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Quantum-state conversion among different information-carrying media is essential in a quantum network. It
is found that the many schemes of quantum-state conversion can be unified under one simple process—that is,
the parametric process of three-wave mixing. These schemes include quantum-state storage in atomic media,
where a photonic state is converted to an atomic Raman state and vice versa, the frequency up- and down-
conversion in photonic states, and photonic-state conversion to Brillouin phononic states and vice versa. The
efficiency of conversion can in principle reach 100%, and the conversion process is noiseless. When the same
idea is applied to a four-wave mixing process, unit conversion efficiency between a two-photon state and a
single-photon state can be achieved. When applied to a two-photon entangled state in parametric down-
conversion, entangled states of multiple photons can be generated.
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I. INTRODUCTION

Photons are generally believed to be good quantum-
information carriers for transmission and are dubbed the
term “flying qubits,” whereas atoms are best for storing and
processing the quantum information. Therefore, a quantum
network usually consists of nodes made of atoms and con-
nected by photons �1�. In the network, quantum information
is constantly transferred between photons and atoms. In ad-
dition, another type of information transfer is also
occurring—that is, the transfer between photons of different
wavelengths. This is because quantum information is sensi-
tive to losses and the wavelength at which optical communi-
cation system has low losses ��1.56 �m� does not usually
match the wavelength to which atoms are coupled
��0.8 �m�.

Quantum-information transfer between atoms and pho-
tons was proposed �1,2� and realized �3� in cavity QED sys-
tems thanks to the strong coupling between atom and photon
in the systems. Such systems usually require precise control
of the atoms and become very complicated. Significantly
simplified schemes were proposed by Duan, Lukin, Cirac,
and Zoller �the DLCZ scheme� �4� and realized �5–7� in a
Raman system for the efficient information transfer from
atomic states to photonic states in the reading process �but
not from photon to atom�.

For the process of converting photonic states to atomic
states, Fleischhauser and Lukin �8� proposed a method based
on the electromagnetically induced transparency �EIT� effect
to achieve photon stoppage �storage� in an atomic medium.
Subsequent experiments realized photon storage in an atomic
vapor cell �9,10� and Bose-Einstein condensate �BEC� �11�
and in solid materials �12�. In these investigations, however,
the emphasis is on photon stoppage. Atoms are simply the
medium for information storage. Although atomic states are
important in this effect, no study was done of them. As men-
tioned before, another role for atoms as nodes in a quantum

network is to process the stored information quantum me-
chanically. Thus it is necessary to know what kind of states
the atomic system is in.

For the photonic-state transfer between different wave-
lengths, the frequency up-conversion process was realized
many years ago �13–16�, but none was reported for fre-
quency down-conversion. This is so because current research
focus is on counting photons at optical communication
wavelengths ��1.56 �m� for quantum cryptography �16�—
detectors at 1.56 �m are just far more noisy than those at
shorter wavelengths around 0.8 �m. But the main reason
perhaps is the strong belief that the parametric frequency
down-conversion process is always quantum mechanically
noisy due to spontaneous emission �14,17�. Nevertheless,
efficient frequency down-conversion is essential in a quan-
tum network for converting photons emitted by atoms
��0.8 �m� to photons transmitted in optical fibers
��1.56 �m�.

Recently, it was discovered that a parametric down-
conversion process can be greatly enhanced by stimulated
emission due to constructive multiphoton interference �18�.
The enhancement factor is proportional to the intensity of the
stimulating field in the linear nondepleted regime. And it is
accompanied by spontaneous emission, often treated as
noise. However, when the stimulating field becomes so
strong that it comes the regime when the pump field starts to
be depleted, the situation is completely different, and as we
will see in the following, the process becomes noise free and
direct transfer between the pump and idler fields becomes
possible.

In this paper, we will consider the parametric amplifica-
tion process with a large injected signal field but a small
pump field so that the regime of depletion is reached and
show that the pump photon may be converted to the idler
photon with 100% efficiency under certain conditions, real-
izing efficient photonic frequency down-conversion. When
the same idea is applied to other three-wave mixing pro-
cesses, a similar effect occurs between two of the three
waves. In particular, for a Raman process, we find that the
transfer between photon and atom can be achieved with unit
efficiency. Although this process was studied extensively as*zou@iupui.edu
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the phenomenon of light storage and stoppage in EIT, our
emphasis is on the atomic state and its manipulation by in-
coming photons. Similarly for a Brillouin scattering process,
we may achieve 100% conversion efficiency between pho-
tons and phonons. Furthermore, applying the same idea to a
four-wave mixing process, we can achieve efficient conver-
sion between a single-photon state and a two-photon state.

The paper is organized as follows: we will first discuss the
enhancement effect in stimulated emission in Sec. II. Then
we apply the idea to the general process of three-wave mix-
ing by considering frequency up- and down-conversion in
Sec. III. Next, we deal with a photon-atom system of the
Raman process and consider the conversion between photo-
nic quantum states and atomic states. We will also discuss
the Brillouin process and deal with photon-phonon conver-
sion in the same section. In Sec. IV, we generalize to a four-
wave mixing process and discuss the conversion between a
one-photon state and a two-photon state.

II. ENHANCEMENT DUE TO STIMULATED EMISSION IN
PARAMETRIC DOWN-CONVERSION

We start with a parametric down-conversion process de-
scribed by the Hamiltonian �19�

ĤPDC = i��Apâs
†âi

† − i��*âsâiÂp
*, �1�

where the pump field denoted by Ap is a strong classical field
and s and i stand for signal and idler fields for historic rea-
sons. Energy conservation gives the frequency relation �p
=�s+�i. This leads to the parametric amplifier when the
pump is undepleted �17�:

âs
�out� = âs cosh��Ap�� − ej�pâi

† sinh��Ap�� ,

âi
�out� = âi cosh��Ap�� − ej�pâs

† sinh��Ap�� , �2�

with an amplitude gain given by G=cosh��Ap��, where � is
the interaction time and ej�p ��Ap / ��Ap�. The amplification
G�1 is from the stimulated emission. This process is often
used in nonlinear optics to achieve frequency down-
conversion: �p→�s with �s tunable.

However, the appearance of the â† terms in Eq. �2� leads
to spontaneous quantum noise �14,17�. Therefore, this pro-
cess is not suitable for frequency down-conversion of quan-
tum fields. Nevertheless, we may gain some insight into
quantum-state transfer from this process by considering the
low-gain case with G�1 or ��Ap���1. Under this condition,
the evolution operator from the Hamiltonian in Eq. �1� has
the approximate form of

Û = e�Ap�âs
†âi

†−H.c. � 1 + �gâs
†âi

† + H.c.� , �3�

with g��Ap�. This operator is used to evaluate the state
evolution of the system in the Schrödinger picture:

�		out = Û�		in. �4�

With a vacuum input of �		in= �0	, we have the output
state as

�		out
�0� = Û�0	 � �0	 + g�1s	 � �1i	 . �5�

The last term gives the spontaneous emission with a prob-
ability of R= �g�2. When the input is an N-photon state in the
signal field �Ns	 � �0i	, we have

�		out
�N� � �N	s�0	i + g�âs

†�N	s� � �âi
†�0	i�

= �N	s�0	i + g
N + 1�N + 1	s � �1	i. �6�

The photon emission probability from the amplifier is N+1
times that of the spontaneous emission. Each fold of increase
is attributed to the stimulated emission from one individual
photon in the input N-photon state. This emission enhance-
ment effect due to stimulated emission was observed by
Lamas-Linares et al. �20� for the one-photon case and by Sun
et al. �18� for the two-photon case and is interpreted as a
multiphoton interference effect.

Although the above exercise does not avoid the quantum
noise from spontaneous emission, it indicates that the down-
conversion probability can be greatly enhanced by injecting
a strong signal field with the enhancement factor N as the
number of injected photons.

Now let us see what will happen if we can increase N
indefinitely so that the overall down-conversion probability
�N+1��g�2→1. In this case, we can no longer treat g as a
constant because the amplifier enters a regime when the
pump field starts to be depleted. So a significant amount of
pump photons are converted to the signal and idler photons.
Among these conversions, because N
1, only a negligible
portion �1 /N� is the spontaneous emission, while the major-
ity of the pump photons are coherently converted to the sig-
nal and idler photons via stimulated emission. Because the
spontaneous emission is negligible, we may achieve a noise-
less frequency down-conversion of photons in this process.
We will show this in the following.

III. EFFICIENT CONVERSION BETWEEN WAVES IN
THREE-WAVE MIXING

The parametric down-conversion process is in essence a
three-wave mixing process and can be described by the
Hamiltonian �21�

ĤIII = i��âpâs
†âi

† − i��*âsâiâp
†. �7�

Here we use operators to replace field amplitudes. With a
strong pump field, it becomes a parametric down-conversion
process described in Eq. �1�. But when the signal field is
strong while the pump and idler fields are weak, the three-
wave mixing process becomes a frequency converter and is
described by the Hamiltonian �13�

ĤF = i��âpâi
†A

s
* − i��*Âsaiâp

†, �8�

where the signal field is treated classically and the operators
are replaced by c numbers. It converts an idler photon �âi� to
a pump photon �âp� or vice versa. This can be easily seen in
the evolution of the system �13,22�:

âp
�out� = âp cos��As�� + ej�sâi sin��As�� ,
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âi
�out� = âi cos��As�� − ej�sâp sin��As�� , �9�

where ej�s =�A
s
* / ��As�. Notice that the input-output relation

in Eqs. �9� is the same as the one for a lossless beam splitter
if we set its transmissivity t=cos��As�� and reflectivity r
=ej�s sin��As��.

When ��As��=� /2 and �s=0, we have t=0, r=1 and
achieve a complete conversion: âi→ âp

�out�, âp→−âi
�out� with a

unit conversion efficiency. This conversion is a field conver-
sion. Thus, the complete quantum states are converted from
p to i and vice versa. As can be seen, this conversion process
adds no quantum noise as long as r=1. Otherwise, vacuum
noise from unused input port will be added, just like the case
of a detector with nonunit quantum efficiency.

The frequency up-conversion of âi→ âp
�out� is easily under-

stood via the sum frequency process: if there are enough
signal photons, the existence of an idler photon will quickly
fuse it with one of the abundant signal photons to produce a
photon of higher energy �the pump photon�. The pump pho-
ton may also convert back to an idler photon if there are too
many signal photons. The frequency down-conversion pro-
cess âp→−âi

�out� can be understood as a result of stimulated
emission, as discussed in the previous section.

Although the frequency up-conversion process from idler
to pump was demonstrated �13,14� as a noise-free process
and used to convert long-wavelength photons to short-
wavelength photons for photon counting in quantum cryp-
tography �16�, the down-conversion process from pump pho-
ton to idler photon has never been realized. It is so perhaps
because the process was often mistaken as the amplification
process in Eq. �2� with unavoidable quantum noise injection
from the idler �14�. However, as we see from Eq. �9�, when
the unit efficiency is achieved with sin��As��=1, no input
idler field contribution to the idler output. Thus, it should be
noise free.

IV. APPLICATION TO RAMAN AND BRILLOUIN
PROCESSES: EFFICIENT PHOTON-ATOM AND PHOTON-

PHONON CONVERSIONS

The above three-wave mixing process mixes optical fields
of different frequencies. However, the idea can be general-
ized to mixing of arbitrary waves. In particular, generaliza-
tion to a Raman process, as we will see in the following,
results in efficient transfer from photonic state to atomic state
and vice versa. It is well known by now �4� that in a collec-
tive Raman process �Fig. 1� with an ensemble of Na atoms, a
pair of lower-level metastable states �g	 and �m	 are coupled
through an excited state �e	 by the pump field âp and the
Stokes field âS, respectively. After adiabatic elimination of
the upper excited state �e	, the effective Hamiltonian of the
subsystem of �g	 and �m	 and the fields has the form of �4�

ĤR = i��âpâS
†Ŝ† − i��âSŜâp

†, �10�

where �=gegg
em
* 
Na /� with � as the detuning of light fields

from the upper excited state in Fig. 1 and geg ,gem as the
coupling coefficients between light fields and respective

atomic states. Ŝ��1 /
Na��i�g	i�m� is the collective atomic

spin field, which is coupled to the Stokes and the pump fields
via the Hamiltonian in Eq. �10�.

When the pump field is strong and the Stokes field is
initially in vacuum and the atomic state in ground state �g	,
the process becomes spontaneous Raman scattering and is
described by the Hamiltonian �4�

ĤR1 = i��ApâS
†Ŝ† − i��A

p
*âSŜ , �11�

which produces an atom-light entangled state of �6�

�	 � �0	m�0	S + 
pcŜ
†�0	mâS

†�0	S + o�pc�

= �0	m�0	S + 
pc�1	m�1	ˆ
S + o�pc� , �12�

with a small excitation probability pc. Here �1	m

��1 /
Na��i�m	i is the collective single-atom excited state of
the metastable state �m	. With an injection at the Stokes field,
it becomes a Raman amplifier for the Stokes âS field, but
with intrinsic quantum noise from spontaneous Raman scat-
tering �23�.

On the other hand, when there is a strong Stokes field at
input while the pump field is weak, we have

ĤR2 = i��A
S
*âpŜ† − i��ASâp

†Ŝ �13�

and the evolution of the fields is given by

âp
�out� = âp cos��AS�� + ej�SŜ sin��AS�� ,

Ŝ�out� = Ŝ cos��AS�� − ej�Sâp sin��AS�� . �14�

Here ej�S ��A
S
* / ��AS�. Note that Eq. �14� is similar to Eq.

�10� of Ref. �8�, but in a different language. Similar to Eq.
�9�, when ��AS��=� /2 and �S=0, we have a complete con-

version from light to atom and vice versa: Ŝ�out�=−âp, âp
�out�

= Ŝ.

In the transfer from light to atom with Ŝ�out�=−âp, a pho-
ton in the âp field is annihilated and is transferred to one of
the atoms in the ensemble in the metastable state �1	m:

Ŝ†�0	m= �1 /
Na��i�m	i. In the reverse process, the atomic ex-
citation can be converted back to a photon, which may have
a different frequency from the original one if the strong AS�
field is in a different frequency. Through the whole process,
light is stored in the atomic ensemble and retrieved. If the
retrieved photon has the same frequency as the original one,
we have the phenomenon of light stoppage, inasmuch the

ASap

| g | m

(a)

∆
AS ap

| g

(b)

∆

| m

FIG. 1. Raman process with a strong Stokes for efficient con-
version between photon and atom. �a� Conversion from photon to
atom. �b� The reverse process of photon retrieval.

EFFICIENT CONVERSION BETWEEN PHOTONS AND… PHYSICAL REVIEW A 78, 023819 �2008�

023819-3



same way as the phenomenon of light stoppage with the EIT
effect �8–12�. Notice the difference between the two phe-
nomena: the EIT effect requires resonance between light
fields and atomic states �� ,��=0�. Furthermore, the control
light needs to be the same field in EIT; i.e., the retrieval field
is the same one as the initial writing field, while in the Ra-
man scheme discussed here, they may be different. The input
and output quantum fields may also be different, thus realiz-
ing a frequency converter.

The practical implementation of the above frequency con-
version scheme is very similar to the experimental realiza-
tion of the DLCZ scheme �5–7�, but with, of course, different
parameters. We will need a quantum field for conversion in
addition to the write field. The read part is exactly the same.
The storage time depends on the decoherence time of the �m	
state of the atomic ensemble.

In the above discussion, the retrieved and converted light
�Fig. 1�b�� is a confirmation of the existence of the atomic
state of Ŝ†�0	m= �1 /
Na��i�m	i, which is the result of the first
conversion process from the photonic state to the atomic
state �Fig. 1�a��.

It is interesting to note that when we discuss the quantum-
state conversion from the photon field of âp to the spin wave
Ŝ, âp satisfies the bosonic commutation relation �âp , âp

†�=1,
whereas Ŝ does not: �Ŝ , Ŝ†�=�i��g	i�g�− �m	i�m�� /Na�1. So
how can we transfer the quantum state between the two dif-
ferent waves? In fact, if the atomic system is prepared in the
ground state �g	 and the number of photons for conversion is
much smaller than Na so that ��i�m	i�m�	�Na and
��i�e	i�e�	�Na, we may make the approximation �Ŝ , Ŝ†�
��i��g	i�g�+ �m	i�m�+ �e	i�e�� /Na=1. Therefore, the spin
wave field Ŝ can be treated as a bosonic field and be ex-
changed with a photonic field.

We used a simplified and idealized model for the Raman
process considered here. In practice, there may be other pro-
cesses that take place concurrently during laser-matter inter-
action, such as four-wave mixing. However, the Raman pro-
cess is considered to be the dominant one as long as the
two-photon Raman condition �p−�S=�mg is satisfied and
there is a large detuning �
�e from the intermediate state
�e	. There is another process that may influence the one un-
der consideration—that is, the spontaneous Raman scattering
for the strong Stokes field; i.e., the strong Stokes field may
itself act as a pump and produce another Stokes field spon-
taneously. But this spontaneous process takes little energy if
any from the strong field and thus has a small effect on the
main Raman process. We do not consider the propagation
effect here, either. For example, there will be a temporal
walk-off problem between the Stokes pulse and the pump
pulse due to dispersion. But if we make the pulse duration
long enough, such an effect is negligible.

The three-wave mixing scheme discussed in the previous
section can also be applied to the Brillouin scattering pro-
cess, where light is scattered by a sound wave �22�. So one of
the waves in three-wave mixing is a sound wave or phonon
wave. The related Hamiltonian has the form of

ĤB = i��âpâs
†b̂pn

† − i��*âsb̂pnâp
†, �15�

where b̂pn is the phonon annihilation operator for the sound
wave. âs and âp represent the scattered and incoming light

fields, respectively. Energy conservation requires �p=�s
+�, where � is the frequency of the phonon.

There are two situations in this case. The first one is simi-
lar to Raman scattering process discussed above. Here we
can convert photon waves to phonon waves via stimulated
Brillouin scattering �22� when there is a strong stimulating
field at �s. Like before, when the intensity of the stimulating
field is strong enough we can achieve photon-to-phonon con-

version âp→ b̂pn with unit efficiency and vice versa. This
was recently demonstrated by Zhu et al. �24� in light storage
in an optical fiber. Note the conversion is a quantum field
conversion. So it applies to photonic quantum-state storage.

The second situation realizes a frequency conversion pro-
cess of light, âp↔ âs or �p↔�s, when the sound wave is
strong. This situation is actually just the acoustic optical
modulation �AOM� process commonly used for frequency
shift in optics �25�. Because the conversion is at the level of
quantum fields, we have just shown that the AOM process
preserves the quantum nature of the fields.

V. APPLICATION TO FOUR-WAVE MIXING: EFFICIENT
CONVERSION BETWEEN A SINGLE-PHOTON

STATE AND A TWO-PHOTON STATE

Next, we apply the same idea to a four-wave mixing pro-
cess and demonstrate how we can convert a two-photon state
to a single-photon state and vice versa with unit efficiency.
The Hamiltonian for near-degenerate four-wave mixing is
given by �22�

ĤIV = ��3�âp
2âs

†âi
† + ��3�*âsâiâp

†2, �16�

where âp is traditionally the strong pump field and may be
treated as classical waves of amplitude Ap. Then we have the
traditional four-wave mixing Hamiltonian

ĤFWM = i��âs
†âi

† − i��*âsâi, �17�

with ����3�Ap
2 / i�. The four-wave mixing Hamiltonian dis-

cussed above has been realized in a dispersion-shifted fiber
system �26� and a photonic crystal fiber system �27�.

Now similar to Eq. �8�, we let the signal field be strong
and the Hamiltonian becomes �see Fig. 2�

ĤH = ��3�*Asâiâp
†2 + H.c. �18�

This is the Hamiltonian for harmonic generation. But unlike
traditional harmonic generation, the coupling coefficient is
enhanced by the As field. This enhancement is due to stimu-
lated emission. Moreover, the frequencies of the fields are
related by �i=2�p−�s and can be arbitrary depending on
that of the strong signal field �in harmonic generation, we
have �i=2�p, instead�.

Let us now show that, by the Hamiltonian in Eq. �18�, we
may achieve high conversion efficiency from two-photon
events in the âp field to single-photon events in the âi field, in
analogy to the efficient conversion between photons from the
Hamiltonian in Eq. �8� and between photon and atom from
the Hamiltonian in Eq. �13�. To demonstrate this, we apply
the Hamiltonian in Eq. �18� to an input state of �0	i�2	p. The
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unitary operator from the Hamiltonian in Eq. �18� is given by

ÛH = exp��âiâp
†2 − H.c.� , �19�

with ����3�*As� / i�. The output state is then

��out�	 = exp��âiâp
†2 − H.c.��0	i�2	p. �20�

By using the relations

��âiâp
†2 − H.c.��0	i�2	p = − 
2�*�1	i�0	p,

��âiâp
†2 − H.c.�2�0	i�2	p = − 2���2�0	i�2	p, �21�

we obtain

��out�	 = cos ��0	i�2	p − e−j� sin ��1	i�0	p, �22�

with ��
2��� and e−j���* / ���. When �=� /2, we achieve
the unit conversion efficiency from �0	i�2	p to �1	i�0	p. Note
that the two photons in the âp field are completely annihi-
lated. Thus we dub this process a “two-photon annihilator.”
Likewise, for the input state of �1	i�0	p, we can easily show
that

��out��	 = exp��âiâp
†2 − H.c.��1	i�0	p

= cos ��1	i�0	p + ej� sin ��0	i�2	p. �23�

The unit conversion efficiency is achievable for transferring
�1	i�0	p back to �0	i�2	p. This is a perfect “photon doubler”
from one photon in âi to two photons in âp �see Fig. 2�.

The two-photon annihilator and photon number doubler
described above have many interesting applications. For ex-
ample, when a weak coherent state of the form ��	��0	
+��1	+ ��2 /
2��2	 passes through the two-photon annihila-
tor, the two-photon term will vanish, leading to an anti-
bunched photon state. This idea was proposed before with a
two-photon absorber �28,29�, but because of the low two-
photon absorption efficiency, the antibunching effect is not
significant. An improved scheme based on the two-photon
interference effect was recently used to cancel out the two-
photon term in a weak coherent state �30�. But that scheme is
extremely sensitive to the mode match between participating
quantum fields due to the interference effect. Although the
current scheme also depends on mode match for a large cou-
pling coefficient ��3�, the coefficient can always be compen-
sated from As because ����3�*As. The two-photon annihila-
tor can also be used to generate two-photon holes by taking
out the photons from a coherent state �31�. The correlated
two-photon hole state may have interesting properties for
applications in quantum information.

For a three-photon state input to the mode âp in the sys-
tem with the Hamiltonian in Eq. �18�, we can show that the
output state has the form of

��out��3�	 = cos ���0	i�3	p − e−j� sin ���1	i�1	p, �24�

where ��=
6���. Unit conversion efficiency can be achieved
when ��=� /2, but notice the different forms of � and ��.
This process can be used to take out the three-photon state
from a coherent state in order to reduce the probability of
multiphoton events for applications in quantum cryptography
�32�.

For input states with other photon numbers, there are
more than two possibilities in the output state. So it becomes
complicated and will not be discussed here.

The two-photon doubler, on the other hand, can be used to
create multiphoton entangled states from an easily available
two-photon entangled state. To achieve this, we need to use
nondegenerate four-wave mixing with a Hamiltonian of

ĤIV
�N� = ��3�âp1âp2âs

†âi
† + ��3�*âsâiâp1

† ap2
† , �25�

where there are two pump fields. This usually occurs in a
phase conjugate mirror �33� where the two pump fields
propagate in opposite directions and the incoming signal and
the outgoing idler �conjugate counterpart� fields also travel in
opposite directions. In our current photon converter scheme,
we will have a strong signal field and the input is a single-
photon state at the idler field. Like before, a nondegenerate
photon doubler Hamiltonian of the form

ĤD
�N� = ��3�*Asâiâp1

† âp2
† + H.c. �26�

will lead to a nondegenerate photon doubler where the input
idler photon is converted to two distinguishable photons
traveling in opposite directions �Fig. 3�—i.e., �1	i
→ �1	p1�1	p2.

If the input state is a nondegenerate two-photon entangled
state �2,�	��0	+��1	a�1	b from parametric down-conversion
�����1�, by using the nondegenerate photon doubler on the
two photons, respectively, we can create a four-photon en-
tangle state of �4,�	��0	+��1	a1�1	a2�1	b1�1	b2 �see Fig. 4�.
Cascading the process further down the line, entangled states
with six and more even-number photons can be generated
with high efficiency. This state will be extremely useful for
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FIG. 2. Near-degenerate four-wave mixing for a �a� two-photon
annihilator and �b� photon doubler.
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FIG. 3. Nondegenerate four-wave mixing for a nondegenerate
photon doubler.
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FIG. 4. Nondegenerate photon doubler for the generation of
multiphoton entangled states from parametric down-conversion.
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multibit quantum-information processing. Furthermore, by
using the Raman process discussed before to convert the
multiphoton entangled states to atomic states, we should be
able to create entangled states of multiple atoms.

VI. SUMMARY

In this paper, we discussed quantum-state conversion in
various three-wave mixing processes, including optical
waves, Raman atomic spin waves, and sound waves. It was
shown that the quantum state can be converted from one
medium to another with unit efficiency under certain condi-
tions, thus realizing quantum-information transfer among

different media for communication and storage. When the
same idea is applied to a four-wave mixing process, we can
achieve unit conversion efficiency between a single-photon
state and a two-photon state. For a nondegenerate four-wave
mixing process, this is an efficient method for creating mul-
tiphoton entangled states from the popular two-photon state
in parametric down-conversion.
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