'sef’ that
lpis|<1/4 and for peDi*P that |p;g/<1/8. The
fidelity condition (9) gives that if peDi™*P then 2|p,g|
Spapttprg

In order to show that all these conditions are implied by
our separability conditions, we employ some inequalities
which hold for all states p: |p; g|*< p; 1ps.s [this follows from
Eq. (25)], and (\Vpys—pss)>=02Vps4055< pas+pss,
and similarly 2Vps3p66=<pro+pss and 2vpyrp77=pss
+p7 7. Using these trivial inequalities one easily sees that the
conditions (39)—(41) imply the Diir-Cirac conditions for
separability under the three bipartite splits. It is also easy to
see that the condition for 3-separability (44) strengthens the
Laskowski-Zukowski condition (3) for k=3. However, it is
not so easy to see that Eq. (43) strengthens both the fidelity
and Laskowski-Zukowski condition for k=2. We will never-
theless show that this is indeed the case.

A 2-sep

Let us use the symbols < and =< to denote inequalities
that hold for all states or for biseparable states, respectively.
Combining the above trivial inequalities with condition (43)
yields the following sequence of inequalities:

A 2-sep
4o gl = (11 + pss)=<2lp 8| < 2\’/P4,4P5,5 + 2V/P3,396,6
A
+2Vp2ap77Sprat "t + P17

(45)

The inequality between the second and third expression is
Eq. (43). It implies the other inequalities that follow from
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Eq. (45). Comparing the first and fourth expression of Eq.
(45) one obtains the Laskowski-Zukowski condition (3),
while a comparison of the second and fourth yields the fidel-
ity criterion (9). Comparing the first and third term gives a
condition which was not previously mentioned. All these are
implied by condition (43).

To end this section we show that the separability inequali-
ties for x=0 give Mermin-type separability inequalities [28].
Consider the Mermin operator for three qubits:

M = xVx Dy + yDxVxD 4+ xPyxY - yyVyh,
(46)

and define M'® in the same way, but with all X and Y
interchanged. We can now use the identity 16((X(()3>)2
+(Y(03))2)=(M(3))2+(M 'G3)2 to obtain from the separability
conditions (32) and (38) the following quadratic inequality
for k-separability:

16XV 4+ (YY) = (MDY 4 (M) < 64<i)k,

Vpe Dg'sep. (47)

Of course, a similar bound holds when (X,)>+(Y,)? in the
left-hand side is replaced by (X )?+(Y,)? for x=1,2,3. This
reproduces, for N=3, the result (7) of Ref. [1]. From the
density matrix representation, we see that these Mermin-type

XM= - (xV e x0TV -y e YY),

N | =

1 - .
= SrP e X5+ X0 e yit),

1 _ _
ZV = SZVe 150+ 1 @ Z05),

1 -— —
™ .= E(I(l) ® 1%+ 70 ZI5),

with y even, i.e.,, ye{0,2,4,...}. Analogous relations be-
tween these observables hold as those between the observ-
ables (17) and (24). In particular, if the orientations of each
triple of local orthogonal observables is the same, these sets
form representations of the generalized Pauli group, and ev-
ery N-qubit state obeys (X"V)24(y™y2<(My2_(7My2
with equality only for pure states.

1. Biseparability

Consider a state that is separable under some bipartite
split @, of the N qubits. For each such split we get 2(N-1

PHYSICAL REVIEW A 78, 032101 (2008)

separability conditions are in fact equivalent to the
Laskowski-Zukowski condition (3). Note that these condi-
tions do not distinguish the different classes within level
k=2, as was the case in Egs. (39)-(41).

C. N-qubit case

In this section we generalize the analysis of the previous
section to N qubits to obtain conditions for k-separability and
ay-separability. The proofs are analogous to the previous
cases, and will be omitted. Explicit conditions for
k-separability are presented for all levels k=1,...,N. Fur-
ther, we give a recursive procedure to derive ¢y-separability
conditions for each k-partite split «; at all level k. From
these, one can easily construct the conditions that distinguish
all the classes in N-partite separability classification by enu-
merating all possible logical combinations of separability or
inseparability under each of these splits at a given level. We
will, however, not attempt to write down these latter condi-
tions explicitly since the number of classes grows exponen-
tially with the number of qubits. We start by considering
bipartite splits, and biseparable states (level k=2), and then
move upwards to obtain separability conditions for splits on
higher levels.

We define 2% sets of four observables
(XN yW ZW [Ny with xe{0,1,...,2% D=1} recur-
sively from the (N—1)-qubit observables:

1 _ .
X\ = E(Xm o X0+ vV e v,
1
N, 1 N-1 1 N-1
YY) = 5(Y< "o XV -xV e yirY),
1
N, N-1 N-1
VANES 5@1) o 15 -1V e Z)),

1 _ _
1= S © 105 - 200 & Z05), (48)
|
separability terms of the sets

ine(}ualities in
(XM, yW) 7N [V Jabeled by xe{0,1,...,20D-1}
These separability inequalities provide necessary conditions
for the N-qubit state to be separable under the split under
consideration. In order to find these inequalities, we first de-
termine the N-qubit analogs of the three-qubit pure state
equalities (26) and (27) corresponding to this bipartite
split. We have not found a generic expression that lists
them all for each possible split and all x. However, for
the split where the first qubit is separated from the (N-1)
other qubits, i.e., ay=a-(bc---n) a generic form can be
given:
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TABLE II. Solution sets for the seven different bipartite splits of four qubits.

Split a, a-(bcd) b-(acd) c-(abd) d-(abc) (ab)-(cd) (ac)-(bd) (ad)-(bc)
zf? {0,1} {0,3} {0,6} {0.4} {0,2} {0,7} {0,5}
252 {2,3} {1,2} {1,7} {1,5} {1,3} {1,6} {1,4}
732 {4,5} {5.6} {2,4} {2,6} {4,6} {2,5} {2,7}
242 {6,7} {4,7} {3,5} {3,7} {5,7} {3.4} {3,6}

K+ (v = 1(<X5“>2 (X + i)
= (X2 + (VD =V - (2
= U Y

For example, for N=4 where x €{0,1,...,7} the equali-
ties (49) give the result for the split a-(bcd). The correspond-
ing equalities for other bipartite splits are obtained by the
following permutations of x: for split b-(acd): 1+3 and
57, for split c-(abd): 16 and 3+ 4; and for split
d-(abc): 14 and 3 6. For the split (ab)-(cd): 12 and

56; for (ac)-(bd): 1+7 and 3+5; and lastly, for
(ad)-(bc): 1++5 and 3+ 7.

For mixed states that are separable under a given bipartite
split the equalities (49) (and their analogs obtained via suit-
able permutations) become inequalities. We again state them
for the split a-(bc---n):

= (I —(Z)2, (49)

where, without loss of generality, x is chosen to be even, i.e.,
xe€{0,2,4,...}. For other bipartite splits the sets of observ-
ables labeled by x are permuted, in a way depending on the
particular split.

(X2 4 (Y2 ANy — (702 1 aber-m)
- {<X(+1>2+<Y(+1>2} - mln{<1(+1>2 <Z(+1>2} T Ve eDy

The proof of Eq. (50) is a straightforward generalization of the convex analysis in Sec. III A. Again, for the other bipartite
splits, the labels x are permuted in a way depending on the particular split.
For a general biseparable state p € DIZV'SCP, we thus obtain the following biseparability conditions:

XM (YR <14, Y, Vpe DA, By

with x € {0,2,4, ... }. (50)

which is equivalent to the Laskowski-Zukowski condition for k=2 (as will be shown below); and just as in the three-qubit
case, we also obtain a stronger condition

VXY 4 (Y2 <\ I;N))2 . <Z§N)>2’

y#Fx

Vpe Dy, withx,y=0,1,...,20"D 1, (52)

Violation of this inequality is a sufficient condition for full inseparability, i.e., for full N-partite entanglement.

The inequalities (52) are stronger than the fidelity criterion (9) and the Laskowski-Zukowski criterion (3) for k=2, and
inequalities (50) are stronger than the Diir-Cirac condition (14) for separability under bipartite splits. This will be shown below
in Sec. III C 3.

2. Partial separability criteria for levels 2<k<N

For levels k>2 we sketch a procedure to find ¢, -separability inequalities recursively from inequalities at the preceding
level. Suppose that at level k the inequalities are given for separability under each k-partite split ¢ of the N qubits, and that
these oy-separability inequalities take the form

1
maX(XiN) + (Y(N V< m1n<I Y —(Z) < Pt

«;
xez;k xez

VpeDy¥ ie{l2, .. 200 (53)

where z* denote “solution sets for the specific k-partite split a;. For example, in the case of three qubits, the solution sets for
the blpartlte split a-(bc) are z{” )={0,1} and 75 b2 3} as can be seen from Eq. (28). The solution sets for other bipartite
splits can be read off Egs. (29) and (30) so as to give zl a9 =10,3}, 25 (@) ={1,2}, and z5 @) =f0,2}, z5 (@) ={1,3}; and for
future purposes we list them for the case of four qubits in Table II above. These were obtained by determining Eq. (50) for
N=4 and for all bipartite splits a,.

Now move one level higher and consider a given (k+1)-partite split a,). This split is contained in a total number of
(k+1) k(k+1)/2 k-partite splits a. Call the collection of these k-partite splits S,, o)’ We then obtain preliminary separability
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TABLE III. Solution sets for the six different 3-partite splits of four qubits.

Split a3 a-b-(cd) (ab)-c-d a-b-(cd) (ac)-b-d (ad)-b-c (bd)-a-c
773 {0,1,2,3} {0.2,4,6} {0,1,4,5} {0,3.4,7} {0,3,5,6} {0,1,6,7}
257 {4,5,6,7} {1,3,5,7} {2.3.,6,7} {1,2,5,6} {1.2,4,7} {2.3.4,5}

inequalities for the split a;,; from the conjunction of all separability inequalities for the splits a; in the set Sﬂ(kn)' To be
specific, this yields

1
max max(Xch))2 + (Y)(CN)>2 < min min <IiN))2 - (Z)(CM)2 < =g V p e DYk, (54)
a’fes%lxezia" U ECag yxezik
This may be written more compactly as
1 o
max (X2 + (Y2 < min VY - (ZMP2 < —=, Vpe D, ie{l,2,.. 20D} (55)

xezlf"kﬂ xez?“*l 4k_] '
(In fact, this can be regarded as an implicit definition of the solution sets z;*+!.) More importantly, by an argument similar to
that leading from Eq. (35) to Eq. (38) one finds a stronger numerical bound in the utmost right-hand side of these inequalities,
namely 47 instead of 4%~V Thus the final result is

1 o
max (XM + (Y2 < min (1) —(ZM)2 < o YPeD iefl2, .. 2Ny (56)

a, @
XEZ[-]“] XEZik”

This shows that the ay-separability inequalities indeed take the same form as Eq. (53) at all levels.

As an example of this recursive procedure, take N=4, set k=3, and choose the split a-b-(cd). This split is contained in three
2-partite splits a-(bed), b-(acd) and (ab)-(cd). Using Eq. (54) and the first, second, and fifth column of Table II one obtains
the following two solutions sets for the split a-b-(cd): z‘]"b'(Cd)={O, 1,2,3} and zg'h'(“l)={4,5,6,7}. This leads to the separa-
bility inequalities

1
max (X4 (Y2 < min WY -(ZW)2<—
xe{0,1,2,3} xef0,1,2,3} 16 a-b-(cd)
, VpeD; . (57)

max (X2 4y < min WY - (zWy < —
xe{4,5,6,7} xe{4,5,6,7} 16
For other 3-partite splits the inequalities can be obtained in a similar way so as to give Table III above.
As a special case, we mention the result for full separability, i.e., for k=N. There is only one N-partite split, namely where
all qubits end up in a different set. Further, there is only one solution set zi“N and it contains all x € {0,1, ... ,2(N -b_ 1}. States
p that are separable under this split thus obey

1
(N)\2 (N)y2 ; N)\2 (N)y2
m;lx(Xx YY) $mx1n<1§ Y —=(Z) <4(N_1),

v p e DN, (58)
Violation of this inequality is a sufficient condition for some entanglement to be present in the N-qubit state. The condition
(58) strengthens the Laskowski-Zukowski condition (3) for k=N (to be shown below).

For an N-qubit k-separable state p € D],i}sep, i.e., a state that is a convex mixture of states that are separable under some
k-partite split, we obtain from Eq. (56) the following k-separability conditions:

<X)((N)>2 + <Y§cN)>2 <

Je Vn Vpe Dy, (59)

which is equivalent to the Laskowski-Zukowski condition (3) for all N and k (this will be shown below using the density
matrix formulation of these conditions). However, in analogy to Eq. (34) we also obtain the stronger condition:
. [FNN2 /(N2
VM (D7 < min 3 ™7 - (ZMy
! . ’
veRy

. VpeDie, (60)
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where, for given N, k, and x, TZ’;‘ denotes a tuple of values of
y # x, each one being picked from each of the solutions sets
z;* that contain x, where «; ranges over all the k-partite splits
of the N qubits. In general, there will be many ways of pick-
ing such values, and we use / as an index to label such tuples.

For example, in the case N=3, there are a total of six
solution sets (two for each of the three bipartite splits): {0, 1},
{2, 3}, {0, 2}, {1, 3}, {0, 3}, {1, 2}. If we set x=0 and pick a
member different from 0 from each of those sets that contain
0, we find 7';1={1 ,2,3}. This is in fact the only such choice
and thus /=1. Thus in this example condition (60) repro-
duces the result (34).

As a more complicated example, take N=4, k=3, and
choose again x=0. In this case there are six 3-partite splits
each of which has two solution sets, as given in Table III.
The solution sets that contain O are all on the top row of this
table. There are now many ways of constructing a tuple by
picking elements that differ from O from each of these sets,
for example, 739={1,2,1,3,3,1}, 739={1,2,1,3,3,6}, etc.
In this case one has to take a minimum in Eq. (60) over all
these /=1, ...,3° tuples.

For k=2, condition (60) reduces to Eq. (52) and for k
=N to Eq. (58). For these values of k, the condition is stron-
ger than Eq. (59) (see the next section). For k# 2, N, this is
still an open question.

To conclude this section, let us recapitulate. We have
found separability conditions in terms of local orthogonal
observables for each of the N parties that are necessary for
k-separability and for separability under splits «; at each
level on the hierarchic separability classification. Violations

2

bl

2
bl

maX{|Pl,16
max{|p2,15
max{|p3,14

max{|p5,12

2
s

2
>
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of these separability conditions give sufficient criteria for
k-separable entanglement and m-partite entanglement with
[N/k|<m<N-k+1. The separability conditions are stronger
than the Diir-Cirac condition for separability under specific
splits, and stronger than the fidelity condition and the
Laskowski-Zukowski condition for biseparability. The latter
condition is also strengthened for k=N. These implications
are shown in the next section.

3. The conditions in terms of matrix elements

Choosing the Pauli matrices {a'y), oy), o'g)} as local or-
thogonal observables, with the same orientation at each qu-
bit, allows one to formulate the separability conditions in
terms of the density matrix elements p;; on the standard z
basis [31]. For these choices we obtain:

xX6" = 0)(1[*V+ 10N, (XgV) =2 Re py 4,
Y =~ il0)(1 =N+ i[140[*,  (¥§V)=~21m py .
157 = [0)O[*N + [, (I3") = py.1 + paas

Z =[0)0[*N — [1X1[*N, (Z8y=p1 )~ pags  (61)

where d=2". Analogous relations hold for X)(CN), Y)(CN), Z)(CN),
1™ for x#0.

Let us treat the case N=4 in detail. First, consider the
level k=2. Biseparability under the split a-(bcd) gives the
following inequalities for the antidiagonal matrix elements:

psol*t < min{p; 1p16.16:P5.8P0.0} < 1/16
p7.101°} =< min{p, 2015 15.p7.7P10.10} < 1/16
pe.11|*} =< min{p; 3p1414.P6.6P11.11} < 1/16

P4,13|2} < min{ps sp12,12,P4.4P13,13) < 1/16

v p e Dy, (62)

The analogous inequalities for separability under other bipartite splits are obtained by suitable permutations on the labels.
Indeed, for split b-(acd) labels 8 and 5, 9 and 12, 2 and 3, and 5 and 14 are permuted, which we denote as
(8,9,2,15)«(5,12,3,14); for split c-(abd): (8,9,2,15)«(3,14,5,12); for split d-(abc): (8,9,3,14) < (2,15,5,12); for the
split (ab)-(cd): (8,9,3,14)«(4,13,7,10); for (ac)-(bd): (8,9,5,12)«(6,11,7,10); and lastly, for the split (ad)-(bc):
(8,9,5,12)«(7,10,6,11). For a general biseparable state we obtain

| |< / + / 4o o/ \VA DZ—sep (63)
P1,16 = VP2.2P15,15F NP3 3P14,14 \VPg.8P9,9 peELly

and analogous for the other antidiagonal elements.

Next, consider one level higher, i.e., k=3. There are six different 3-partite splits for a system consisting of four qubits. For
separability under each such split a different set of inequalities can be obtained from Eq. (54). To be more precise, such a set
consists of the conjunction of all the separability inequalities for the bipartite splits at level k=2 this particular 3-partite split
is contained in. For N=4 each 3-partite split is contained in three bipartite splits. For example, for separability under split
a-b-(cd) we obtain

2 2 2

ps.12} < min{p; 1p16.16:P8.8P9.9:P4.4P13.13: P5.5P12.12} < 1/64.

2 . 9
p7.10°} < min{p; 515 15.P3 3P14.14:Pe.6P11.11>P7.7P10,10) = 1/64

maX{|P1,16

max{|p2,15

P89

P3,14

P413
Pe,11

bl

2
>

s

2
s

b}

) VpeDied (64)

This is the density matrix formulation of Eq. (57).
A general 3-separable state p € Di'sep is a convex mixture of states that each are separable under some such 3-partite split.
The separability condition follows from Eq. (60):
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o116l < min( > \”pj,jp17—j,l7—j)v Vpe Dy, (65)
VAL

where ’7‘;‘? is the tuple of indices j in {1,16} that label the antidiagonal density matrix elements p; ;;_; corresponding to the

density matrix formulation of the set of operators <X54>)2+<Y§4)> with y determined by Té’?. Here we have used that the

antidiagonal element p; ;4 corresponds to (XEM2+(Y§PY2. For N=4, k=3 there are six possible splits, so for each [, j is picked

from a total of six sets. For the case under consideration the sets are {1, 4, 5, 8}, {1, 2, 3, 4}, {1, 3, 5, 7}, {1, 2, 5, 6}, {1, 2, 7,

8}, and {1, 3, 6, 8}. For each [ one chooses a tuple of values of j where one value is picked from each of these six sets, except

for the value 1 which is excluded. Analogous inequalities are obtained for the other antidiagonal matrix elements.

Finally for full separability (k=4) we get

2 2

N 5 seey

max{|P1,16 P2.15

For general N, it is easy to see that Eq. (51) yields the
Laskowski-Zukowski condition (3). It is instructive to look
at the extremes of biseparability and full separability, since
for them explicit forms can be given. For k=2 condition (52)
reads

lpuil < > PPl 2,
n#l,l_

Vpe D5, where [=d+ 1

-1, n=d+1-n, Lnedl,.. . d. (67)

For k=N, we can reformulate condition (58) as
2 2
> 1

< min{py 1044.P22P4-1,4-1> -+ |

<1/4Y, Vpe DN, (68)

maX{|Pl,d P24~

It is easily seen that the condition (68) is stronger than the
Laskowski-Zukowski condition (3) for this case.

Again, these inequalities give bounds on antidiagonal ma-
trix elements in terms of diagonal ones on the z basis. These
density matrix representations depend on the choice of the
Pauli matrices as the local observables. However, every other
triple of locally orthogonal observables with the same orien-
tation can be obtained from the Pauli matrices by suitable
local basis transformations, and therefore this matrix repre-
sentation does not lose generality. Choosing different orien-
tations of the triples one obtains the corresponding inequali-
ties by suitable permutations of antidiagonal matrix
elements.

We will now show that Eq. (67) is indeed stronger than
the fidelity condition (9) and the Laskowski-Zukowski con-
dition (3) for k=2 by following the same analysis as in the
three-qubit case. We again assume, for convenience, that the
antidiagonal element p, ,; is the largest of all antidiagonal
elements. Using some inequalities that hold for all states to-
gether with the condition (67) for biseparability we get the
following sequence of inequalities for p; ;:

A 2sep
4p1dl = (P11 + Paa) <2lp1dl < 2Vp22Pacrar +
A

S —
+ 2\ pap.anPan+i ana <Pn+
+ Pa-1.d-1- (69)
The inequality in the middle is Eq. (67). It implies all other

2 .
ps.ol’} < min{p; 1p16.16:P22P15.15: ---

,Ps.sPoot < 1/256, Y p e Dy (66)

inequalities in the sequence (69). The inequality between the
first and fourth term yields the Laskowski-Zukowski condi-
tion for k=2, and between the second and fourth gives the
fidelity criterion in the formulation (11). One also sees that
the fidelity criterion is stronger than the Laskowski-
Zukowski condition for k=2.

We finally discuss two examples showing that the bisepa-
rability condition (67) is stronger in detecting full entangle-
ment than other methods. First, consider the family of
N-qubit states

aN-1q

i = NI+ Mol il + 22 M) + i) (|
j=1

+(¥5). (70)

The states (70) violate Eq. (67) for all [\§—\j|#0 and are
thus detected as fully entangled by that condition. In that
case they are also inseparable under any split. The fidelity
criterion (11), however, detects these states as fully entangled
only for [\§—\j|=X;\,. Violation of Eq. (67) thus allows for
detecting more states of the form py, as fully entangled than
violation of the fidelity criterion. Further, the Diir-Cirac cri-
teria detects these states as inseparable under any split for
ING—Ngl>2\;, ¥}, which includes less states than a violation
of Eq. (67). This generalizes the observation of Ref. [32]
from two qubits to the N-qubit case.

Second, consider the N-qubit GHZ-like states |t9>
=cos 0|0)®N+sin 6]1)®N. We can easily read off from the
density matrix |6)(6| that the far off-antidiagonal matrix ele-
ments p; ;=p, is equal to cos @sin ¢ and that the diagonal
matrix elements p;,,...,p 1 4-1 are all equal to zero. Using
Eq. (67) we see that these states are fully N-partite entangled
for p; =cos Osin §#0, ie., for all §#0,7/2 (mod ).
Thus all fully entangled states of this form are detected by
condition (67), including those not detectable by any stan-
dard multipartite Bell inequality [33].

4. Relationship to Mermin-type inequalities for partial
separability and LHV models

We will now show that the separability inequalities of the
previous section imply already known Mermin-type in-
equalities [28] for partial separability. Using the identity
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2(1\'+1)(<X(()N)>2+(ng)>2)=(M(N)>2+(M'(N))2 for the Mermin
operators (6) together with the upper bound for the separa-
bility inequality of Eq. (59) for x=0 gives the following
sharp quadratic inequality:

k
(MM 4 (M WY2 < 2(N+3)(i> , Vpe Df\;sep, (71)

which reproduces the result (7) found by [1]. Since Eq. (51)
is equivalent to Eq. (3) we see that the Mermin-type separa-
bility condition is in fact one of the Laskowski-Zukowski
conditions written in terms of local observables X and Y.

As a special case we consider a split of the form
{1}, ... {x},{x+1,...,n}. Any state that is separable under
this split is (x+1)-separable so we get the condition
(M2 (M NY2 < p(N=2rc+1) and  hence (M|
<2W-2«+1)2 " This strengthens the result of Gisin and
Bechmann-Pasquinucci [9] by a factor 2% for these specific
Mermin operators (6).

As another special case of the inequalities (71), consider
k=N. In this case, the inequalities express a condition for full
separability of p. These inequalities are maximally violated
by fully entangled states by an exponentially increasing fac-
tor of 2"¥~!, since the maximal value of |[(M™)| for any quan-
tum state p is 2V+1/2 [34]. Furthermore, LHV models violate
them also by an exponentially increasing factor of 2V-1/2,
since for all N, LHV models allow a maximal value for
KM of 2[9,13], which is a factor 2V~12 smaller than the
quantum maximum using entangled states. This bound for
LHV models is sharp since the maximum is attained by
choosing the LHV expectation values (d}:(oﬁ,):l for all
ie{l,...,N}. This shows that there are exponentially in-
creasing gaps between the values of [(M™)| attainable by
fully separable states, fully entangled states, and LHV mod-
els. This is shown in Fig. 2.

That the maximum violation of multipartite Bell inequali-
ties allowed by quantum mechanics grows exponentially
with N with respect to the value obtainable by LHV models
has been known for quite some years [28,34]. However, it is
equally remarkable that the maximum value obtainable by
separable quantum states exponentially decreases in com-
parison to the maximum value obtainable by LHV models,
cf. Fig. 2. We thus see exponential divergence between sepa-
rable quantum states and LHV theories: as N grows, the lat-
ter are able to give correlations that need more and more
entanglement in order to be reproducible in quantum me-
chanics.

But why does quantum mechanics have correlations larger
than those obtainable by a LHV model? Here we give an
argument showing that it is not the degree of entanglement
but the degree of inseparability that is responsible. The de-
gree of entanglement of a state may be quantified by the
value m that indicates the m-partite entanglement of the state,
and the degree of inseparability by the value of k that indi-
cates the k-separability of the state. Now suppose we have
100 qubits. For partial separability of k=51 no state of these
100 qubits can violate the Mermin inequality (8) above the
LHV bound, although the state could be up to 50-partite
entangled (m<50). However, for k=2, a state is possible

PHYSICAL REVIEW A 78, 032101 (2008)

(XE)2 4 (™)

FIG. 2. The maximum value for (X,)?>+(Y,)* obtainable by en-
tangled quantum states (dots), by separable quantum states
(crosses), and by LHV models (squares), plotted as a function of the
number of qubits N. Note the exponential divergence between both
the maxima obtained for entangled states as well as for separable
states compared to the LHV value, where the former maximum is
exponentially increasing and the latter maximum is exponentially
decreasing.

that is also 50-partite entangled, but which violates the Mer-
min inequality by an exponentially large factor of 2°”2. For
k<N, a k-separable state is always entangled in some way,
so we see that it is the degree of partial separability, not the
amount of entanglement in a multiqubit state that determines
the possibility of a violation of the Mermin inequality. Of
course, some entanglement must be present, but the insepa-
rability aspect of the state determines the possibility of a
violation. This is also reflected in the fact that for a given N
it is the value of k, and not that of m, which determines the
sharp upper bounds of the Mermin inequalities.

IV. EXPERIMENTAL STRENGTH OF THE CONDITIONS
FOR K-SEPARABLE ENTANGLEMENT DETECTION

Violations of the above conditions for partial separability
provide sufficient criteria for detecting k-separable entangle-
ment (and m-partite entanglement with [N/k]<m<N-k+1).
It has already been shown that these criteria are stronger than
the Laskowski-Zukowski criterion for k-inseparability for
k=2, N (i.e., detecting some and full entanglement), the fi-
delity criterion for full inseparability (i.e., full entanglement),
and the Diir-Cirac criterion for inseparability under splits. In
this section we will elaborate further on the experimental
usefulness and strength of these entanglement criteria when
focusing on specific N-qubit states. The strength of an en-
tanglement criterion to detect a given entangled state may be
assessed by determining how well it copes with two desid-
erata [11]: the noise robustness of the criterion for this given
state should be high, and the number of local measurements
settings needed for its implementation should be small.

In this section we will first take a closer look at the issue
of noise robustness and at the number of required settings for
implementation of the separability criteria, both in the gen-
eral state-independent case and in the case of detecting target
states. We then show the strength of the criteria for a variety
of specific N-qubit states.
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A. Noise robustness and the number of measurement settings

White noise robustness of an entanglement criterion for a
given entangled state is the maximal fraction p, of white
noise which may be admixed to this state so that the state
can no longer be detected as entangled by the criterion.
Thus for a given entangled state p, the noise robustness of a
criterion is the threshold value p, for which the state
p=pl/2N+(1-p)p, with p = p, can no longer be detected by
that criterion.

So, for the criterion for detecting full entanglement (67),
the white noise robustness is found by solving the threshold
equation for py:

(1= po)piil = E\/{ +(1- po)p,,JB—j%(l—po)p“J'

Jj#Fl

(72)

The state is fully entangled for p <p,.
For the criterion (68), for detecting some entanglement,
one finds a similar threshold equation:

mfx{l(l - popul’}

:mjn{ {12)—,(\), +(1 —Po)Pj,j] [5_1?; +(1 _pO)p_]J:|}‘
J

(73)

This equation is quadratic and easily solved. Again, the state
is entangled for p <p,,.

A local measurement setting [35-37] is an observable
such as M=0,® 0y ® oy, where o; denote single qubit
observables for each of the N qubits. Measuring such a set-
ting (determining all coincidence probabilities of the 2V out-
comes) also enables one to determine the probabilities for
observables like 1® o, -+ ® gy, etc. [15]. Now consider the
observables X)(CN) and Y)((N) that appear in the separability cri-
teria of Egs. (49)—(60). As it is easily seen from their defini-
tions in Eq. (48), one can measure such an observable using
2V Jocal settings. However, these same 2V settings then suf-
fice to measure the observables X' and Y') for all other x
since these are linear combinations of the same settings.
Thus 2V measurement settings are sufficient to determine
(X(N )y and (Y} M) for all x. It remains to determine the number
of settings needed for the terms <I(N ) and <Z(N)) For all x
these terms contain only two single-qubit observables: Z(!)
and I'V=1. They can thus be measured by a single setting,
ie., (ZW)eN,

Thus in total 2V+1 settings are needed in order to test the
separability conditions. This number grows exponentially
with the number of qubits. However, this is the price we pay
for being so general, i.e., for having criteria that work for all
states. If we apply the criteria to detecting forms of insepa-
rability and entanglement of specific entangled N-qubit
states, this number can be greatly reduced. Knowledge of the
target state enables one to select a single separability in-
equality for an optimal value of x in Egs. (49)-(54) and
(56)—(60). Violation of this single inequality is then sufficient
for detecting the entanglement in this state, and, as we will
now show, the required number of settings then grows only
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linear in N, with N+1 being the optimum for many states of
interest.

For simplicity, assume that the local observables featuring
in the criteria are the Pauli spin observables with the same
orientation for each qubit. We can then readily use the den-
sity matrix representations of the separability criteria given
at the end of each section in Sec. III. Choosing the local
observables differently amounts to performing suitable bases
changes to the density matrix representations and would not
affect the argument.

The matrix representations of the conditions show that
only some antidiagonal matrix elements and the values
of some diagonal matrix elements have to be determined
in order to test whether these inequalities are violated. In-
deed, observe that for all x(IiN)>2—<Z)((N)>2=4pj’jpj ; with
J=d+1-j for some je{l,2,....d} and (XM)Y2_(y™)y
=4|p;;|* denotes some antidiagonal matrix element. It suf-
fices to consider x=0 since conditions for other values of x
are obtained by some local unitary basis changes that will be
explicitly given later on. We now want to rewrite the density
matrix representation for this single separability inequality
with x=0 in terms of less than 2V+1 settings.

Determining the diagonal matrix elements requires only a
single setting, namely cr N_ Next, we should determine the
modulus of the far-off ant1d1ag0nal element pra (d=2") by
measuring X" and Y{", since (X{)=2Rep,, and
(YiVy=2Im p1a lcf. Eq. (61)]. Following the method of
[15] these matrix elements can be obtained from two set-

tings M, and M, given by

I |l ®N
M;=| cos F o, +sin N o,| . I=12,...,N,

(74)
~ |: <l'n'+ 77/2) <I7T+ 77/2) TZ’N
M, =] cos 0, + sin o,
N
1=1,2,...,N. (75)
These operators obey
E (= 1)'M, = NXE", (76)
N
> (- DM =NYY, (77)

=1

The proof of Eq. (76) is given in [15] and Eq. (77) can be
proven in the same way.

These relations show that the imaginary and the real part
of an antidiagonal element can be determined by the N set-
tings M, and M 5» respectively. This implies that the bisepa-
rability condition (67) needs only 2N+ 1 measurement set-
tings. However, if each antidiagonal term is real valued
(which is often the case for states of interest) it can be de-
termined by the N settings M, so that in total N+1 settings
suffice.
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Implementation of the criteria for other x involves deter-
mining the modulus of some other antidiagonal matrix ele-
ment instead of the far-off antidiagonal element p; ;. The
settings that allow for this determination can be obtained

from a local unitary rotation on the settings M; and M,
needed to measure | Pl,d|' This can be done as follows.
Suppose we want to determine the modulus of the
matrix element p;;. The unitary rotation to be applied is
given by Uj=0;®0;,® - ®0; with j=jj, --jy in bi-
nary notation, with oy=1 and o,=0,. The settings that suf-
fice are then given by ./\/ljJ:Uj/\/llU;' and ./\711-’,: U]M,U]
(I=1,2,...,N). For example, take N=4 and suppose we
want to determine ps4. We obtain the required settings by
applying the local unitary Us=1® 0, ® | ® o, (since the bi-
nary notation of 5 on four bits is 0101) to the two settings

M, and M, given in Eqs. (74) and (77), respectively, that for
N=4 allow for determining |p; ;¢|. In conclusion, using the
above procedure the modulus of each antidiagonal element
can be determined using 2N settings, and in case they are
real (or imaginary) N settings suffice.

Since the strongest separability inequality for the specific
target state under consideration is chosen, this reduction in
the number of settings does not reduce the noise robustness
for detecting forms of entanglement as compared to that ob-
tained using the entanglement criteria in terms of the usual
settings XLN ), etc.

In conclusion, if the state to be detected is known, the 2N
settings of Egs. (74) and (75) together with the single setting
o-fN suffice, and in case this state has solely real or imagi-
nary antidiagonal matrix elements only N+1 settings are
needed. The white noise robustness using these settings is
just as great as usin% the general condition that use the ob-
servables X)(CN ) and XN ), and is found by solving Egs. (72) or
(73) for detecting full and some entanglement, respectively.

As a final note, we observe that in order to determine the
modulus of not just one but of all antidiagonal matrix ele-
ments it is more efficient to use the observables Xch), YiN)
than the observables of Egs. (74) and (75). The first method
needs 2V settings to do this and the second needs 2VN/2
settings (since there are 2V/2 independent antidiagonal ele-
ments), i.e., the latter needs more settings than the former for
all N.

Let us apply the above procedure to an example, taken
from Ref. [15], the so-called four-qubit singlet state, which is
given by

D)= %(|0011>+ 11100) - %(|01> +10Y) @ (o1) + |10>)).
y

(78)

For detecting it as fully entangled Eq. (72) gives a noise
robustness po=12/29~0.41, and for detecting it as en-
tangled Eq. (73) gives a noise robustness of 16/19~0.84.
The implementation needs 16+1=17 settings.

This number of settings can be reduced by using the fact
that this state has only real antidiagonal matrix elements
and that we need only look at the largest antidiagonal
element. As shown above, this matrix element can be mea-
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sured in four settings. Thus the total number of settings re-
quired is reduced to only five. The off-diagonal matrix ele-
ment to be determined is [0011)(1100|. The four settings that
allow for this determination are obtained from the four set-
tings given in Eq. (74) by applying the unitary operator
Us;=1®1® 0,® o, to these settings.

For comparison, note that in Ref. [15] it was shown that
the so-called projector-based witness for the state (78) de-
tects full entanglement with a white noise robustness
po=0.267 and uses 15 settings, whereas the optimal witness
from [15] uses only three settings and has p,=0.317. Here
we obtain p,=0.41 using five settings, implying a significant
increase in white noise robustness using only two settings
more.

This example gives the largest noise robustness when
the conditions are measured in the standard z basis.
However, sometimes one obtains larger noise robustness
when the state is first rotated so as to be expressed
in a different basis before it is analyzed. For example,
consider the four qubit Dicke state |2,4), where |I,N)
=()122m (|1, ..., 1;,041,...,05)) are the symmetric
Dicke states [38] [with {m;(-)} the set of all distinct permu-
tations of the N qubits]. In the standard basis this state does
not violate any of the separability conditions we have dis-
cussed above. However, if each qubit is rotated around the x
axis by 90° all of the separability conditions can be violated
with quite high noise robustness. Indeed, it is detected as
inseparable under all splits through violation of conditions
(50) for p<py=16/19~0.84 and as fully entangled through
violation of condition (52) for p<py=4/11=~0.36 using five
settings. For comparison, Chen et al. [16] used specially con-
structed entanglement witnesses for detection of full en-
tanglement in these states, and they obtained as noise robust-
ness py=2/9~0.22 using only two settings. We have not
performed an optimization procedure, so it is unclear
whether or not the values obtained for p, can be improved.

B. Noise and decoherence robustness for the N-qubit GHZ
state

In this section we determine the robustness of our separa-
bility criteria for detecting the N-qubit GHZ state in five
kinds of noise processes (admixing white and colored noise,
and three types of decoherence: depolarization, dephasing,
and dissipation of single qubits). We give the noise robust-
ness as a function of N for detecting some entanglement,
inseparability with respect to all splits and full entanglement.
We compare the results for white noise robustness of the
criteria for full entanglement to that of the fidelity criterion
(10) and to that of the so-called stabilizer criteria of Refs.
[11,39].

The N-qubit GHZ state [y, )= 5(/0)*V+[1)®") can be
transformed into a mixed state py by admixing noise to this
state or by decoherence. Let us consider the following five
such processes.

(i) Mixing in a fraction p of white noise (also called “gen-
eralized Werner states” [40]) gives

A 1
p](\l/) =(1 —P)|\P1(\}/HZ,0><‘I’1(\£HZ,0| +1’2—N' (79)
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(ii) Mixing in a fraction p of colored noise [17] gives
11 p
)= =(1 —P)|‘P HZ,O)(q’gHZ,O| + E(|O - 0X0- "O|

+1 1L 1)) (80)

(iii) A depolarization process [18] with a depolarization
degree p of a single qubit gives

a LI (-2 P o
o ‘2H<1 2 ool 2|
®N
+ {§|o><o| + (1 —§>|1><1|}

+(1—p)”(|0><1|®”+|1><0|®N)}. (81)

(iv) A dephasing process [18] with a dephasing degree p
of a single qubit gives

<‘V——[|0><0|®N [N+ (1= p)M(J0X1=Y + [1)€0[*M)].

(82)

(v) A dissipation process [18] with a dissipation degree p
of a single qubit (where the ground state is taken to be |0))
gives

oy = {|0><o|®N+[p|0><o| +(1=p)|111=Y

+ (1= p)"2(0)(1[* + [1)€0]*™M)}. (83)

We now consider the question for what values of p these
states p\) to p)) are detected as (i) containing some entangle-
ment by the condition (58), and (ii) inseparable under any
split by the conditions of the form (50) for all bipartite splits.
In other words, we determine the noise (or decoherence) ro-
bustness of violations of all these conditions for p(') to pl(\‘,’)
We find the following threshold values p:

1

@) po=TSim

(i) po=1,

VN
(N-a)
(iii) (1—P0)N=< )( )
-8 a)
2 2/
(v) po=1, VN,

(V) p0=19 VN’ (84)

For cases (i), (ii), (iv), and (v) the threshold values p, for
detecting some entanglement and inseparability with respect
to all splits are the same because for these cases the product
of the diagonal matrix elements p; ;p;; is the same for all
j# 1,d. Only in case (iii) is this product different for differ-
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ent j. We then have to take the minumum and maximum
value, respectively, from which it follows that « is to be set
to [N/2] for detecting some entanglement and to 1 for de-
tecting inseparability with respect to all splits. Here [N/2] is
the largest integer smaller or equal to N/2.

The result in case (i) is in accordance with the results of
Refs. [2,4], where it is furthermore shown that the opposite
holds as well, i.e., if and only if p<1/(1+2("") then p{ is
inseparable under any split and otherwise it is fully sepa-
rable. Thus all states of the form (79) that are inseparable
under any split are detected by violations of the conditions of
the form (50) for all bipartite splits. The same holds for cases
(ii), (iv), and (v), since all states pl(\l,‘), pl(\l,v), and p ) are in-
separable under any split for all p<1. In other words, as
soon as a fraction of the GHZ state is present, these states are
inseparable under any split. In case (i) p, increases mono-
tonically from py=2/3 for N=2 to py=1 for large N. For
process (iii) these limiting values are not so straightforward:
Po=(3-13)/3=0.42 for N=2, and p,= (5—\5)/5 0.55 for
large N. In conclusion, the noise and decoherence robustness
is high for all N, except maybe for case (iii).

Next, consider the noise robustness for detecting full en-
tanglement by means of the biseparability condition (52).
The result is the following:

() po=1/12(1-2M)],
(i) po=1. VN,

(ili) po=0.42,0.28,0.22,0.18, N=2,3,4,5,

(iv) po=1, VN,

(v) po=1,0.48,0.39,0.35, N=2,3,4,5. (85)

For case (i) the noise robustness is equivalent to the fidel-
ity criterion (10). For large N p, decreases to the limit value
po=1/ 2 Cases (ii) and (iv) have py=1, thus as soon as the
states p ) and p(lV are entangled they are fully entangled. For
cases (iii) and (v) we listed the noise robustness found nu-
merically for N=2 to 5. These values decrease for increasing
N.

Let us compare the results for white noise robustness
[case (i)] to the results obtained from the so-called stabilizer
formalism. This formalism [41] is used by T6th and Giihne
to derive entanglement witnesses [11,39] that are especially
useful for minimizing the number of settings required to de-
tect either full or some entanglement. Here we will only
consider the criteria formulated for detecting entanglement
of the N-qubit GHZ states. The stabilizer witness by Té6th
and Giihne that detects some entanglement has p,=2/3, in-
dependent of N, and requires only three settings [cf. Eq. (13)
in [11]]. The strongest witness for full entanglement of Téth
and Giihne has a robustness py=1/(3-2%"") and requires
only two settings [cf. Eq. (23) in [11]].

Figure 3 shows these threshold noise ratios for detecting
full entanglement for these three criteria. Note that the crite-
rion of Téth and Giihne [11] needs only two measurement
settings, whereas our criteria need N+ 1 settings. So although
the former are less robust against white noise admixture,

032101-18



PARTIAL SEPARABILITY AND ENTANGLEMENT ...

they compare favorably with respect to minimizing the num-
ber of measurement settings.

Although we give a criterion for full entanglement that is
generally stronger than the fidelity criterion, for the N-partite
GHZ state this does not lead to better noise robustness. It
appears that for large N the noise threshold py=1/2 is the
best one can do. However, in the limit of large N the GHZ
state is inseparable under all splits for all py<<1, as was
shown in (i) in Eq. (84), see also Fig. 3. Furthermore, we
have seen that if the state pN (i.e., the GHZ state with a
fraction p of white noise) is entangled it is also inseparable
under any split. Because of the high symmetry of both the
GHZ state and white noise, one might conjecture that if the
state p(l) is entangled it is also fully entangled. At present,
however, it is unknown whether this is indeed true. Detecting
the states pz(\, as fully entangled appears to be a much more
demanding task than detecting them as inseparable under all
splits. In the first case, for large N, only a fraction of 50%
noise is permitted, in the second case one can permit any
noise fraction (less than 100%). Note that we have given
explicit examples of states that are diagonal in GHZ basis
[cf. Eq. (14) of Sec. II B], and that are inseparable under any
spht but not fully entangled; but these are not of the form
P!

NLastly, we mention that our criteria detect the various
forms of entanglement and inseparability also if the state
|\P[(\}/HZ,0> is replaced by any other maximally entangled state
[i.e., any state of the GHZ basis, cf. Eq. (13)], a feature
which is not possible using linear entanglement witnesses.
There is no single linear witness that detects entanglement of
all maximally entangled states.

C. Detecting bound entanglement for N=3

Violation of the separability inequality (58) allows for de-
tecting all bound entangled states of Ref. [42]. These states
have the form

N
2P1+P1)a (86)

pp= (N’GHZ a><q,gHZ N >
I=1

N+

‘|0)y, and
where P, is obtained from P; by replacing all zeros by ones
and vice versa. For N=4 these states are entangled and have
positive partial transposition (PPT) with respect to transpo-
sition of any qubit. This means they are bound entangled
[43]. Note that they are detected as entangled by the
N-partite Mermin inequality |My|<2 of Sec. IIl C only for
N=8 [42]. However, the condition (58) detects them
as entangled for N=4. Thus all bound entangled states
of this form are detected as entangled by this Ilatter
condition. The white noise robustness for this purpose is p
=2N/(2+2N+2"), which for N=4 gives p,=8/13=0.615
and goes to 1 for large N. Note that for N=4, this state
violates the condition for 4-separability, and the condition for
3-separability (60), but not the condition for 2-separability. It
is thus at least 2-separable entangled. It is not detected as
fully entangled by these criteria. (Of course, it could still be
fully entangled since these criteria are only sufficient and not

with P, the projector on the state |0);---|1) "
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0 2 5 N 10

FIG. 3. The threshold noise ratios p, for detection of full
N-qubit entanglement when admixing white noise to the N-qubit
GHZ state for the criterion (52) derived here (plus signs) and for the
stabilizer witness of Ref. [11] (squares). The noise robustness for
detecting inseparability under all splits as given in (i) in Eq. (84) is
also plotted (crosses).

necessary for entanglement.) For general N we have not in-
vestigated the k-separable entanglement of the states (86),
although this can be readily performed using the criteria of
Eq. (60).

Another interesting bound entangled state is the so-called
four-qubit Smolin state [44]

pPs= _E [P NP, @ (W

(87)

a,b,c,d label the four qubits. This state is also detected as
entangled by the criterion (58), and with white noise robust-
ness po=2/3. The Smolin state violates the separability con-
ditions (50) for biseparability under the splits a-(bcd),
b-(acd), c-(abd), d-(abc). However, it is separable under the
splits (ab)-(cd), (ac)-(bd), (ad)-(bc) (cf. [44]). This state is
thus inseparable under splits that partition the system into
two subsets with one and three qubits, but it is separable
when each subset contains two qubits.

So far we have detected bound entanglement for N=4.
What about N=3? Consider the three-qubit bound entangled
state of [3]:

1
|quHZ 0><\I}GHZ ol + g(|001><001| +1010)010|

+]101)(101] + |110)(110]). (88)

This state is detected as entangled by the criterion (35), with
white noise robustness p,=4/7=0.57. It violates the bisepa-
rability condition (28) for the split a-(bc) so it is at least
biseparable entangled, but does not violate the condition (34)
for biseparability, i.e., it is not detected as fully entangled. In
fact, it can be shown using the results of Ref. [4] that this
state is separable under the splits b-(ac) and c-(ab).

V. DISCUSSION

We have discussed partial separability of quantum states
by distinguishing k-separability and «-separability and used
these distinctions to extend the classification proposed by
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Diir and Cirac. We discussed the relationship of partial sepa-
rability to multipartite entanglement and distinguished the
notions of a k-separable entangled state and a m-partite en-
tangled state and indicated the interrelations of these kinds of
entanglement.

Next, we have presented necessary conditions for partial
separability in the hierarchic separability classification.
These are formulated in terms of experimentally accessible
correlation inequalities for operators defined by products of
local orthogonal observables. Violations of these inequalities
provide, for all N-qubit states, criteria for the entire hierarchy
of k-separable entanglement, ranging from the levels k=1
(full or genuine N-particle entanglement) to k=N (full sepa-
rability, no entanglement), as well as for specific classes
within each level. Choosing the Pauli matrices as the locally
orthogonal observables provided matrix representations of
the criteria that bound antidiagonal matrix elements in terms
of diagonal ones.

Further, the N-qubit Mermin-type separability inequalities
for partial separability were shown to follow from the partial
separability conditions derived in this paper. The biseparabil-
ity conditions are stronger than the fidelity criterion and the
Laskowski-Zukowski criterion, and the latter criterion is also
shown to be strengthened for full separability and bisepara-
bility. For separability under splits the conditions are stron-
ger than the Diir-Cirac conditions. Violation of these condi-
tions thus give entanglement criteria that detect more
entangled states than violations of these three other separa-
bility conditions.

We have furthermore shown that the required number of
measurement settings for implementation of these criteria,
which is 2V+1 in general, can be drastically reduced if en-
tanglement of a given target state is to be detected. In that
case, it may be reduced to 2N+1, and for multiqubit states
with either real or imaginary antidiagonal matrix elements,
only N+1 settings are needed.

When comparing the entanglement criteria to other state-
specific multiqubit entanglement criteria it was found that
the white noise robustness was high for a great variety of
interesting multiqubit states, whereas the number of required
settings was only N+ 1. However, these other state-specific
entanglement criteria need less settings although for the
states analyzed here they give lower noise robustness. Ana-
lyzing some specific target states shows that the entangle-
ment criteria detect bound entanglement for N=3.

Furthermore, we applied the entanglement criteria for
some and full entanglement to the N-qubit GHZ state sub-
jected to two different kinds of noise and three different
kinds of decoherence. The robustness against colored noise
and against dephasing turns out to be maximal (i.e., pp=1)
both for detecting some and full entanglement. It is remark-
able that for large N the GHZ state allows for maximal white
noise robustness for the state to remain inseparable under all
possible splits, whereas for detecting full entanglement the
best known result—to our best knowledge—only allows for
a white noise robustness of p,=1/2. It would be very inter-
esting to search for full entanglement criteria that can close
this gap, or if this is shown to be impossible to understand
why this is the case.
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Orthogonality of the local observables is crucial in the
above derivation of separability conditions. It is due to this
assumption that the multiqubit operators form representa-
tions of the generalized Pauli group. It would be interesting
to analyze the role of orthogonality in deriving the inequali-
ties. For two qubits it has been shown [45] that when or-
thogonality is relaxed the separability conditions become less
strong, and we conjecture the same holds for their multiqubit
analogs. Relaxing the requirement of orthogonality has the
advantage that some uncertainty in the angles may be accom-
modated, which is desirable since in real experiments it may
be hard to measure perfectly orthogonal observables.

It is also interesting that the separability inequalities are
equivalent to bounds on antidiagonal matrix elements in
terms of products of diagonal ones. We thus gain a novel
perspective on why they allow for entanglement detection:
they probe the values of antidiagonal matrix elements, which
encode entanglement information about the state; and if
these elements are large enough, this entanglement is de-
tected. Note, furthermore, that compared to the Mermin-type
separability inequalities we need not do much more to obtain
our stronger inequalities. We must solely determine some
diagonal matrix elements, and this can be easily performed
using the single extra setting o-fN . It is also noteworthy that
the comparison to the Mermin-type separability inequalities
shows that the strength of the correlations allowed for by
separable states is exponentially decreasing when compared
to the strength of the correlations allowed for by LHV mod-
els.

Our recursive definition of the multipartite correlation op-
erators [see Eq. (48)] is by no means unique. One can gen-
erate many new inequalities by choosing the locally orthogo-
nal observables differently, e.g., by permuting their order in
each triple of local observables. It could well be that com-
bining such inequalities with those presented here yield even
stronger separability conditions, as is indeed the case for
pure two-qubit states, cf. [30]. Unfortunately, we have no
conclusive answers for this open question.

We end by suggesting three further lines of future re-
search. First, it would be interesting to apply the entangle-
ment criteria to an even larger variety of N-qubit states than
analyzed here, including, for example, all N-qubit graph and
Dicke states. Second, the generalization from qubits to qudits
(i.e., d-dimensional quantum systems) would, if indeed pos-
sible, prove very useful since strong partial separability cri-
teria for N qudits have—to our knowledge—not yet been
obtained. Finally, it would be beneficial to have optimization
procedures for choosing the set of local orthogonal observ-
ables featuring in the entanglement criteria that gives the
highest noise robustness for a given set of states. We believe
we have chosen such optimal sets for the variety of states
analyzed here, but since no rigorous optimization was per-
formed, our choices could perhaps be improved.
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