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Observation of diffraction-managed discrete solitons in curved waveguide arrays
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We observe the formation of discrete diffraction-managed optical solitons in arrays of periodically curved
coupled waveguides for two types of modulated structures: laser-written arrays in silica glass with self-
focusing nonlinearity and lithium niobate waveguide arrays with self-defocusing photorefractive nonlinearity.
Our results demonstrate that, for both types of nonlinear response, soliton formation occurs after transitional
self-induced beam broadening, being fundamentally different from nonlinear self-focusing and defocusing in a
bulk medium or discrete self-trapping in straight waveguides.
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Propagation of light in nonlinear dielectric media with a
periodically varying refractive index exhibits many different
features, which do not occur in homogeneous nonlinear ma-
terials [1]. The underlying periodicity can strongly modify
the physics of nonlinear beam self-action, where both self-
focusing and self-defocusing nonlinear responses can lead to
beam self-trapping in the form of discrete spatial solitons
[2,3]. On the other hand, it was shown that the beam spread-
ing due to linear diffraction can be fully suppressed in curved
or transversely modulated waveguide arrays due to the effect
of optical Bloch oscillations [4—6], similar to the Bose-
Einstein condensates (BECs) in optical lattices, where
atomic Bloch oscillations can occur as a result of a constant
force due to gravity or lattice acceleration [7]. More flexible
control over the linear beam propagation is realized when the
waveguide bending is modified periodically, allowing one to
either completely cancel the diffraction or reduce it by an
arbitrary fraction [8-12], in analogy to the dynamic localiza-
tion of charged particles in ac electric fields [13].

The recent theoretical studies of nonlinear beam propaga-
tion in lattices with modified linear diffraction predicted that
solitons can be generated in various types of diffraction-
managed lattices, including periodically curved waveguide
arrays [14,15] and other types of modulated one- and two-
dimensional photonic structures [16,17], and it was found
that they are reminiscent of dispersion-managed temporal
solitons [18-20]. On the other hand, many properties of dis-
crete diffraction-managed solitons may be completely differ-
ent. In particular, numerical simulations indicate that narrow
beams propagating in arrays of curved waveguides with re-
duced diffraction should exhibit nonlinear self-trapping to
discrete solitons at increased powers [15,16], similar to the
dynamics of a particle in a nonlinear chain under the action
of a dc field [21]. At intermediate power levels, nonlinearity
may instead lead to beam broadening due to the destruction
of periodic linear beam refocusing. Whereas nonlinear de-
struction of Bloch oscillations and the associated beam
broadening was demonstrated experimentally in optical
waveguide arrays [5], and recently also in atomic BECs with
Feshbach resonance management [7], the observation of the
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theoretically predicted beam refocusing and soliton forma-
tion at stronger nonlinearities remained an open problem.

In this work, we present the experimental observation of
discrete diffraction-managed spatial optical solitons in arrays
of periodically curved waveguides. To demonstrate general-
ity of soliton generation, we perform experiments in two
structures with distinctly different nonlinear response: (i)
femtosecond laser-written waveguide arrays in silica glass
with self-focusing nonlinearity, and (ii) arrays created by ti-
tanium indiffusion in lithium niobate (LiNbQO;) crystals with
self-defocusing photorefractive nonlinearity. We demonstrate
that, in both cases, the beam exhibits transitional broadening
at intermediate powers, followed by a sharp transition to
strong localization above a certain power threshold.

In our experiments, we create waveguide arrays with a
sinusoidal axis bending profile of the form x4(z)
=A[cos(2mz/L)— 1], where x(z) is the transverse lattice shift
as a function of the propagation distance z, and A and L are
the waveguide axis bending amplitude and period, respec-
tively. When the bending amplitude A is such that 27wwA/L
=¢, where w is the normalized frequency and £=2.40 is the
first root of the Bessel function J,, [10,15], the effective beam
diffraction is canceled after propagation over each bending
period L, in close analogy to the dynamic localization of
charged particles in ac electric fields [13]. The normalized
frequency is w=2mnyd/\, where N is the vacuum wave-
length, n is the average refractive index of the medium, and
d is the spacing between the centers of the adjacent
waveguides.

First, we study arrays of curved self-focusing waveguides
fabricated in fused silica by femtosecond laser writing [22].
We use samples with four different waveguide spacings, d
=34, 36, 38, and 40 um. The waveguide bending amplitudes
are chosen to satisfy the dynamic localization condition, A
=104, 98, 93, and 88 um, respectively. Each sample is L
=105 mm long and consists of 13 waveguides with elliptical
transverse cross section of approximately 4 X 13 um? [23].
At the input, 150 fs laser pulses at the wavelength A
=800 nm are coupled to the central waveguide. The mea-
sured pulse width at the output is about 200 fs, indicating

©2008 The American Physical Society


http://dx.doi.org/10.1103/PhysRevA.78.031801

SZAMEIT et al.

RAPID COMMUNICATIONS

PHYSICAL REVIEW A 78, 031801(R) (2008)

< 8
(mm) 7
80 6
5
60 4
40 M M 3
2
(@) 20 | © l (©) @3
X = 0 — & — — — 0
Z 6 4 -2 0 2 4 66 4 -2 0 2 4 66 -4 -2 0 2 4 6

=

( o (@) %
801

601

BEQ)
1 7

'S
OIO

10

S
T

N
T T

ol \ | \ 1
9 -7 -5-3-1139-7-5-3-1139-7-5-23+-1113 0
X (units of d) X (units of d) X (units of d)

Output Width (units of d) Output Width (units of d)

FIG. 1. (Color online) Numerical simulations of beam propagation in (a) straight and (f) periodically curved nonlinear waveguide arrays.
(b), (¢), (d) Discrete diffraction, beam self-focusing, and lattice soliton formation in a straight array. (g), (h), (i) Dynamic localization,
transitional beam broadening, and diffraction-managed soliton formation in a curved array. (e), (j) Output beam width vs the input power for
straight and curved arrays, respectively. Points b, ¢, d, and g, h, i correspond to the input powers in (b), (c), (d) and (g), (h), (i), respectively.
Input power is normalized to the power threshold for the lattice soliton formation in the straight array. Parameters correspond to fabricated

structures in silica glass with waveguide spacing 34 um.

that pulse broadening due to dispersion has no significant
impact on the pulse peak power [24].

In order to underline the key features of the discrete
diffraction-managed solitons, we perform numerical simula-
tions of beam self-action in periodically curved nonlinear
waveguides using discrete equations for the mode amplitudes
of individual waveguides [15]. In straight waveguides [see
Fig. 1(a)], one observes monotonic beam self-focusing as the
input power increases [see Figs. 1(b)-1(e)]. However, the
beam dynamics becomes completely different in periodically
curved waveguides [sketched in Fig. 1(f)] with canceled ef-
fective diffraction. Whereas at low input powers the input
beam profile is restored after each modulation period [Fig.
1(g)], the beam broadens as the power is increased [Fig.
1(h)]. This effect is analogous to the nonlinear destruction of
Bloch oscillations [5,7,16,21]. At higher powers, above a
well-defined threshold, discrete self-trapping and formation
of diffraction-managed lattice solitons occurs [Fig. 1(i)]. The
dependencies of the output beam width on the input power in
straight and curved waveguide arrays is shown in Figs. 1(e)
and 1(j), respectively. Whereas in the case of straight
waveguides the output width decreases monotonically with
power, in curved waveguides we observe complex nonmono-
tonic power dependence of the output beam width.

We now test these theoretical predictions experimentally.
In straight waveguide arrays, we observe monotonic beam
self-focusing as we increase the input power, leading even-
tually to the formation of a single-site lattice soliton at some
threshold power level [3] (see Fig. 2). In agreement with
previous studies [1], the soliton power is lower for the
samples with larger waveguide spacing, for which the cou-
pling between the waveguides is weaker [see Figs. 2(c) and
3(a)].

Next, we study light propagation in curved waveguides
for different input powers. At low powers (linear regime), we
observe dynamic localization of light in the curved
waveguides, as in [8,10,11]. Indeed, at the output facet of the
arrays all the light is collected back into the same central

waveguide in which it was coupled initially at the input [see
Figs. 4(a) and 4(b), top].

When the input power is increased, we observe transi-
tional beam broadening, in agreement with the numerical
simulations above. The beam experiences significant self-
induced broadening [see Figs. 4(a) and 4(b), P~1 MW] be-
cause the nonlinearity destroys the dynamic localization con-
dition by changing the refractive index of the waveguide
material. With propagation, the beam broadens and its inten-
sity is reduced accordingly, such that the effect of the non-
linearity becomes weaker. Since linear discrete diffraction is
fully suppressed in our curved waveguide arrays, the beam
broadening stops when the average beamwidth reaches a cer-
tain value.

Then, at higher input powers, nonlinear self-trapping of
the beam to a single lattice site occurs, and we observe for-
mation of discrete diffraction-managed spatial optical soli-
tons [see Figs. 4(a) and 4(b), bottom]. Whereas a similar
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FIG. 2. (Color online) (a), (b) Output beam profiles as a function
of input peak power, measured in straight laser-written waveguide
arrays with waveguide spacing d=(a) 34 and (b) 40 um. (c) Output
beamwidth vs input power. Circles correspond to (a), triangles to

(b).
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FIG. 3. (Color online) (a) Peak laser power P, required for the
formation of a single-site lattice soliton in straight waveguide ar-
rays, and (b) critical power P, required for the formation of
diffraction-managed solitons in curved waveguide arrays, as a func-
tion of the waveguide spacing d. Diamonds and circles represent the
measured and the calculated data, respectively. In (b) powers of the
diffraction-managed solitons in curved arrays are normalized to
powers of the lattice solitons in straight arrays of the same d. (c)
Measured (diamonds) and calculated (circles) maximum nonlinear
beam broadening for curved waveguide arrays with different wave-
guide spacing.

transition from nonlinear delocalization to self-trapping was
predicted for Bloch oscillations [16], it was not observed in
previous experiments [5,7]. We find, in good agreement with
the theoretical predictions [15], that the power required for
the formation of the diffraction-managed solitons in curved
waveguide arrays is more than two times higher than the
critical power of lattice solitons in exactly the same but
straight waveguide arrays [compare Fig. 4(c) with Fig. 2(c);
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FIG. 4. (Color online) (a), (b) Output beam profiles as a function
of input peak power, measured in curved laser-written waveguide
arrays with waveguide spacing d=(a) 34 and (b) 40 um. (c) Output
beamwidth vs input power. Circles correspond to (a), triangles to

(b).
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FIG. 5. (Color online) (a) Output intensity profiles measured in
curved LiNbO; waveguide array for power levels of 6.1 uW,
0.85 mW, and 1.70 mW from bottom to top, respectively. (b) Out-
put beamwidth vs input power (A=532 nm).

see also Figs. 3(a) and 3(b)]. The error bars in Figs. 3(a) and
3(b) represent the uncertainty due to the laser power incre-
ments that we use in our measurements. However, there is
also an additional uncertainty in the determination of the
exact power for soliton formation due to the presence of
weakly decaying oscillations of the beamwidth along the
propagation direction. In Fig. 3(c) one can see that the self-
induced beam broadening is less for the waveguide arrays
with larger waveguide spacing, for which the coupling
strength between the adjacent waveguides is lower. The
maximum observed nonlinear beam broadening (diamonds)
is less than the theoretical predictions (circles) calculated nu-
merically. This is because the experiments are performed us-
ing short laser pulses while the numerical modeling is for the
cw regime [15].

The results presented above are of generic nature and can
possibly be observed in other physical systems, including
charged particles in field-induced systems [13,21], and
atomic BECs in optical lattices with repulsive interparticle
interactions [7,20]. When only one site is excited at the in-
put, the wave evolution should be in fact fully equivalent for
both positive and negative nonlinearities, in the framework
of the discrete tight-binding model [9,10,15,25]. In order to
confirm that discrete diffraction-managed solitons can also
form in curved waveguide arrays with defocusing nonlinear-
ity [15], we have also performed experiments with curved
LiNbO; waveguide arrays. The waveguides are fabricated by
titanium indiffusion in a 50-mm-long X-cut LiNbO; crystal
[25]. The light from a cw laser (A=532 nm) is focused to a
single waveguide of the array and the output intensity distri-
bution is recorded on a charge-coupled device camera. The
curved LiNbO; waveguide array, with a waveguide spacing
d=14 pm, consists of two sections each L=25 mm long with
bending amplitude A=24.5 um. The bending amplitude has
opposite signs in two successive array segments in order to
improve the symmetry of the output beam profiles, as sug-
gested originally in Ref. [12]. Similar to the case of focusing
nonlinearity in silica glass, here we also observe that the
self-collimation regime is destroyed and self-induced beam
broadening takes place when the input power is increased. At
higher powers, however, nonlinear beam self-trapping oc-
curs. In Fig. 5 we show an example of this type of nonlinear
dynamics. At low laser power (6.1 uW, linear regime) the
output beam is confined to a single waveguide, positioned at
a coordinate of 200 um [Fig. 5(a), bottom profile]. Once the
power is increased, the beam becomes strongly delocalized
(middle intensity profile, 0.85 mW). However, for powers

031801-3



SZAMEIT et al.

above 1 mW most of the light is confined again to the input
waveguide. The strong radiation on the right-hand side of the
beam is a result of bending losses and coupling to higher-
order bands through the effect of Zener tunneling. The de-
pendence of the output beamwidth as a function of the input
power is shown in Fig. 5(b) and matches qualitatively the
power dependence predicted and observed for the self-
focusing case.

In conclusion, we have observed experimentally the for-
mation of discrete diffraction-managed spatial solitons in pe-
riodically curved waveguide arrays for both focusing and
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defocusing nonlinearities. The soliton formation occurs after
transitional self-induced beam broadening, being fundamen-
tally different from nonlinear self-focusing in bulk media or
discrete self-trapping in straight waveguides. The critical
power for the formation of lattice solitons in curved wave-
guide arrays is several times higher than the soliton power in
straight waveguides, despite the reduction of the linear dif-
fraction. These results open possibilities for independent
control of the strength of diffraction and the nonlinear local-
ization power, being applicable to different physical systems
with attractive and repulsive nonlinear interactions.
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