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Casimir force on a thin slab: The influence of surrounding media
and the role of surface polaritons
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We consider the Casimir force on a metallic slab with the thickness in the nanometer range, bounded by
different dielectric media. In such systems the force is large (~10° N/m?) and, depending on the selected
configuration, it can be squeezing or relaxing. The mode analysis, performed numerically as well as analyti-
cally under the assumption of inert bounding media, indicates that the force on a thin metallic slab is, in many
situations, predominantly due to the surface polariton (SP) modes of the system (an obvious exception is the
configuration with the slab sandwiched between two highly reflecting plates). Thus, the sign and the magnitude
of the Casimir force are typically determined by competing contributions from the two SP modes existing in
the model adopted, and are controllable by properly designing the system parameters. The same conclusion
holds for a more complex description of polar dielectric media, assuming that the characteristic frequencies of

polar modes in dielectrics are much smaller than the characteristic plasma frequency of a metallic slab.
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I. INTRODUCTION

In a standard interpretation, the Casimir effect refers to
the existence of the attractive force between neutral macro-
scopic objects due to the fluctuations of the electromagnetic
field in the vacuum state. It was originally predicted for the
system consisting of two ideally conducting or reflecting
plates in vacuum [1] and later on demonstrated also for sys-
tems consisting of thick (semi-infinite) dielectric plates sepa-
rated by empty space [2]. Although soon after the appearance
of these seminal papers the theory of the Casimir effect was
extended to systems with the gap between the plates filled by
a dielectric [3-6] and recently to arbitrary dielectric multi-
layers [7,8], in most theoretical and experimental consider-
ations of this effect the space between the interacting objects
is assumed empty [9—12]. Thus, for example, it is only very
recently that the effect of the filling medium on the Casimir
force has been measured [13].

Evidently, every finite layer in a multilayer experiences a
pressure (force per unit area on its surfaces) due to the
vacuum field fluctuation, which depends on both the proper-
ties of the layer and those of the surrounding stacks. Changes
caused by this pressure (e.g., change of the layer thickness)
can therefore be taken as an (alternative) signature of the
Casimir effect. In the case of layered systems growing atten-
tion has recently been paid to Lifshitz-type configurations
with a metallic slab sandwiched between two media. Thus,
for example, when discussing some consequences of the
zero-point radiation pressure Imry [14] pointed out a strong
dependence of the Casimir force pressing a metallic slab, on
the properties of the bounding semi-infinite media. Indeed,
owing to the magnitude of their dielectric functions relative
to that of the slab in the relevant frequency interval, in this
configuration even a negative pressure on the slab is pos-
sible, corresponding to the repulsive force between the
bounding media [3]. Very recently, Benassi and Calandra
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[15] used the Lifshitz formula to calculate the Casimir pres-
sure on a (free-electron) metallic slab and explore its depen-
dence on the properties of the slab as well as on the distance
and properties of a nearby (metallic) substrate. Since metallic
plates are often met as components in micromechanical
(MEMS) and nanomechanical (NEMS) systems [16,17],
considerations of the Casimir pressure on a metallic slab un-
der various circumstances are also of obvious technological
relevance. Having this in mind, in this work we further ex-
plore the effects of surrounding media on the Casimir pres-
sure on a metallic slab with the thickness in the submicron
range. As in aforementioned works [14,15], in order to keep
the discussion simple we adopt the free-electron (plasma)
model for metal that is completely described by the electron-
plasma frequency wp. The thicknesses and lengths are then
conveniently measured in terms of the metal plasma wave-
length \ p=27c/ wp and, since \p~ 10> nm for typical met-
als, we therefore consider metallic layers of thicknesses d
=A\p.

Of all electromagnetic modes, a special role in the Ca-
simir effect between metallic plates is played by the surface
polaritons (SP) and their nonretarded (quasistatic) counter-
parts, surface plasmons. Thus, it is well known that the
vacuum force between two thick metals at small (<\p) dis-
tances is (almost) entirely given by the SP contribution
[18-20]. Recently, however, it has been realized that SP have
a fundamental role in the Casimir effect not only at small but
at all separations between the metals [21-24]. This indicates
that SP modes might play a similar role in the Casimir pres-
sure on a metallic slab and be responsible for its peculiar
behavior (e.g., the change of sign). It is therefore of interest
to examine more closely the SP contribution to the Casimir
energy and pressure for all relevant slab thickness. In order
to calculate these quantities and separately, surface contribu-
tions to them, we follow our previous work on a similar
subject [25] and use the surface mode summation method
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FIG. 1. System considered, schematically.

[6,9,10,12,18,26,27] to derive the Casimir force. This neces-
sarily demands consideration of a lossless system. Since the
number of SP modes may be large in the general case of a
fully dispersive system leading to a complex analysis, in the
discussion we make an additional simplifying approxima-
tion, namely, we assume that the dielectric media bounding
the metallic slab are described by their static (frequency-
independent) permittivities, which involves only two SP
modes in the theory. Such an approximation is valid, e.g., for
nonpolar dielectrics since for these materials usually €(w)
= €(0) up to frequencies ~ 10" s7! [28], and is often made in
the theory of the (ordinary) Casimir effect [2-6,9-12]. We
shall demonstrate that this approximation can also give good
predictions for polar dielectrics, assuming that the character-
istic (longitudinal and transverse) frequencies of polar modes
in dielectrics are much smaller than wp. Although the surface
mode method can be applied to any (real) dielectric function,
our aim in this paper is to examine and explain general
trends using a clearly defined model, rather than to precisely
calculate the Casimir pressure in a specific system.

The paper is organized as follows. Resorting to our pre-
vious work [25], in Sec. Il we briefly derive a Lifshitz-type
formula for the Casimir force appropriate for our model and
outline a method for separate calculation of the SP contribu-
tion to the force. In Sec. III, we discuss the Casimir pressure
on a metallic slab between two semi-infinite inert dielectrics
and provide an explanation for the change of sign of the
Casimir force in the asymmetric configuration. In Sec. IV, we
analyze the vacuum pressure on a metallic slab sandwiched
between two thin dielectrics and give a simple prescription
for changing the pressure in a given direction. Our conclu-
sions are summarized in Sec. V.

II. DESCRIPTION OF THE MODEL

We consider a five layer system consisting of ideally flat
dielectric (metallic) plates of thicknesses d; (I=0,1,2) sur-
rounded by an (infinite) dielectric medium 3, as depicted in
Fig. 1. All media are assumed lossless and described by
(real) dielectric functions €(w). Using the same notation as
in our previous article [25] (where the mode pattern in such
a system is discussed in more detail), we characterize an
electromagnetic mode of frequency w by the wave vector k
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parallel to the system surfaces, the perpendicular wave vec-
tor in a layer [, B)(w,k)=[e(w)w?/c*~k*]"?, and the polar-
ization index g=p or g=s, denoting, respectively, the modes
with the electric field parallel (TM) or perpendicular (TE) to
the plane defined by unit vectors k and . In outer layers, the
electric field behaves as ~exp(*iB;z) so that propagating
(photonic) and evanescent (surface) modes are described by
real and imaginary values of 33, respectively. In the case of
surface modes, the allowed values of 33 are discrete so we
enumerate them by the mode index n.

Adopting the surface mode approach [6,9,10,18,26,27],
we define the Casimir energy E of the system (with respect

to the /=1 layer) as
4’k #i

Ec=A | —5 2 X ~[ol(kd)) - ol(k,d, — )],
(2m) 2

q=p,s n
(1

where wl(k,d,) are frequencies of the surface modes and A
is the normalization area. The last term here is the standard
renormalization term included in order to obtain a finite
value for E.. In the Lifshitz (;=1) configuration the force
acting on stacks bounding the layer 1 is then given by

JE .
Fe= o, (2)
Evidently, in the present configuration this force can also be
regarded as the force acting on both surfaces of the slab 1, or
one can as well consider the pressure on the slab 1, P,
=(1/A)JE/ dd,. To be specific, in this work we shall discuss
the Casimir force F using the above definition, Eq. (2),
keeping in mind that the negative (positive) force F corre-
sponds to the positive (negative) pressure P on the surfaces
of the slab and therefore results in squeezing (relaxing) of the
slab 1.
As follows from Maxwell’s equations, frequencies w!(k)
are found as solutions of the dispersion relation (obtained
from the existence conditions for surface modes)

0w, k) = rﬁ(w,k)ri(a),k)e_zaldl =1, (3)

where r%.(w,k) are reflection coefficients of the upper and
lower stack bounding the layer 1 and where, for conve-
nience, we have introduced

afw,k) =—iBw,k) = VK> — e(w)w?/c>.

Note that frequencies w{(k,d;— o) are given by the poles of
Q% w,k). Employing the argument theorem and proceeding
in the standard way [6,9,10,18,26,27], the sum over the sur-
face modes (n) is converted into an integral over the imagi-
nary frequencies &=—iw. With the substitution k>
=(&/c*)(p*~1), we can put the Casimir energy (1) in the
form

hA -
EC: mJI dppL d§§2 2 ln[l - Qq(lg,P)]’ (4)

q=p.s

where Q4(i¢,p) is obtained from Q%w,k) by letting
afw,k)— aié,p)=(&/c)\p*~1+¢, for all layers.
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Since the reflection coefficients r% (w,k) in Eq. (3) do not
depend on d,, we finally arrive at a Lifshitz-type expression
for the Casimir force (2) as follows:

- 2 Q(lfp)
Fe== 355 f dpp J W 2 = ouie O

In the following, we use this result to calculate the total
Casimir force on the slab /=1.

A particularly important contribution to the Casimir en-
ergy and force is due to the surface modes which are evanes-
cent in all layers, commonly referred to as surface polaritons
(SP). By definition, frequencies of these modes are therefore
found as solutions of dispersion relations [Eq. (3)] with all
perpendicular wave vectors B;=iq; being imaginary. As is
well known, a dielectric multilayer can support only a finite
number of p-polarized SP modes. Accordingly, the SP con-
tribution to the Casimir force, Ff;, can easily be calculated
directly from Eq. (1) as follows:

hA
Fi=——

dkkE aL'(k), (6)
4 ),

ad,

o

where o enumerates solutions of Eq. (3) corresponding to the
SP modes. If the contribution from other (photonic) modes,
F C—Fz, is not significant, one can calculate the Casimir
force by taking into account only the contribution from SP
modes. Moreover, for systems with a very thin metallic (or
dielectric) central layer the retardation of the electromagnetic
field can be neglected and one may consider only the nonre-
tarded surface modes, usually referred to as surface plasmons
(or phonons). The Casimir force in such systems can be cal-
culated directly from Eq. (6), with frequencies w, (k) now
being the solutions of the nonretarded dispersion relation as
follows:

OMw,k) = lim Q" (w,k) = 1. (7)

c—®

Evidently, the quantity Q¥(w, k) is obtained from Q”(w,k) by
letting a;— k for all layers.

II1. THIN SLAB BETWEEN TWO SEMI-INFINITE
DIELECTRICS

Firstly, we will discuss the force on a metallic slab (/
=1) bounded by two semi-infinite dielectric media (/=0,2).
The slab is described by the dielectric function as follows:

C()2

elw)=1- —P (8)

as appropriate for metals with well defined electron-plasma
frequency wp. We use the plasma wavelength Np=27c/wp
and kp=2c/\p to scale relevant thicknesses and wave vec-
tors, respectively. The dispersion relation of the surface
modes in this system reads [cf. Eq. (3)]

QUw,k) = r§yr e =1, ©)

where
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FIG. 2. The total Casimir force F compared with the (retarded)
SP contribution F‘Z and the (nonretarded) plasmon contribution FY )
as a function of a metallic layer thickness d; (in units of plasma
wavelength Ap).

rw,k) = _;eﬂ’ r;l(w’k)=u (10)
ela +€(1’[ Clj+011

are the Fresnel reflection coefficients for the j—I interface.
Letting a;=k, in the nonretarded limit we therefore have

r%( ) = lim 7 = Tel’ lim 75, =0. (11)
c—® 1 3 c—0

Let us start with the simplest case of a freestanding (g
=¢e,=1) metallic slab. Configurations with two “active” sur-
faces support two SP modes [14]. Their role in the Casimir
effect can be most easily understood by considering their
nonretarded counterparts whose eigenfrequencies can be
given analytically as follows:

2
W% (k) = %[1 + exp(— kdy)].

Thus, the integrand in Eq. (6) becomes

2 2
—k—ﬁwi(k) + wP K —— exp(—kd,).
ad, w-(k)

Obviously, the contribution from the high-frequency (w,)
mode is positive and from the low-frequency (w_) mode is
negative leading to the relaxing and pressing component of
the Casimir force, respectively. The total (nonretarded) con-
tribution to the force of the two plasmon modes is easily
calculated to be pressing

Fi=- 0.0078A%, (12)
1

and is a result of the delicate cancellation between the con-
tributions Flg_=7.83Flg and FZZ+=—6.83F2' from the w_ and
w, mode, respectively. This indicates that, with an appropri-
ate selection of surrounding media, the sign of force can be
changed, as we shall discuss later. As shown in Fig. 2, Flg is
a good approximation to the total Casimir force F only for
very small (d;/\p=<0.01) slab thicknesses whereas for
thicker slabs the contribution of the (retarded) SP modes F¥.
gives much better approximation. Note also that at d;/\p
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FIG. 3. Dispersion relation w.(k) of SP modes for a d=0.1\p
thick metallic slab. Dotted lines present SP frequencies in two sym-
metric configurations: (a) €,=€,=1 and (b) €y=€,=10, with their
asymptotic (k— o) values denoted as w], and wy, respectively. The
corresponding light lines in the surrounding dielectric are denoted
as a,=0 and =0, respectively. Full lines represent w. (k) in the
asymmetric, €y=1 and €,=10 case. Note that in this configuration
the w, mode starts with a (cutoff) wave vector k,>0 from the light
line a;,=0. The dashed line shows the frequency of the w, mode in
the configuration with €y=1 and |&,|=.

=0.05 the total Casimir force F starts to deviate signifi-
cantly from Flg tending to zero much faster than d]_3.

Let us now discuss the effect of the surrounding media on
the Casimir force on the slab. First of all, we will discuss the
symmetric case with the same dielectric (gy=¢,) on both
sides of the slab. As follows from Eq. (9) (with 5, =r},), the
dispersion relations of the corresponding SP modes then read
e~ 9= 1, or alternatively,

€(®) -4 tanhﬂ(—aldl) (13)
€y ) 2 ’

where the upper and lower sign refers to the high-frequency
(w,) and the low-frequency (w_) mode, respectively [29]. In
order to simplify the discussion, we consider the surrounding
dielectric inert and described by a frequency-independent
permittivity. Frequencies w. (k) of two SP modes existing in
this case are shown by dotted lines in Fig. 3 for two different
€y=¢€, values. Note that frequencies of both SP modes are
found below the plasma frequency wp as well as below the
corresponding light line ;=0 (that is, w=kc/\€y,) in
the external dielectric, and that both frequencies w. tend to
ncics @+
the same asymptotic frequency j ) =wp/\1+ €y, Hence,
for large values of €,=¢, the contribution from SP modes to
the Casimir energy becomes rather small. At the same time,
the electromagnetic energy of photonic modes in external
dielectric increases with its permittivity so that, for large €,
=¢€,, SP modes no longer give a dominant contribution to the
total Casimir energy and force. This is clearly seen in Fig. 4.
As before, the SP contribution F%. to the Casimir force is the
result of cancellation between the (large) positive and nega-
tive contributions from w, and w_ SP modes, respectively.
While this cancellation gives the attractive, F §< 0 force on a
freestanding (e,=1) slab, for a slab bounded by a dielectric
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FIG. 4. Casimir force on a metallic slab in the symmetric con-
figuration. The corresponding €,= €, values are denoted as (€, €).
Full, dashed, and dotted lines represent the total Casimir force F,
the contribution to the force of SP modes Fﬁ and the separate
contribution of each (+, —) SP mode, respectively.

with a large permittivity we find the repulsive, F’ §>0 force.
Evidently, this is due to the significant change in the disper-
sion of the SP modes (cf. Fig. 3) resulting in a larger relative
contribution of the w, mode to the force. However, the total
Casimir force F remains attractive due to the much larger
“pressing” contribution from the external photonic modes.
Accordingly, we can conclude that as the permittivity of the
surrounding medium is larger, the Casimir force on the sur-
faces of the slab is stronger. This trend is particularly evident
for thin (d/\p<0.1) slabs, as seen in Fig. 5.

The Casimir force approaches its maximal value for |¢)|
— o0, This case can be realized, e.g., with a metallic external
medium having much higher plasma frequency than
wp—this system obviously closely corresponds to the origi-
nal Casimir configuration, with a metallic plate instead of an
air gap between the perfect mirrors. The Casimir result for
the force F% between two perfect mirrors separated by a
vacuum (€;=1) gap

d,/,

FIG. 5. Casimir force on a symmetrically bounded (gy=¢,) me-
tallic slab shown for different dielectric constants of external me-
dium denoted as (¢, €,). The dotted line represents the standard
Casimir force F(();, Eq. (14).
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FIG. 6. Casimir force on a metallic slab in the asymmetric con-
figuration. The dielectric constants of surrounding media are de-
noted as (e, ). Inset: Comparison between the total force (full
line) and the contributions from SP modes, including the extended
part of the (+) SP mode (dotted line). The units correspond to the
main figure.

fic
240d}

Fl=-A (14)

is also shown in Fig. 5 for comparison. As seen from this and
other curves in Fig. 5, for thin enough (dl/)\p<0.1) slabs
and large permittivity of the external medium, F behaves as
~1/ d‘l‘ and gradually becomes independent on the properties
of the slab. This reflects the fact that for large |€,| values the
dominant contribution to the force comes from the photonic
modes within the slab. Indeed, in the |€)|— o limit, rg,
=r{,— 6,,—,, in Eq. (9) and the system does not support
SP modes anymore but only the modes with frequencies
(a;=—inm/d;)

wl(k) = \/wf, + K+ nzﬂ'z/d%), (15)

where n is an integer. In the limit d; <\ p we can neglect the
term w5 in Eq. (15) so these frequencies, when summed up,
lead to the same Casimir energy as in the original Casimir
configuration [21], as can also be concluded by comparing
(o0, ) and F% curves in Fig. 5.

Let us now consider the Casimir force on boundaries of a
thin metallic slab in asymmetric configurations, i.e., when
the slab is surrounded by two different inert dielectrics (e,
# ¢). Properties of the total Casimir force in such systems
are well known [3,4] so that we only summarize those of
them relevant for our analysis. To be specific, we consider
the system consisting of a slab supported by a substrate and
therefore let €y=1 whereas ¢, is changed. As seen in Fig. 6,
with increasing e, we obtain a smaller Casimir force on the
slab than in the freestanding (e;=¢€,=1) slab case. For large
values of €, the Casimir force even changes the sign and the
slab relaxes. This first happens at small (d; <0.1\p) slab
thicknesses and can therefore be understood by considering
the nonretarded (large p) limit of Eq. (5) in conjunction with
Eq. (9). With a,(i&,p) = &p/c, we find
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[fl(lg) - 1] [el(lg) - fz]e_zgpdl/e
[€(i9) +1][€(id) + €] ’

so that the force becomes repulsive when e,>¢(if)=1
+w%/ & over the relevant frequency range, in accordance
with the general condition [3]: &(if) = €,(if) = €,(ié).

The SP role in this behavior of the Casimir force on the
slab surfaces can be explained starting with the |&,| — o case,
corresponding to a metallic slab bounded on one side by a
perfect mirror. Since the electromagnetic field does not pen-
etrate into medium 2, we have r5;=—1 and the dispersion
relation (9) of the SP mode related to the plate-vacuum in-
terface becomes (1§ e>*191=—1)

oMi&p) = (16)

aw__a tanh(a,d,). (17)
€ ag

According to Eq. (13), the frequency of this mode is there-
fore the same as that of the (+) SP mode of the freestanding
slab with doubled thickness. For thin slabs (inset in Fig. 6),
this SP mode gives the dominant contribution to F making
the force positive, i.e., relaxing. In the case of finite €, the
field penetrates into the medium 2 and from Eq. (9) we find
two SP modes [see the full lines in Fig. 3 representing w- (k)
in the (I, 10) configuration]. Since frequencies of these
modes must lie below the light line @, =0 [a;,=0 in Fig. 3],
w, (k) starts at the a,=0 light line at some wave vector k,
>0. Accordingly, for large €, the cutoff k. is large and the
(positive) contribution of the (+) SP mode to the Casimir
force becomes negligible. However, to make a connection
with the perfect mirror case (which we expect to be a good
approximation for large |€,| values) we may “extend” the (+)
SP mode into the ;<0 region in an obvious way: the ex-
tended part is calculated with |€,|=. Indeed, since the cutoff
wave vector at a,=0 satisfies 5, =—1 regardless of the ¢,
value, the (+) SP mode with finite €, and the extended (+)
SP mode with |€,|= meet at the same point at the a,=0
light line (Fig. 3), which makes our “extension” procedure
consistent [30]. As seen in the inset in Fig. 6, the contribu-
tion from so defined SP modes again gives a very good ap-
proximation to the total Casimir force at small slab thick-
nesses. Interestingly enough, this means that for large €, the
contribution of a continuum of propagating modes from the
a§< 0 sector can be replaced by the contribution of only one
“extended” SP mode (see further comments on that in the
next section). Of course, one may argue that for smaller val-
ues of €, the extended part of the (+) mode is not a good
approximation anymore, but in these cases the space between
the ay=0 and a,=0 lines is very narrow so that the contri-
bution of the (+) mode from this sector does not signifi-
cantly influence the total Casimir force. Also, in these cases
the contribution from the “pressing” (—) SP mode becomes
much more important so that by decreasing €, the Casimir
force will obviously change the sign and become negative.
An issue of great practical importance is the morphologi-
cal stability of the slab in this type of configuration [31] and
we end this section by (roughly) estimating the maximal slab
thickness d’,u compatible with its flat morphology. We note
that, by inserting Eq. (16) in Eq. (5), extending the integra-
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tion over p to zero and making the substitution x=2¢&pd,/c,
the force on a thin slab can be written in a well-known form

H

Fe=———,
7 6nd

(18)
where H is the Hamaker constant given by the corresponding
integral. However, instead of calculating this integral for dif-
ferent configurations, we observe that according to Fig. 6 in
the thin-slab limit

Fe=nFY, -175<p<1.

Accordingly, from Egs. (12) and (18), the Hamaker constants
for these systems lie within the range given by

H=6m7X00078%wp, -175<p<1. (19)

Now, as follows from a simple continuum model, the relax-
ing Casimir force stabilizes a deposited thin slab upon a
critical thickness given by [31]

—HYZ’)/ 1/4
aY = (—) , 20
! 2ot 20)

where Y is the Yang modulus of the slab whereas y and o are
its surface energy and stress, respectively. Taking that for a
typical (good) metal Ziwp~ 10 eV=1.6X10""J and [31] y
=1 J/m?, Y=76 GPa, and 0=500 MPa, we find for n=-1,
for example,

dY'=7.67 nm, d}'/\p=0.06. (21)

Note that this figure is greater than the slab thicknesses con-
sidered in Fig. 6 making this estimate consistent. Since the
critical slab thickness is system sensitive, for two different
configurations a and b, such that 7,=7,+ 7, we find (as-
suming negligible change in the mechanical parameters of
the slab)

dy, (H,\"™ S
—”’—(—}’) ~ 14+ 2 (22)

d\H, 49,
indicating that a small change of the Casimir pressure causes
approximately a four times smaller change in the critical
thickness of the slab d’,"’ . Of course, a more reliable estimate
of d)! is obtained using the retarded result for the Casimir
force and a more realistic description of the system electro-
magnetic properties [32].

IV. THIN SLAB BETWEEN TWO ARBITRARY THICK
DIELECTRICS

Let us now discuss the force on a metallic slab bounded
by dielectric layers with finite thicknesses d, and d,. After
some manipulations, we can write the dispersion relations for
the surface modes in this system in a similar form as in Eq.

©)
0" = rilrife? i =1, (23)

where the reflection coefficients r#¢ are given by Eq. (10)
with the replacement
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1 — rhe2auh)
qd — —( 3 —
a— af = a,(l + o) [=0,2. (24)

Since the coefficients r?ld obviously do not depend on d,, Eq.
(5) remains valid and we shall now use it to analyze the
influence of finite d, and d, values on the Casimir force on
the layer /=1, with respect to dielectric properties of the
surrounding medium 3. For a Lifshitz-type configuration,
such a discussion was performed in Ref. [25] and the same
general conclusions also apply here. Following Ref. [25], in
order to obtain a maximum influence of the external medium
on F¢, we let |&|=x, i.e., we consider the Casimir-type con-
figuration with a dielectric-metal-dielectric stack of layers
sandwiched between two perfect mirrors. In this case rf}
=+1 and rj;=—1, so that Eq. (24) gives &/’=aq, tanh(a,d)),
o= ay/tanh(,d,).

Let us first analyze the modes from the a3 <0 sector of
the (w,k) plane, discussed in the previous section in the d,
— oo limit. With a,=—i8,, we find a4=—p, tan(B,d,) for
finite d, values. Thus, p-polarized modes that satisfy Eq. (23)
are additionally determined by the mode index m,

T T
2m - 1)2_d2 <B<Q2m+1)—,

m=0,1,2,3... .
2d,

(25)

Note that the m=0 mode (0< 3, </2d,) can be regarded
as a continuation of the (4+) SP mode in the sector a%<0
[21,22]. From the requirement (25) we see that for thick
(dy>\p) €, layers, the m=0 mode approaches the light line
B>=0, whereas B, for m>0 modes becomes quasicontinu-
ous. Thus, if we replace in Eq. (23) the oscillatory term
a5 ~tan(Brd,) —0, we find r5¢=—1 and obtain the same
equation, Eq. (17), as for the extended (+) SP mode in the
configuration with |€,| — . This means that for large d, val-
ues we may construct the extended mode from pieces of the
oscillatory modes, which again justifies our approximation
made in the previous section.

Other than by the surrounding medium, the Casimir force
on an object can be influenced by the presence of other ob-
jects. In order to demonstrate this effect in planar geometry
let us now assume that the metallic slab is placed in vacuum
(ep=€,=1), that is in an ideal empty planar cavity, and con-
sider the dependence of F on its distances d, and d, from
the cavity mirrors.

We first consider the force in the symmetric (dy=d,) con-
figuration. The results are shown in Fig. 7 with the slab-
mirror separation given in the relative units Dy=d,/\p.
Clearly, the curves D,=% and D,=0 correspond to the
curves (1, 1) and (o, ) in Fig. 5, respectively. From the
other curves, it is seen that the dependence of F. on d,
(loosely) resembles its dependence on ¢, in the case of a slab
symmetrically bounded by a semi-infinite dielectric (cf. Fig.
5); as with increasing dielectric function of the surrounding
medium (€,) in the former case, this time the force strongly
increases with decreasing cavity distances (d,). From the in-
set in Fig. 7, we see that the contribution of SP modes to F
gradually decreases with decreasing cavity length (d,) and
increasing thickness of the slab (d,). While the SP contribu-
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FIG. 7. Casimir force on a thin metallic slab in the center of an
empty planar cavity (€y=€,=1) with perfect mirrors. Distances of
the slab from the mirrors are denoted by D,=d,/\p. Inset: Com-
parison between the total force (full line) and the contribution from
SP modes (dotted line).

tion from the pressing force can be at most equal to the
nonretarded force FY, the contribution from photonic (cav-
ity) modes becomes very large for small cavity lengths [21].
Thus the SP contribution can give reasonable approximation
to the total Casimir force only for larger, d, > 0.1\ p, cavity
lengths.

Let us now consider the Casimir force on the slab in the
asymmetric configuration obtained by letting dy— %, which
can be regarded as a counterpart of the previously considered
system consisting of the metallic slab supported by a dielec-
tric. The dependence of the force on the slab thickness and
the mirror-slab distance d, is shown in Fig. 8 (see also Ref.
[15]). The curves D,=% and D,=0 correspond now to the
curves (1, 1) and (1, «) in Fig. 6, respectively. By comparing
these two figures we see that the d, dependence of F for

1.0
0.5 1

0.0

-0.51

N
F/F,

-1.0

-1.51

FIG. 8. Casimir force on a metallic slab in front of a perfect
mirror. The mirror-slab distance is denoted by D,=d,/\p. Inset:
Comparison between the total force (full line) and the contributions
from SP modes (dotted line). The units correspond to the main
figure.
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FIG. 9. Dispersion relation w. (k) of SP modes for a d;/\p
=0.1 thick metallic slab at a distance d,=D,\p from a perfect mir-
ror: D,=0 (full line), D,=10"3 (dashed line), D,=10"2 (dash-dotted
line), D,=10"" (dash-dotted-dotted line), and D,>1 (dotted line).

thicker slabs (d;>0.1\p) again resemble its €, dependence
in the previously considered system. For thinner slabs, there
is a significant change in the behavior of the Casimir force
that should be connected with the strong influence of SP
modes. This influence is different in the present case as com-
pared with the case shown in Fig. 6. The metallic slab is now
surrounded by a vacuum on both sides, so both SP modes are
well defined for all wave vectors, as demonstrated in Fig. 9.
Notice that the change of d, affects the dispersion of (—)
much stronger than the (+) SP mode. However, in the k
—0 limit (i.e., at wavelengths much smaller than d) both
modes tend to the same asymptotic frequency w®=wp/\2
regardless of the value of d,. An obvious exception is the
d,=0 case, where only the (+) SP mode exists.

The inset in Fig. 8 shows the (expected) dominant contri-
bution of SP modes to the Casimir force for thin slabs so we
can understand the behavior of F by considering only the
properties of SP modes. Thus, in the case of a metallic slab
thinner than the mirror-slab distance (d;<d,), SP modes
give a standard (pressing) contribution to the Casimir force
leading to FCszg in the d; <\p limit (see Fig. 2). By de-
creasing the mirror-slab distance (d,<d,), the influence of
the “pressing” (—) SP mode becomes less important, so at
thin slabs and very thin vacuum layers, the (+) SP mode
becomes dominant and the metallic slab relaxes.

Figures 4-8 illustrate the behavior of the Casimir force on
a thin metallic slab and the SP contribution to it in a few
basic systems for different material (¢, €,) and geometrical
(dy, d,) parameters. Understanding the role of SP modes in
building up the Casimir force in these configurations enables
one to understand the behavior of the force (and thus to
control it) in more complex systems. For example, a typical
configuration of practical interest could consist of a metallic
slab (1), supported by a dielectric (of permittivity ;) and
separated by a vacuum (e,=1) layer of thickness d, from
another metallic layer (highly reflecting mirror, |€;|>1). The
Casimir force on the slab in such a system is shown in Fig.
10. As seen, depending on the value of €,, one can start with
the pressing (relaxing) force on the slab and end up with the
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FIG. 10. Casimir force on a d;=0.05\p thick metallic slab
bounded by a dielectric medium (€, dy— ) on one side as a func-
tion of the thickness d, of a vacuum (e,=1) layer between the other
side of the slab and a perfect mirror (see the inset). The different
combinations of dielectric constants are denoted as (¢, €).

opposite case of the relaxing (pressing) force on the slab
simply by tuning properly the mirror-slab distance.

V. SUMMARY

In this paper we have analyzed the Casimir force on sur-
faces of a thin metallic slab surrounded by dielectric media.
This subject is discussed in literature with less detail than the
reversed model of a thin dielectric layer surrounded by me-
tallic plates, so our main motivation was to give better in-
sight into the behavior of the Casimir force when the slab is
surrounded by media of different dielectric properties. A par-
ticularly interesting observation is the change of the Casimir
force from squeezing to relaxing, and this effect can be ob-
viously important, e.g., in the design of nanolayers. It turns
out that surface polaritons (SP) take a dominant role in such
behavior of the Casimir force, so we have taken a simple
model in which this effect can be best understood. Accord-
ingly, the slab is described by free-electron dielectric func-
tion which depends only on one parameter (electron-plasma
frequency wp), while the surrounding media are described as
inert dielectrics. There are only two SP modes involved in
that model, and one of them (w,) tries to relax while the
other (w_) tries to squeeze the slab. The influence on the
Casimir force that comes from the propagating (photonic)
modes is obviously always squeezing.

Let us briefly comment on the “inert dielectric” approxi-
mation employed in this work. In order to estimate, e.g., how
the medium dispersion affects our general conclusions, we
have performed calculations using for the dielectric functions
of surrounding media /,

((1)1%[ - w2)
glo)=€;— 5

s

2
(wn - wz)

appropriate to polar dielectrics (ionic crystals) characterized
by the longitudinal w;; and transverse wy; frequencies. By
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replacing ¢ in our model with the high-frequency permittiv-
ity €,;, we have obtained (even quantitatively) almost the
same results, because the characteristic frequencies (w;;, wp)
of an ionic crystal are much lower (typically two orders of
magnitude) than the plasma frequency wp of a metallic slab
[33,34]. Of course, for specific materials, one can also ana-
lyze the influence of the high-frequency limit (— 1), the
real (not perfect) screening, the possible losses in all media,
etc., but we have found that the general predictions of our
approach regarding the influence of the SP modes, remain
valid.

An important issue in all these calculations is the scale at
which the influence of the Casimir force on a slab can be
measured. It is essentially determined by wp, so we have
scaled all frequencies and distances in the system with wp
and A\ p=27c/ wp, respectively, while the force is scaled with
the nonretarded value F? [Eq. (12)]. In suitable units,
we find A\p=124%X10[wp(eV)]"! nm and FY/A=-1.25
X 10 wp(eV)/d;(nm)*] N/m?. From our calculations, we
can infer that d.=~0.1\p is a critical “thin-slab” thickness
below which one can expect a significant change in the be-
havior of the Casimir force due to the different properties of
the surrounding media. In this region (d, <d.), the SP modes
have an important role that we have analyzed with respect to
the different dielectric as well as geometrical properties of
surrounding media. We have pointed out how, by under-
standing the role of the SP modes, one can achieve, e.g.,
similar Casimir effect with quite a different setup.

By looking at the electron-plasma frequencies of different
materials, i.e., starting from wp(Cs)=3.3eV to wp(Be)
=18.4 eV [15], we find critical distances in the range
38 nm>d_.>7 nm. Obviously, larger wp values will give
larger Casimir forces on the surfaces of the metallic slab, but
at the same time they will reduce the critical distances (d,)
below which one can expect the strong modification of the
Casimir force caused by the external media. At a typical
frequency wp(Na)=6.1 eV we obtain d.=20 nm so in the
thin-slab region, e.g., at d;=2 nm=0.01\p we find F’g
=-0.96 X 10° N/m?2. With such parameters and with the ap-
propriate setup of surrounding media described in the paper,
we can obtain an order of magnitude larger Casimir force
that tries to squeeze the slab, or at least the same order of
magnitude Casimir force that tends to relax the slab. Al-
though such forces will not destroy the slab (because of
much stronger cohesion forces among atoms in the slab), it
might be possible to observe the changes in the thickness of
the slab when implementing different configurations of outer
media [14]. The understanding of the behavior and influence
of SP modes on the Casimir effect could obviously help in
designing specific configuration of thin layers at nanoscale,
and could be also used as an assessment of correct interpre-
tation of the Casimir force acting on thin metallic slabs.
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