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A bipartite state is called classical �with regard to correlations� if it is left undisturbed by a certain local von
Neumann measurement, and is called separable if it can be represented as a convex combination of product
states. Due to the perfect distinguishability of orthogonal vectors, a classical state can essentially be identified
with a convenient bivariate probability distribution, and moreover, it is separable, but not vice versa. The
notion of separability plays a key role in quantum information theory because entanglement is defined via
separability. However, the definition of separability is ad hoc and formal. In this paper, we present an intrinsic
characterization of separable states via classical states from the measurement perspective: Separable states are
precisely those states that are reductions of classical states in higher dimensions with the natural partitions.
Consequently, entangled states are precisely those states that cannot be represented as such reductions of
classical states. This observation highlights the hidden mutually exclusive and complementary relations be-
tween classicality and entanglement.
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I. INTRODUCTION

Consider a bipartite quantum state � shared by parties a
and b and the fundamental issue of qualifying and quantify-
ing the correlations therein. A standard approach is based on
the entanglement versus separability dichotomy �1�. In this
framework, a bipartite state � is termed separable if it can be
represented as

� = �
i

pi�i
a

� �i
b �1�

for some probability distribution �pi� and local density op-
erators ��i

a� for party a and ��i
b� for party b. Otherwise it is

defined as entangled. It should be emphasized that the above
representation is not unique and usually there are infinitely
many representations of a separable state. The intuitive
meaning of this formulation is clear: Any product state �i

a

� �i
b evidently does not possess any correlations �classical or

quantum�, and the procedure of taking a convex combination
can be realized as a classical mixing process, which should
not generate any entanglement which is understood as a truly
quantum phenomenon arising from superposition, thus the
name separable state. Indeed, there is a classical mechanism
generating separable states �1�. In spite of the simplicity and
naivete of Eq. �1�, it is notoriously difficult to determine
whether a given state is separable or not because the repre-
sentation is not unique, though several ingenious separability
criteria useful for some particular classes of states have been
devised �2�.

An essential and intuitive difference between classicality
and quantumness lies in the distinguished role played by
measurements: While in the classical realm, we can always

�at least in principle� make measurements without disturbing
a classical system; this is not so in the quantum world. A
quantum measurement usually disturbs the system, except
when the system happens to be classical.

Due to the fundamental importance of the notion of sepa-
rability and its plausible relations to classicality, one may
inquire whether there is any intrinsic characterization of
separability. This paper is devoted to present such a charac-
terization from the measurement perspective. The key idea is
to augment both parties a and b separately, consider classical
correlations between these two augmented parties, and then
trace out the ancillas. The main result is that separable states
are exactly those states that are natural nontrivial reductions
�partial states� of classical states. This characterization puts
the entanglement in a concrete and direct contrast to classi-
cality: Entangled states are exactly those states that cannot
be regarded as such reduced states of classical ones. Here
classicality �more precisely, classicality of correlations� is
defined via nondisturbance by local quantum measurements
�3�.

The paper is organized as follows. In Sec. II, we review
the notion of classical states and their canonical representa-
tions from the quantum measurement perspective. Intuitively,
a bipartite state is classical if it is not disturbed by a local
von Neumann measurement. This definition exploits the fun-
damental difference of measurements in classical and quan-
tum systems. In Sec. III, we express separable states as re-
ductions �partial states� of classical states in higher
dimensions. Section IV is devoted to some discussion.

II. CLASSICAL STATES AND LOCAL VON NEUMANN
MEASUREMENTS

In order to put our discussion in a precise setting, let us
first review some basic notions. Consider a quantum system*luosl@amt.ac.cn
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whose states are described by vectors in a Hilbert space H. A
�complete� von Neumann measurement on this system is a
family of orthogonal one-dimensional projections ��i� such
that �i�i=1 �orthogonal resolution of identity on H�. In con-
trast to this standard and traditional formulation of quantum
measurement, a more general notion of quantum measure-
ment is a positive-operator-valued measure �POVM�, also
called a generalized measurement: Any family of non-
negative operators �Ej� on H is called a POVM if � jEj =1
�generalized resolution of identity� �4�. A von Neumann mea-
surement is a particular case of a POVM, but not vice versa.
The importance of POVM lies in that many tasks, such as
optimal extraction of information, state discrimination, and
entanglement transformation, require generalized measure-
ments, rather than only von Neumann measurements �5�.

Following Ref. �3�, a bipartite state � is called classical
�with regard to correlations� if there are a local von Neumann
measurement ��i

a� for party a and a local von Neumann
measurement �� j

b� for party b such that � is left undisturbed
by the joint measurement ��i

a
� � j

b�; that is,

� = �
ij

�i
a

� � j
b��i

a
� � j

b.

In such a case, there is a bivariate probability distribution
�pij� such that

� = �
ij

pij�i
a

� � j
b, �2�

and � can actually be identified as the classical bivariate
probability distribution �pij� due to the orthogonality of the
measurement operators �which are thus perfectly distinguish-
able� �3�. In particular, we see that classical states are sepa-
rable, but not vice versa. In general, a linear combination of
the maximally mixed state with any nonclassical state �in
particular, entangled state� is not classical. For example, in a
two-qubit system, let ��−	= 1


2
��01	− �10	� and consider the

Werner state

�c ª �1 − c�
1

4
+ c��−	��−�, c � �− 1/3,1� ,

which is separable when c�1 /3 and entangled when c
�1 /3. �c cannot be classical except for the trivial case c
=0 because �c is the linear combination of the maximally
mixed state �which is classical and left invariant by any
quantum measurement� and a Bell state, which is always
disturbed by any jointly local von Neumann measurement.
Consequently, we have the following strict inclusion relation:

�classical states� � �separable states� .

However, any product state �a � �b is classical because we
can always perform spectral decompositions

�a = �
i

�i
a�i

a, �b = �
j

� j
b� j

b,

and rewrite �a � �b as

�a
� �b = �

ij

�i
a� j

b�i
a

� � j
b,

which is a classical state.
Though it is usually very difficult to detect separability

�2�, it is straightforward to determine whether a state is clas-
sical or not: Just perform spectral decomposition of the op-
erator representing the state, and check whether each eigen-
vector is a product state or not, and check furthermore
whether the marginal states are mutually orthogonal or not.

While the set of separable states �in a fixed bipartite sys-
tem� is apparently convex, this is not the case for the set of
classical states. One may argue that this is a serious draw-
back of the very definition of classical states. But in certain
circumstances, convexity is not intrinsic. An interesting ex-
ample is the cleanness of POVMs, which is, quite unexpect-
edly, largely not related to the convex structure of POVMs
�6�.

A nontrivial combination of two classical states is classi-
cal if they commute. But when the two classical states do not
commute, their linear combination may still be classical �of
course, in general cases, not classical�. For example, consider
two product states �a � �1

b and �a � �2
b. If �1

b and �2
b do not

commute, then �a � �1
b and �a � �2

b do not commute either,
but the linear combination

1

2
�a

� �1
b +

1

2
�a

� �2
b = �a

� ��1
b + �2

b�/2

is still a product state, and thus is classical.
Another sharp contrast between a classical state and a

separable state is that the representation �i.e., Eq. �2�� of a
nondegenerate classical state is always unique, while that
�i.e., Eq. �1�� of a separable state is not.

The key idea of our characterization of separable states is
that although separable states are not necessarily classical,
they can be regarded as very natural shadows �reductions� of
classical states in larger systems.

III. SEPARABLE STATES AS SHADOWS
OF CLASSICAL STATES

Our main result is the following characterization of sepa-
rable states.

Theorem. A bipartite state � on Ha � Hb shared by two
parties a and b is separable if and only if there exists a
classical state � on �Ka � Ha� � �Hb � Kb� such that

� = trKa�Kb� .

Here Ka is an auxiliary Hilbert space for party a and Kb an
auxiliary Hilbert space for party b, and trKa�Kb denotes the
partial trace over Ka � Kb.

Before presenting a proof, we should mention that there is
always a trivial way to represent any bipartite state � �not
necessarily separable� as the partial trace of a classical state
in higher dimensions if we do not employ the natural parti-
tion of separating the two parties: Just put ��ª� � � with �
any state in an auxiliary Hilbert space Hc, then clearly �
=trHc��. But this representation does not shed any light on
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the correlations in � and is useless for our purpose of char-
acterizing correlations in separable states.

Now we proceed to establish the above theorem. First
note that if � is a classical state on �Ka � Ha� � �Hb � Kb�
�with the division of party a in possession of Ka � Ha and
party b in possession of Hb � Kb�, then by Theorem 2 in Ref.
�3�, there are von Neumann measurements ��i

a� on Ka

� Ha and �� j
b� on Hb � Kb, and a classical bivariate prob-

ability distribution �pij� such that

� = �
ij

pij�i
a

� � j
b.

Taking partial trace over Ka � Kb, and putting

pi ª �
j

pij, �i
a
ª trKa �i

a, �i
b
ª �

j

pij

pi
trKb � j

b,

we obtain

trKa�Kb � = �
ij

pij trKa �i
a

� trKb � j
b = �

i

pi�i
a

� �i
b,

which is clearly a separable state on Ha � Hb.
Conversely, suppose that �=�i=1

N pi�i
a

� �i
b is a separable

state on Ha � Hb. Let the spectral decompositions of �i
a and

�i
b be

�i
a = �

j

�ij
a �	ij

a 	�	ij
a �, �i

b = �
k

�ik
b �	ik

b 	�	ik
b � ,

respectively. Let ��i	� be an orthonormal base for CN

�n-dimensional complex Hilbert space�, and Ca
N and Cb

N be
two copies of CN. We take Ka=Ca

N as an ancilla for party a
and Kb=Cb

N as an ancilla for party b. Let

��ij
a 	 ª �i	 � �	ij

a 	, ��ik
b 	 ª �	ik

b 	 � �i	 ,

then ��ij
a � and ��ik

b � are orthogonal sets �of course, not nec-
essarily complete� for Ka � Ha and Hb � Kb, respectively,
and consequently,

��ij
a
ª ��ij

a 	��ij
a ��, ��ik

b
ª ��ik

b 	��ik
b ��

can be extended to von Neumann measurements on Ka

� Ha and Kb � Hb, respectively. Now constructing a state

� ª �
ijk

pi�ij
a �ik

b �ij
a

� �ik
b

on �Ka � Ha� � �Hb � Kb�, then clearly this � is a classical
state. Moreover, if we put

�ij
a
ª trKa �ij

a , �ik
b
ª trKb �ik

b ,

and

�i
a
ª �

j

�ij
a �ij

a , �i
b
ª �

k

�ik
b �ik

b ,

then we have

trKa�Kb � = �
ijk

pi�ij
a �ik

b trKa �ij
a

� trKb �ik
b

= �
ijk

pi�ij
a �ik

b �ij
a

� �ik
b

= �
i

pi��
j

�ij
a �ij

a � ��
k

�ik
b �ik

b 
= �

i

pi�i
a

� �i
b = � ,

which demonstrates that � is a reduced state of the classical
state �.

IV. DISCUSSION

According to the Neumark theorem �4�, any rank-one
POVM can be reduced to a von Neumann measurement in a
larger space �system plus ancilla�. Our main theorem may be
formally regarded as a correlation analog of this result.
While it is true that any separable states can be formally
reduced to classical states on a larger system, this does not
diminish the need and significance of the notion of separable
states in describing correlations. Although the correlations in
a separable state are often understood as classical, these cor-
relations, unlike that in a classical state �as defined by Eq.
�2��, cannot be really identified as generated by a classical
bivariate probability distribution, and there are some subtle
and delicate issues here with significant consequences �3�.
For instance, the quantum discord of a separable state may
not vanish �7�, separable states can be used to distribute en-
tanglement �8�, and there are certain tasks with quantum ad-
vantage based on separable states rather than on entangle-
ment �9�.

Because usually there are many ways of representing a
separable state as convex combinations of product states,
there are also many classical states whose reductions are the
same separable state. On the other hand, our result illustrates
an alternative method of reproducing correlations in a sepa-
rable state, and in turn highlights the nonclassical nature of
entanglement.

ACKNOWLEDGMENTS

This work was supported by the NSFC �Grant. No.
10771208� and by the Science Fund for Creative Research
Groups �Grant. No. 10721101�.

�1� R. F. Werner, Phys. Rev. A 40, 4277 �1989�.
�2� A. Peres, Phys. Rev. Lett. 77, 1413 �1996�; M. Horodecki, P.

Horodecki, and R. Horodecki, Phys. Lett. A 223, 1 �1996�; N.
J. Cerf, C. Adami, and R. M. Gingrich, Phys. Rev. A 60, 898

�1999�; M. Horodecki and P. Horodecki, ibid. 59, 4206 �1999�;
M. Lewenstein, B. Kraus, J. I. Cirac, and P. Horodecki, ibid.
62, 052310 �2000�; H. F. Hofmann and S. Takeuchi, ibid. 68,
032103 �2003�; S. Yu and N. L. Liu, Phys. Rev. Lett. 95,

BRIEF REPORTS PHYSICAL REVIEW A 78, 024303 �2008�

024303-3



150504 �2005�; O. Gühne and N. Lütkenhaus, ibid. 96,
170502 �2006�.

�3� S. Luo, Phys. Rev. A 77, 022301 �2008�.
�4� P. Busch, M. Grabowski, and P. J. Lahti, Operational Quantum

Physics �Springer-Verlag, Berlin, 1995�; M. A. Nielsen and I.
L. Chuang, Quantum Computation and Quantum Information
�Cambridge University Press, Cambridge, UK, 2000�; A.
Peres, Quantum Theory: Concepts and Methods �Kluwer, Dor-
drecht, 1993�.

�5� A. Holevo, Probl. Peredachi Inf. 9, 31 �1973�; E. B. Davies,
IEEE Trans. Inf. Theory 24, 596 �1978�; M. Sasaki, S. M.
Barnett, R. Jozsa, M. Osaki, and O. Hirota, Phys. Rev. A 59,
3325 �1999�; A. Acin, J. I. Latorre, and P. Pascual, ibid. 61,
022113 �2000�; J. A. Bergou, U. Herzog, and M. Hillery, ibid.
71, 042314 �2005�.

�6� F. Buscemi, G. M. D’Ariano, M. Keyl, P. Perinotti, and R.
Werner, J. Math. Phys. 46, 082109 �2005�.

�7� H. Ollivier and W. H. Zurek, Phys. Rev. Lett. 88, 017901
�2001�; W. H. Zurek, Rev. Mod. Phys. 75, 715 �2003�; L.
Henderson and V. Vedral, J. Phys. A 34, 6899 �2001�; V. Ve-
dral, Phys. Rev. Lett. 90, 050401 �2003�.

�8� T. S. Cubitt, F. Verstraete, W. Dür, and J. I. Cirac, Phys. Rev.
Lett. 91, 037902 �2003�.

�9� E. Knill and R. Laflamme, Phys. Rev. Lett. 81, 5672 �1998�;
S. L. Braunstein, C. M. Caves, R. Jozsa, N. Linden, S. Pope-
scu, and R. Schack, ibid. 83, 1054 �1999�; D. A. Meyer, ibid.
85, 2014 �2000�; E. Biham, G. Brassard, D. Kenigsberg, and
T. Mor, Theor. Comput. Sci. 320, 15 �2004�; A. Datta, S. T.
Flammia, and C. M. Caves, Phys. Rev. A 72, 042316 �2005�;
A. Datta and G. Vidal, ibid. 75, 042310 �2007�.

BRIEF REPORTS PHYSICAL REVIEW A 78, 024303 �2008�

024303-4


