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An extended Dicke model, which includes atom-atom interactions and a driving classical laser field, is
established for a Bose-Einstein condensate inside an ultrahigh-finesse optical cavity. A feasible experimental
setup with a strong atom-field coupling is proposed, where most parameters are easily controllable and thus the
predicted a second-order superradiant-normal phase transition may be detected by measuring the ground-state
atomic population. More intriguingly, second-order phase transition from the superradiant phase to the “Mott”
phase is also revealed. In addition, a rich and exotic phase diagram is presented.
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As is known, a trapped Bose-Einstein condensate �BEC�
may be used to generate a macroscopic quantum object con-
sisting of many atoms that are in the same quantum state
with a longer lifetime and can be excited by either deforming
the trap or varying the interactions among atoms. Thus the
BEC, as a distinct macroscopic quantum system, plays an
important role in the in-depth exploration of both fundamen-
tal physics and quantum device applications of many-body
systems �1�. In particular, an intriguing idea to combine the
cavity quantum electrodynamics �QED� with the BEC has
recently attracted significant interests both theoretically and
experimentally as many exotic quantum phenomena closely
related to both light and matter at ultimate quantum levels
may emerge �2–9�. Very recently, a so-called strong coupling
of a BEC to the quantized field of an ultrahigh-finesse optical
cavity was realized experimentally �9�, which not only im-
plies that a challenging regime of cavity QED has been
reached, where all atoms occupying a single mode of a
matter-wave field can couple identically to the photon in-
duced by the cavity mode, but also opens a wider door to
explore a variety of different quantum phenomena associated
with the cavity-mediated many-body physics of a quantum
gas.

In this paper, we establish an extended Dicke model with
controllable atom-atom interactions via Feshbach resonance
�10� and a driving classical laser field under the two-mode
approximation. A feasible experimental setup with control-
lable parameters including a collective strong atom-field cou-
pling is proposed. We illustrate how to drive a well-known
second-order superradiant-normal phase transition and how

to detect it experimentally. Remarkably, this superradiant
phase transition was predicted in quantum optics many years
ago, but has never been observed in experiments �11�. More
intriguingly, a second-order superradiant-to-“Mott” phase
transition is also revealed. This so-called Mott state is not a
regular Mott state specified in lattices, as will be seen later.
In addition, we also obtain a rich and exotic phase diagram
covering phenomena from quantum optics to the BEC, which
is attributed to the competition between the atom-atom and
the atom-field interactions.

Our proposed experimental setup is depicted in Fig. 1. For
an optical cavity with length 176 �m and the mode waist
radius 27 �m, we may choose the parameters of the cavity
�g0 ,� ,��=2�� �10.6,1.3,3� MHz �9�, where g0 is the maxi-
mum single atom-field coupling strength, and � and � are the
amplitude decay rates of the excited state and the intracavity
field, respectively. Such a choice implies that the system is in
the strong-coupling regime, and thus the long-range coher-
ence could be well established and the quantum dissipation
effect may be safely neglected. Based on a pair of coupled
Gross-Pitaevskii equations for the BEC with two levels
�F=1, mf =−1� ��1�� and �F=2, mf =1� ��2�� of 5 2S1/2 �12�
and, under the two-mode approximation, the total Hamil-
tonian for elastic two-body collisions with interaction poten-
tial of �-functional type may be written as

Ĥ = Hph + Hat-ph + Hat + Hat-cl + Hat-at �1�

with Hph=�a†a ��=1 hereafter�, Hat=�1c1
†c1+ ��2+�12�

c2
†c2, Hat-at=	1c1

†c1
†c1c1 /2+	2c2

†c2
†c2c2 /2+
c1

†c1c2
†c2, Hat-cl

=��c2
†c1 exp�−i�t�+c1

†c2 exp�i�t�� /2, and Hat-ph= 
̃�c1
†c2

+c2
†c1��a†+a�, where a is the annihilation operator of the

cavity mode with frequency �; c1 and c2 are the annihilation*zwang@hkucc.hku.hk
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boson operators for �1� and �2�, respectively; �l

=�d3r��
l
*�r�	�−�2 /2mR+V�r���l�r� �l=1,2� with V�r� be-

ing a single magnetic trapped potential of frequencies �i
�i=x ,y ,z� and mR being the atomic mass; �12 is the atomic
resonance frequency; 	l= �4��l /mR��d3r��l�r��4 and 

= �4��1,2 /mR��d3r��1�r��2��2�r��2 with �l and �1,2 �=�2,1� be-
ing the intraspecies and interspecies s-wave scattering
lengths, respectively; �=2�0�d3r �

2
*�r��1�r� with �0 being

the Rabi frequency for the introduced classical laser with a

driving frequency �; and 
̃= g̃�d3r �
2
*�r��1�r�

= g̃�d3r �
1
*�r��2�r� with g̃ being the interaction constant be-

tween the atom and the photon �13�.
Under a unitary transformation U=exp�−i�Jzt� with the

condition ��� and using the Schwinger relations Jx
= �c2

†c1+c1
†c2� /2, Jy = �c1

†c2−c2
†c1� /2i, and Jz= �c1

†c1−c2
†c2� /2

with the Casimir invariant J2=N�N /2+1� /2, the Hamil-
tonian �1� can approximately be rewritten as

H = �a†a +




N
Jx�a† + a� + �0Jz + �Jx +

v
N

Jz
2 �2�

in the rotating frame, where 
=2
̃
N denotes the collective
coupling strength, v=N��	1+	2� /2−
� describes the atom-
atom interactions including the repulsive �v�0� and attrac-
tive �v�0� interactions, and �0=�2−�1+ �N−1�
�	2−	1� /2+� with �=�12−� being the detuning. For a
single trapped potential, we have �2=�1 and consider only
the case of �1=�2, which has the advantages that it reduces
the effects of fluctuations in the total atomic number and
ensures a large spatial overlap of different components of the
condensate wave function. Thus, the parameters v and �0
can further be reduced to v=N�	1−
� and �0=�. Equation
�2� is a key result, which describes the collective dynamics
for the composite system and has a rich phase diagram. Here
we refer to this equation as an extended Dicke model since it
contains an extra laser field term �the fourth one� and a “di-
rect” atom-atom interaction term �the fifth one� in compari-
son with the standard Dicke model �11� and its generalized

version �14�. Note that the nonlinear atom-atom interaction
was also considered in Ref. �9�, where it is incorporated
through the atom–laser-field coupling, with the overlap be-
tween the cavity mode and the BEC order parameter distri-
bution being evaluated by numerically solving the Gross Pi-
taevskii equation. As a result, the model established there is
actually a kind of standard Dicke model.

A distinct property of the Hamiltonian �2� is that all pa-
rameters can be controlled independently. For example, the
effective coupling strength 
 can be manipulated by a stan-
dard technique. The effective Rabi frequency � and the de-
tuning � depend on the experimentally controllable classical
laser, and, in particular, the detuning � can vary continuously
from red ���0� to blue ���0� detunings. The parameter v
ranging from positive to negative is determined by the
s-wave scattering lengths via the Feshbach resonance tech-
nique �10�. For v=0 ��1,2=�1� and �=�=0, the Hamil-
tonian �2� is reduced to the standard Dicke model with a
second-order superradiant phase transition at the critical
point 
c=
��0 �15�. It should be noticed that this important
prediction has never been observed in experiments. The main
difficulties are likely �i� all atoms can hardly interact identi-
cally with the same quantum field; �ii� the frequencies � and
�0 typically exceed the coupling strength 
 by many orders
of magnitude; �iii� it is hard to control the parameters as
demanded. However, in our proposal, these difficulties could
be completely overcome by using the currently available ex-
perimental techniques of BEC, as will readily be seen below.

To explore quantum phases and their transitions, we now
investigate the ground-state properties of the Hamiltonian
�2�, which can approximately be dealt with by using the
Holstein-Primakoff transformation, J†=b†
N−b†b,
J−=
N−b†bb, and Jz= �b†b−N /2� with �b ,b†�=1. Here we
introduce two shifting boson operators c†=a†+
N� and d†

=b†−
N� with auxiliary parameters � and � to describe the
collective behaviors of both the atoms and the photon �15�.
With the help of the boson expansion method, the scaled
ground-state energy is given by E0�� ,h� /N=��2−2
��h2

−1 /2�+�h
1−h2+��h2−1 /2�+vh2�1−h2� with h
1−h2

=�2−1 /2 �1 /2�h2�1�. The critical points can be deter-
mined from the equilibrium condition ��E0�� ,h� /N� /��=0
and ��E0�� ,h� /N� /�h�dh /d�=0, which leads to two equa-
tions: �=
�	2−1� /2��	2+1� and

2�u + v�	�1 − 	2� + 2�	�1 + 	2� + ��1 − 	4� = 0, �3�

where 	=h /
1−h2 and u=
2 /� are introduced as new pa-
rameters for convenience. The coefficient �u+v� describes
the intrinsic competition between the atom-atom and the
atom-field interactions and gives rise to some exotic phase
transitions predicted in the following.

Equation �3� contains the basic information about quan-
tum phases and the corresponding transitions. As a bench-
mark, we first address the simplest case that there is no non-
linear interaction among atoms, namely, v=0 ��1=�1,2�.
Figure 2 shows the scaled ground-state energy E0 /N and
atomic population �or equivalently “magnetization”� m /N as
a function of the detuning � for different Rabi frequencies
���. It can be seen clearly that in the limit �→0 this system
exhibits collective excitations of both the atom and the field

Driving classical laser

Photon
counter

BEC

�
�

2

1

�

FIG. 1. �Color online� Schematic diagram of an experimental
setup for a BEC of 87Rb atoms coupled to a QED cavity. The BEC
with two levels �1� and �2� is prepared in a time-averaged, orbiting
potential magnetic trap. After moving the BEC into an ultrahigh-
finesse optical cavity, an external controllable classical laser is ap-
plied to produce various transitions of the atoms between �1� and �2�
states.
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with macroscopic occupations �i.e., �m /N��1 and �a†a��0�
for −u���u, whereas there are no such excitations for �
�u and ��−u �the solid black line�. This interesting behav-
ior typically indicates a second-order superradiant phase
transition in quantum optics with the critical point �c= �u
�15�. Moreover, here we may achieve the condition that the
order of magnitude of 
 is the same as that of 
�� by con-
trolling the detuning of the classical laser. By controlling
� /u�1 and evaluating a partial derivative of m with respect
to � �or ��, if a peak is detected in the derivative, which
becomes sharper and sharper if � becomes smaller and
smaller, a second-order superradiant phase transition at �
=0 is indicated, even though the transition disappears at a
finite Rabi frequency �. In view of this, our proposed com-
posite system with a controllable classical laser is a promis-
ing candidate for exploring cavity-induced superradiant
phase transitions by measuring the ground-state atomic
population via resonant absorption imaging �12�.

On the other hand, the nonlinear interactions among at-
oms controlled by the Feshbach resonance technique play an
important role for the ground-state properties. Figure 3 plots
a zero-temperature phase diagram for the atom-atom interac-
tion strength v and the detuning � with a Rabi frequency in
the framework of the mean field. The table lists the corre-
sponding ranges of the mean intracavity photon number
�a†a�, the atomic population �Jz�, and the “susceptibility”
��Jz� /�v for three different quantum phases. In the case of a
repulsive interaction �v�0�, the critical point becomes �c
= � �u+v�, which implies that an effective atom-field inter-
action is enhanced, while in the weak-attractive-interaction
case �−u�v�0�, the effective interaction is suppressed.
However, the basic features of the superradiant phases re-
main. In particular, in the case of v=−u, this system exhibits
a second-order phase transition from the superradiant to the
Mott phases �red �leftmost vertical� line� �16�. The relevant
physics can be intuitively understood as follows. In an opti-
cal cavity with ��
, the cavity mode is only weakly or
virtually excited, and the energy term �a†a+ �
 /
N�Jx
�a†+a� is therefore nearly equal to −uJx

2 /N. If v�−u, the

ground-state properties are governed by the energy −�u
+v�Jx

2 /N+�Jz+�Jx. The effective potential in the Landau-
Ginzburg theory is a double-well potential with photon-
assisted Josephson tunneling, which means that this system
is located in the superradiant phase. If −u−��v�−u, the
energy −�u+v�Jz

2 /N+�Jz+�Jx is dominant and the corre-
sponding effective potential is a single-well potential with no
internal Josephson tunneling, leading to the same atomic
numbers for the two levels �m=0�; this may be referred to as
the Mott phase �17�. Also, when v is decreased, a second-
order phase transition from the Mott to the superfluid phase
�blue �diagonal� line� occurs at the critical point vc=−u
− ��2/3+�2/3�3/2. In the so-called superfluid case, the effec-
tive potential is another double-well potential with internal
Josephson tunneling induced by the attractive interaction
�17�. It should be pointed out that these three different phases
can be distinguished experimentally by measuring the atomic
population �Jz� and the susceptibility ��Jz� /�v. In the limit
�→0, this predicted second-order phase transition from the
superradiant to the Mott phase becomes a direct transition
from the superradiant to the superfluid phase with the same
order at the critical point vc=−u and �=0.

Although the second-order superradiant phase transition
disappears in the strong attractive interaction �v�−u�, an-
other interesting phase transition �from the phase with non-
zero macroscopic occupation of level 1 to that of level 2� in
the superfluid regime emerges when the detuning � changes
from negative to positive �i.e., from red to blue detuning�.
Figure 4 shows the scaled atomic population m /N versus �
for different �’s. We see that a first-order phase transition
occurs at �=0 within the superfluid phase regime, which is
simply the transition from the state �Jz�=m /N to the other
state �Jz�=−m /N, and moreover this first-order phase transi-
tion exists until �c= �u+v� �red dashed line�. For �=�c, it
becomes a second-order phase transition with the same criti-
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FIG. 2. �Color online� Scaled ground-state energy E0 /N and
atomic population m /N �inset� versus the detuning � for different
Rabi frequencies ��� at v=0.
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FIG. 3. �Color online� Zero-temperature phase diagram of the
detuning � and the atom-atom interaction strength v with a Rabi
frequency �. The blue �diagonal� line is determined by
�= � ��u+v�2/3−�2/3�3/2. Two interesting second-order phase tran-
sitions occur when crossing the red �leftmost vertical� and blue
�diagonal� lines. Note that this phase diagram is symmetric with
respect to ��0, simply because the Hamiltonian �2� is invariant
under the transformation �=−� and Jz=−Jz. The lower table de-
notes three different quantum phases. Here, SF is the “superfluid”
phase, M the Mott phase, and SR the superradiant phase; P indicates
phase, and O the order parameter.
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cal point. For ���c, no phase transition is seen when � is
varied.

We now estimate the energy scales for the parameters in
the Hamiltonian �2� to address the experimental feasibility.
Under the two-mode approximation, the wave functions of
the macroscopic condensate states for a single magnetic trap
may roughly be approximated by �l�r�
=�−3/4�dxdydz�−1/2 exp�−�x2 /dx

2+y2 /dy
2+z2 /dz

2� /2� with dx

=
1 /mR�x, dy =
1 /mR�y, and dz=
1 /mR�z. Hence, the
atom-atom interaction strength can be estimated by v
=N��1−�1,2� /
2�dxdydzmR. For the typical values
��x ,�y ,�z�=2�� �290,43,277� Hz, �1=4.2 nm, �1,2
=9.7 nm, and mR=1.45�10−25 kg, the energy scale of v is
about −0.238 MHz with N=5�104, which ensures that the
error �the order of 1 /
N� for determining the ground-state
properties by means of the Holstein-Primakoff transforma-

tion is very low. The effective coupling strength 
=2
̃
N

=2.81�104 MHz for 
̃=2��10 MHz �9� is indeed in the
strong-coupling regime. The energy scale for u is about
0.315 MHz for �=2.51�109 MHz �9�, which can be ad-
justed by controlling the frequency of photon. These energy
scales for u and v imply that the intrinsic competition be-
tween the atom-atom and atom-field interaction should be
taken into account seriously in a BEC coupled to an optical

cavity. Also note that the aforementioned condition ��� is
well satisfied once � is tuned around �12, since �12�6.8
�103 MHz�� �12�.

Finally, we elaborate briefly on how to probe the pre-
dicted phase transitions experimentally. From the condition
�=
�	2−1� /2��	2+1� with 
=2.81�104 MHz and �
=2.51�109 MHz, we can immediately evaluate the maxi-
mum of the scaled mean intracavity photon number �a†a� /N
and find it to be much less than the critical intracavity photon
number nc=�2 /2g0

2=0.04. Therefore, one is able to perform
the transmission spectroscopy measurement with a weak
probe laser to obtain the ground-state energy spectrum and
atomic population since different quantum phases are, in
general, characterized by their specific dispersion relations.
The transmission �of this probe laser through the cavity� ver-
sus the detuning may be monitored and/or detected by count-
ing photons out of the cavity. Only when the probe laser
frequency matches a system in resonance, the corresponding
transmission is anticipated �18�.

Before concluding this paper, we wish to remark briefly
the transition from the normal phase to the superradiant
phase. In the derivation of Hamiltonian �1� and �2�, the A2

term �where A is the vector potential� has been neglected, as
done in Refs. �14,15�, etc., while the absence of the A2 term
seems to be crucial for the existence of quantum criticality in
the present model, namely, the presence of a larger A2 term
in the model Hamiltonian may lead to vanishing of the criti-
cality �19�. Although whether it could be omitted is still de-
batable, such a debate is not a serious concern in our pro-
posal since the physical phases in the cavity QED systems
considered here may not be sensitive to its omission �20�.

In summary, we have established an extended Dicke
model and designed an experimental setup with controllable
parameters. An exotic phase diagram has been obtained, that
covers various phenomena from quantum optics to the BEC
and reveals particularly several quantum phase transitions.
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