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Very low-energy electron elastic total and differential cross sections for Hf and Lu atoms exhibit dramati-
cally sharp resonances, whose energy positions are identified with their electron affinities, which are compa-
rable in magnitude with those of Ca and Sr atoms, thus making Hf and Lu atoms suitable candidates for use in
the quenching of Rydberg states. The calculation used the recent Regge-pole methodology which embeds the
crucial electron correlation effects, with a Thomas-Fermi-type potential incorporating the vital core-
polarization interaction. The near-threshold total cross sections for Hf and Lu are contrasted with those of Yb,

Ca, and Sr atoms.
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Resonances in very low-energy (below about 0.2 eV)
electron elastic scattering total cross sections and differential
cross sections are currently best investigated theoretically
through the Regge-pole methodology since Regge poles, sin-
gularities of the § matrix, rigorously define resonances [1,2].
Additional to the important physics that we probe near
threshold, such as the Ramsauer-Townsend minima, the
Wigner threshold law, and the shape resonances, we also
search for dramatically sharp long-lived resonances. These
have recently been identified as signatures of the stable
bound states of the relevant negative ions formed during the
collision [3,4] through careful scrutiny of the imaginary part
of the complex angular momentum L. Fundamental to the
physical mechanism through which low-energy electron scat-
tering deposits energy and induces chemical transitions is the
existence and properties of temporary negative-ion states [5].
Shape resonances, resulting from electrons trapped by the
centrifugal barrier, represent such temporary anion states [5].

The great need for understanding and delineation of the
near-threshold resonance structures in the total and differen-
tial cross sections for tenuously bound atomic systems (those
with electron affinities smaller than 0.1 eV), such as the Ca~
ion, is in the context of the quenching of Rydberg states by
ground-state atoms with small electron affinities [6,7]. Pro-
cesses occurring during the collision may be sensitive to the
value of electron affinity of the relevant ground-state atom
(the electron affinity is numerically equal to the binding en-
ergy of the extra electron to the neutral system). These pro-
cesses are typified by the ion-pair formation cross section,
which peaks at a specific value of the principal quantum
number 1 [8], and can be connected to the electron affinity of
the target through the multiple-curve-crossing Landau-Zener
model [9] or the decay model [10]. These methods have been
used to obtain the electron affinities of several molecules,
including confirmation of the most accurate value of the
electron affinity of Ca [8,11].

Complex and subtle interactions among many diverse
electron configurations have made accurate and reliable cal-
culations of the electron affinities for tenuously bound and
complex atomic systems very difficult. For such weakly
bound negatively charged species, even ab initio calculations
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of the relevant electron affinities are no more reliable than
those of simple models [9]. In this Rapid Communication,
we have calculated elastic scattering total and differential
cross sections for Hf and Lu in the electron impact energy
range 0<E<0.1 eV and extracted their electron affinities
from the corresponding near-threshold resonances in these
cross sections. Finally, we contrasted the calculated total
cross sections for Hf, Lu, Yb, Ca, and Sr in the same electron
impact energy range. All the results have been calculated
using the recently developed Regge-pole methodology [12]
with a Thomas-Fermi-type potential which incorporates the
vital core-polarization interaction. The success of the Regge-
pole methodology, which naturally embeds the essential elec-
tron correlation effects, in low-energy electron elastic scat-
tering calculations is attributed mainly to the adequate
replacement of the traditionally large and slowly converging
expansion over partial waves used when the angular momen-
tum is constrained to integer values by the contribution of a
few poles.

Regge-pole analysis is a general method that has been
successfully applied to atom-atom [13], electron-atom
[3.4,12], and reactive atom-diatom [14,15] scattering
through the Mulholland formula [16], to understand the low-
energy oscillations in the elastic total cross section [12,13]
(atomic units are used throughout):
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where S is the scattering matrix, k=\(2mkE), with m being
the mass, p, is the residue of the S matrix at the nth pole, A,
and I(E) contains the contributions from the integrals along
the imaginary N axis. We calculated the I(E) contribution to
the total cross section and found that this term had neither a
qualitative nor a quantitative effect on our results and there-
fore it will be omitted here. If the angular life of the complex
formed during the collision, proportional to 1/Im(L), with
L=N+1/2 being the complex orbital angular momentum, is
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FIG. 1. (Color online) (a) Total, o7, and Mul-
holland partial elastic cross sections, in a.u., for
e~-Hf scattering versus E (eV). The n=6 Mulhol-
land partial cross section determines the Wigner
threshold law. (b) Differential cross sections, in
a.u., for elastic e™-Hf scattering versus E (eV) at
6=0°, 90°, and 180° showing the differential
cross section maxima at the resonance energy,
corresponding to the electron affinity of the Hf
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to the Regge trajectory that passes near Re L=2
at £=0.017 eV, and hence responsible for the
resonance in the total cross section at that energy.
1 This is a long-lived resonance as seen from its
large angular life, proportional to (Im L)~!, and
corresponds to the electron affinity for the Hf
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sufficiently long for the complex to return to the forward
direction many times, then the condition Im A\,,<<1 must be
satisfied [12], and for constructive addition, RelL
~0,1,2,....

The Thomas-Fermi potential [17] constitutes a suitable
choice for use in Eq. (1), since its asymptotic behavior ac-
counts properly for the polarization interaction at very low
energies. Here we use the form of the Thomas-Fermi poten-
tial well investigated in another context [18]:
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where a and b are adjustable parameters. Clearly, Eq. (2)
possesses the appropriate polarizationlike asymptotic behav-
ior, viz., =1/ (abr®).

In our approach, two independent calculations are per-
formed. In the first one, the radial Schrédinger equation is
numerically integrated for integer angular momenta to a suf-
ficiently large r, the S matrix is determined, and the total
elastic cross section evaluated as the traditional sum over
partial waves, with the index of summation being the integer
angular momentum. Similarly, the differential cross sections
are evaluated using the partial wave sum and the numerical S
matrix evaluated for (physical) integer angular momenta. In
the second calculation, the S-matrix pole positions and resi-
dues in Eq. (1) are obtained following a method similar to
that of Burke and Tate [19]. The Schrodinger equation is
solved for an electron in the field of the atomic target and
numerically integrated for complex values of the orbital an-
gular momentum L and real, positive values of the impact
energy E:

L(L+1
W’+2<E——( 5 ) —U(r))z//:O. (3)
2r
We note here that, while we have inadvertently omitted the
factor of 1/2 in the barrier term of Eq. (3) in some of our
published papers (related to the present one), it is neverthe-

atom. (d) Regge trajectories, viz., Im L(E) versus
500 Re L(E), for the Hf ion.

less properly accounted for in the calculations. To calculate
the S matrix, which is defined by the asymptotic boundary
condition of the solution of the Schrodinger equation, we
evaluate the two linearly independent solutions of the
Schrodinger equation as Bessel functions of complex order;
the details are similar to those in [19].

As was demonstrated in [3,4], the calculation of the very
low-energy electron scattering cross sections and the subse-
quent extraction of the electron affinities of the relevant at-
oms require only the optimized parameters a and b of the
Thomas-Fermi potential above. The present results were ob-
tained using the optimal values 5=0.0350 and 0.0341 for Hf
and Lu, respectively, and a=0.2 for both atoms.

Figure 1(a) presents the elastic total and the Mulholland
partial cross sections (a.u.) versus E (eV) for e™-Hf scatter-
ing, demonstrating significant contributions from the n=6
and 3 Mulholland partial cross sections. The n=6 Mulhol-
land partial cross section also clearly determines the Wigner
threshold behavior, while the n=3 cross section, which
passes near Re L=2 with Im L=3.2X 107 at E=0.017 eV, is
responsible for the dramatically sharp resonance at that en-
ergy. Since the angular life of a state is defined as propor-
tional to 1/(Im L)=1/(3.2X 1073), corresponding to a long-
lived stable negative ion, the energy position of this
resonance is identified with the binding energy of the Hf~
negative ion. The Ramsauer-Townsend minimum in the total
cross section occurs at 0.015 eV, which does not correspond
to the true Ramsauer-Townsend minimum, determined by the
value of E where the n=6 Mulholland partial cross section
crosses the real axis. It is the interference between the n=6
and 3 Mulholland partial cross sections that gives a nonzero
Ramsauer-Townsend minimum to the total cross section.
Figure 1(c) shows an expanded view of the sharp resonance
of Fig. 1(a).

Figure 1(b) displays the elastic differential cross sections
for e™-Hf scattering at the scattering angles #=0°, 90°, and
180°, showing the sharp resonance at #=0° and 90° when
E=0.017 eV. This resonance is still visible at 180°, but to a
lesser extent. Clearly, the binding energy of the Hf™ ion can
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FIG. 2. (Color online) (a) Total, o7, and Mul-
holland partial elastic cross sections, in a.u., for
e~-Lu scattering versus E (V). The n=6 Mulhol-
land partial cross section determines the Wigner
threshold law. (b) Differential cross sections, in
a.u., for elastic e™-Lu scattering versus E (eV) at
6=0°, 90°, and 180° showing the maxima in the
differential cross sections at the resonance en-
ergy, corresponding to the electron affinity of the
Lu atom at 0.029 eV for all the angles. (c) Mul-
holland contribution to the total cross section, in
a.u., for e~-Lu versus E (eV), corresponding to
the Regge trajectory that passes near Re L=2 at
E=0.029 eV, and hence responsible for the reso-
nance in the total cross section at that energy.
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also be determined through the measurement of the electron
elastic differential cross sections at these angles. Figure 1(d)
gives the Regge trajectories, namely, Re L versus Im L, dem-
onstrating that indeed Re L=2 is responsible for the very
sharp resonance at 0.017 eV, because of its closeness to an
integer.

The corresponding results for the e™-Lu scattering cover-
ing the energy range 0<E<0.1 eV are shown in Fig. 2.
Figure 2(a) displays the sharp dominant resonance at
0.029 eV with Re L=2, corresponding to the formation of a
stable bound state of the Lu™ ion. The Wigner threshold be-
havior is determined by the n=6 Mulholland contribution as
in the case of the e -Hf scattering, while the Ramsauer-
Townsend minimum in the total cross section appears at
about 0.025 eV. Again here, as in the case of e™-Hf scatter-
ing, the interference between the n=3 and 6 Mulholland par-
tial cross sections gives rise to a nonzero Ramsauer-
Townsend minimum.

Figure 2(c) presents an expanded view of the resonance at
0.029 eV, with Im L=1.4X 107, indicating a long-lived
stable state of the Lu™ ion. The differential cross sections for
e™-Lu scattering at =0°, 90°, and 180° are presented in Fig.
2(b), all exhibiting a maximum at 0.029 eV. This corre-
sponds as before to a bound state of the Lu™ ion. Also plotted
for comparison is the total cross section. We note that the
total cross section follows very closely the backward scatter-
ing differential cross section, except in the region of the reso-
nance. This demonstrates that very low-energy electron scat-
tering can be investigated reasonably well through the
backward scattering differential cross sections. Figure 2(d)
presents the Regge trajectories, i.e., Re L versus Im L, dem-
onstrating that indeed Re L=2 is responsible for the very
sharp resonance at 0.029 eV, because of its closeness to an
integer.

In Table I the present electron affinities for Hf and Lu
atoms are compared with those from laser photoelectron
spectroscopy [20,21] and other studies [22-24]. For Lu the
existing electron affinities vary from a value of 0.1 eV
through 0.346(14) eV, while ours is 0.029 eV. Clearly, our

3.00

atom. (d) Regge trajectories, viz., Im L(E) versus
Re L(E), for the Lu™ ion.

5.00

electron affinity is about an order of magnitude lower than
the lowest available value. For Hf the latest measured elec-
tron affinity value is >0 [21], while that from accelerator
mass spectroscopy [24] is >0.1 eV and the present value is
0.017 eV. Again here our value is between the two experi-
mental limits [21,24].

We note that the theoretical results [22,23] are very so-
phisticated Dirac-Hartree-Fock density functional theory and
relativistic coupled cluster theory with single and double ex-
citations, respectively. The disturbing very large discrepan-
cies among the existing experimental electron affinities on
the one hand, and between the measured and the theoretical
results on the other hand, call for a concerted effort to obtain
reliable electron affinities for these atoms. Our results, which
we believe to be reliable, represent a significant step toward
obtaining accurate theoretical electron affinities for heavy el-
ements. Work is almost complete on near-threshold reso-
nance structure investigations in electron—lanthanide atom
scattering and will be presented soon.

To provide a sense of the relative positions and magni-
tudes of the resonances in the total cross sections for the
e™-Hf and e™-Lu scattering, we have compared in Fig. 3 the
present results with the calculated total cross sections for Ca,
Sr [3], and Yb. Although the Ca™ ion has the second lowest
binding energy, its resonance is the broadest. Interestingly,
among the heavy atoms the Hf™ ion has the lowest binding
energy, followed by that for Yb~ and Lu~ ions in this order.
The St~ ion has the highest binding energy and its resonance

TABLE 1. Present electron affinities (eV) of Hf and Lu atoms
compared with those from laser photoelectron spectroscopy (LPES)
and other studies.

Atom Present LPES Other studies
Lu 0.029 0.346(14) [20] 0.190(110) [22]
0.257 [23]
>0.1 [24]
Hf 0.017 >0 [21] >0.1 [24]
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FIG. 3. (Color online) Comparison of the electron elastic total
cross sections for Hf, Lu, Yb, Ca, and Sr atoms near threshold. Note
that Hf has the lowest electron affinity of the five atoms and the
sharpest resonance.

is broader than that of any one of the three lanthanides.
Clearly, the widths of the resonances decrease as we move
from Ca [Ar]4s> through Sr [Kr]5s> through Lu
[Xeldf145d'6s%, Yb [Xel4f146s2, and Hf [Xeldf!*54%6s%. We
note that the order follows no clear logical prescription.
The recent Regge-pole methodology has been used to-
gether with a Thomas-Fermi-type potential to explore very
low-energy electron elastic scattering from Hf and Lu atoms.
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Dramatically sharp resonances are predicted in the total cross
sections for both e™-Hf and e™-Lu scattering, whose energy
positions are identified with their electron affinities. The
strength of the Regge-pole methodology lies in its extraction
of the electron affinities from the near-threshold characteris-
tic resonances, without prior knowledge of them. The present
electron affinities for both Hf and Lu are among the lowest
determined to date. Thus, they may be suitable candidates for
the quenching of Rydberg states with ground state atoms,
with the subsequent determination of their electron affinities
[6.8].

Finally, we have further tested the predictive power of the
Regge-pole methodology by calculating the near-threshold
electron elastic scattering cross sections for Nd. From the
resonance structure in the total cross section we extracted the
value of 0.162 eV for the electron affinity of Nd, in excellent
agreement with the most recently calculated value of
0.169 eV [25]. This further gives credence to the predictive
power of the Regge-pole methodology when used with the
appropriate core-polarization interaction to extract electron
affinities for complicated and tenuously bound atomic sys-
tems without a priori knowledge of the electron affinity.
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