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We analyze the information content of density profiles for an ultracold Bose gas of atoms and extract
resolution limits for observables contained in these images. Our starting point is density correlations that we
compute within the Bogoliubov approximation, taking into account quantum and thermal fluctuations beyond
mean-field theory. This provides an approximate way to construct the joint counting statistics of atoms in an
array of pixels covering the gas. We derive the Fisher information of an image and the associated Cramér-Rao
sensitivity bound for measuring observables contained in the image. We elaborate on our recent study on
position measurements of a dark soliton �Negretti et al., Phys. Rev. A 77, 043606 �2008�� where a sensitivity
scaling with the atomic density as n−3/4 was found. We discuss here a wider class of soliton solutions and
present a detailed analysis of the Bogoliubov excitations and the gapless �Goldstone� excitation modes. These
fluctuations around the mean field contribute to the noise in the image, and we show how they can actually
improve the ability to locate the position of the soliton.
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I. INTRODUCTION

de Broglie waves of massive particles are very sensitive
to perturbations and may serve as efficient probes for elec-
tromagnetic fields �1�, Earth’s rotation �2�, Casimir forces �3�
�or in general to detect weak forces �4��, and particle prop-
erties as, for example, the refraction index of a buffer gas �5�
or the electric polarizability of an atom �6�. In interferometry,
disturbance of the phase of light or matter waves in one arm
of the interferometer can be measured by a displacement of
the interference fringes with a sensitivity determined by the
fringe wavelength and the signal-to-noise ratio �SNR�. The
SNR is under many circumstances given by the standard shot
noise, leading to a resolution that scales with 1 /�N, where N
is the number of detected atoms.

The shot noise limit, however, can be beaten with en-
tanglement and squeezing �7�, proving that it is not a funda-
mental limit and in the scenario of Ref. �8�, for example, a
particular entangled preparation scheme has been shown to
give a phase error scaling as 1 /N3/4, while in principle the
Heisenberg limit should provide the optimum sensitivity
with a phase error scaling as 1 /N �9�. Many analyses of
nonclassical metrology with quantum objects have dealt with
the situation of particles or fields that may be prepared in
suitably entangled states, and entangled measurements may
be used after they have experienced the interaction of interest
�10�. Conversely, entanglement created by many-body inter-
actions improves the precision of estimating the correspond-
ing coupling constant, as discussed recently �11,12�.

In this paper we arrive at a 1 /N3/4 scaling for a displace-
ment measurement with particles that are, however, not en-
tangled at all. We consider a system of bosonic atoms, which
are cooled to Bose-Einstein degeneracy and prepared in a
joint collective quantum state, described by mean-field

theory, i.e., by a Hartree-Fock product state wave function.
We take for the latter a dark soliton, a topological excitation
stabilized by atom-atom interactions. The soliton has a den-
sity minimum at a location q, and this position can be used to
monitor the phase acquired in an atomic matter wave inter-
ferometer in the nonlinear regime �13–15�. A recent experi-
ment has demonstrated the relevance of the relative phase in
splitting and recombining a Bose-Einstein condensate
�BEC�, although the direct observation of solitons was not
possible �16�. In a similar way, very recent experiments have
generated solitons that oscillate and collide in a harmonic
trap, in the crossover regime between one dimension �1D�
and three dimensions �3D� �17�. As we have shown in a
recent paper �18�, the decrease of the soliton width with the
number of atoms �a nonlinear effect� gives rise to an im-
proved position resolution, surpassing the shot noise thresh-
old, when more and more particles are used for the experi-
ment.

Atom clouds are typically analyzed by taking �pixelized�
absorption or phase contrast images, giving access to the
atomic density profile. If one wants to measure some quan-
tity of interest, the resolution is limited by the fluctuations in
the image due to counting noise on every pixel. We charac-
terize these fluctuations and specify how to extract, in an
�almost� optimal way, information from the noisy data. It
turns out that the quantum fluctuations beyond the Hartree-
Fock product state actually do not spoil the image resolution,
but even improve it slightly, although the power-law scaling
with the atomic density ��n−3/4� is unchanged. In this paper,
we present a description of these elements of the theory,
providing a number of technical ingredients and details that
were only briefly mentioned in Ref. �18�.

In Sec. II, we introduce the quantum image of an atomic
cloud, define the associated Fisher information �FI�, and re-
call its connection to optimal parameter estimation, starting
from the image data. We treat solitons and vortices in a
mean-field description with Poissonian counting statistics,
and we introduce a general Gaussian ansatz for the counting*negretti@phys.au.dk
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statistics within an image, for which the Fisher information
can be determined analytically. Different scalings with the
atomic density are identified that range between the shot-
noise and the Heisenberg limits, depending on the system
dimension and the kind of nonlinearity. In Sec. III, a quan-
tum field theory of atomic density correlations is developed
within the Bogoliubov approximation. We provide a discus-
sion of the role of phonon and zero �or Goldstone� modes,
and we present detailed calculations for the density fluctua-
tions in the image of a dark soliton. The location of the
soliton is, due to the breaking of translational symmetry of
the problem, itself associated with a Goldstone mode, and
the corresponding contribution to particle fluctuations are
analyzed. In this section, we also construct a nearly optimal
protocol for image processing. In Sec. IV we give a brief
summary and conclusion.

II. MEAN-FIELD IMAGES

A. Atom density statistics

The continuous popularity of cold quantum gas physics is
due, in part, to the possibility of measuring atomic density
profiles by fluorescence or absorption imaging. Adopting the
language of second quantization, the corresponding observ-
able is the intensity or density operator,

n̂�x� = �̂†�x��̂�x� , �1�

integrated along a line of sight. �We shall omit this integral in
the following.� An “image” thus corresponds to a set of mea-
sured densities ���x� �x	. Averaging over many images, one
gets an estimate for the expectation value �̄�x�= 
n̂�x��. If the
detector integrates the density signal over some small, but
finite area apx�s� �the “pixel” no. s=1,2 , . . . ,M�, one deals
with a discrete set of operators like

n̂s = �
apx�s�

dxn̂�x� . �2�

Correlations between the atomic density in different points
are related to the field operator in the following way, using
the bosonic commutation relations:


n̂�x�n̂�x��� = 
�̂†�x��̂†�x���̂�x���̂�x�� + 
n̂�x����x − x�� .

�3�

This quantity defines the density correlation function

P�x,x�� = 
n̂�x�n̂�x��� − 
n̂�x��
n̂�x��� �4�

that will play a key role in this paper.
Let us illustrate these concepts for the case that the quan-

tized field operator �̂�x� can be reduced to a single mode.
This is a common approximation at low temperatures where
a macroscopic fraction of atoms condenses into a single spa-

tial wave function. The operator �̂�x� is then replaced by a
single annihilation operator â0 multiplying a classical com-
plex field ��x�, and the average density is given by


n̂�x�� = N0���x��2, �5�

where N0= 
â0
†â0� is the number of atoms in the “condensate

mode” ��x� �itself normalized to unity�. The density corre-
lations, essentially the structure factor of the system �19�, are
found as

P�x,x�� = ��N0
2 − N0����x��2���x���2 + N0���x��2��x − x�� .

�6�

The first term, proportional to the Mandel parameter �20�,
vanishes if the system is in an eigenstate of the operator â0,
i.e., a coherent state �Poisson statistics�. The second term
describes local fluctuations at the same position �for an im-
age: in the same pixel�, with a variance that is equal to the
mean density �the mean atom number on the pixel�.

It is intuitively clear that when more than a single spatial
mode is taken into account in the field operator expansion,
valuable information about the field’s quantum state is hid-
den in the correlations of the atomic density �21�. This has
been discussed recently for the Mott insulator-superfluid
transition �22,23� and exploited in measurements on the
strongly correlated Mott insulator phase with ultracold 87Rb
atoms released from an optical lattice �24�. Excited modes
also introduce additional fluctuations into an image, how-
ever. The competition between these two effects will be the
central theme of this paper.

B. Parameter estimation

1. Information measures

The full joint probability distribution of the atom numbers
in every pixel provides the complete “counting statistics” of
an image. The information content of an image is given by
the counting statistics via the classical information entropy I,
which for a pixelized image is given by �e.g., see �25��

I = − 

�1,. . .,�M

p���s	�log p���s	� . �7�

In Eq. �7�, p���s	� is the joint probability measure for the
occurrence of detection events with �s atoms detected in
pixel apx�s� �M is the total number of pixels�.

A particular application of this information concept ap-
pears when we want to estimate a parameter q “hidden” in
the image, i.e., the counting statistics is a function p���s	 ;q�
of the parameter q, referred to as the likelihood function �LF�
in statistical estimation theory. The hidden parameter can be
the fraction of particles in the condensate mode, the width of
the cloud, or the position of a “solitonic” excitation, i.e., the
location of a minimum in the density profile. This will be our
example throughout the analysis. Information processing
theory provides an explicit formula for the optimal signal-to-
noise ratio in measuring q. It can be translated into a lower
limit on the variance, the Cramér-Rao bound �CRB�,
Var�q��1 /F�q�. Here, the Fisher information F�q� is given
by �25,26�
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F�q� = − 

�1,. . .,�M

p���s	;q�
�2 log p���s	;q�

�q2 . �8�

In a quantum mechanical framework, the FI has a geometri-
cal interpretation as distance �metric�, depending on a param-
eter q, in the space of density operators �27�. The multiple
sum in Eq. �8� is difficult to evaluate in general, and we shall
focus in this paper on two schemes where the calculations
are feasible: �i� the single-mode approximation for the field
operator, assuming Poissonian atom number counting statis-
tics; and �ii� a Gaussian approximation for the probability
measure, where the results can be expressed in terms of the
average density and the density correlations. The latter
scheme will be applied to a multimode field theory within
the Bogoliubov approximation.

To estimate the parameter q we require a definite prescrip-
tion of how to extract it from the data that fluctuate from shot
to shot. We shall in particular identify an optimal prescrip-
tion that permits us to saturate the Cramér-Rao bound.

2. Poissonian counting statistics

The single-mode approximation is well-known as the
mean-field theory for BEC. We assume here that the variance
of condensate particles is normal, �N0

2=N0 �Poisson statis-
tics� so that the density correlations are given by the last term
in Eq. �6�. The mean-field theory is equivalent to a Hartree
product state ansatz for the many-body wave function. As a
result, the probability measure p���s	� factorizes into Poisso-
nian statistics for each pixel. The summation in Eq. �8� can
then be performed analytically. When we take the limit of
infinitely small pixels, one finds an integral over the spatial
coordinate of the image �28�

F�q� = 4� dx� ����x;q��
�q

�2

, �9�

where we have made the dependence of the average density
profile ���x ;q��2 on the parameter q explicit. �From here on,
the complex field � is not normalized to unit norm, but its
square gives the mean density of the condensate particles.�

The meaning of this formula can be illustrated by a dis-
cussion of the optimal signal processing strategy. Given the
image data ��x ;q�, we construct, as in Refs. �28,29�, a linear
filter g�x� to provide an estimate for q:

S�q� =� dxg�x���x;q� � q� dxg�x��q��x;0� , �10�

where g�x� is a local gain function on the pixel at position x
that can take positive and negative values. In the second step
we have assumed, without loss of generality, that the signal
vanishes when the parameter q is zero, and we have per-
formed a Taylor expansion of the density profile, ��x ;q�
���x ;0�+q�q��x ;0�. The expectation value of the signal,

S̄�q�, is simply obtained in terms of �̄�x ;q�= 
n̂�x�� and its
derivative.

The variance of the signal is found by squaring Eq. �10�
�first line� and expressing the average in terms of the density
correlation function �4�

�S2 =� dxdyg�x�g�y�P�x,y ;q� . �11�

Recalling that different pixels are uncorrelated �Eq. �6� re-
duces to its last term�, this variance reduces to

�S2 =� dxg2�x��̄�x;0� . �12�

We can now choose the gain function g�x� such that the

signal-to-noise ratio, SNR= S̄2�q� /�S2, is maximized. This
optimization problem has the following solution, as pointed
out in Ref. �29� for a coherent state of light populating a
single spatial mode:

gopt�x� =
�

���x;0��
� ����x;q��

�q
�

q=0
. �13�

Here � is a normalization constant. This gain function can
also be interpreted as an optimized spatial mode �the “noise
mode” in the language of Ref. �29��, onto which Eq. �10�
projects the image. The minimum uncertainty �q for the pa-
rameter estimation corresponds to an SNR of unity, and this
reaches the Cramér-Rao bound ��q�2�Var�q�=1 /F�q� with
F�q� given by Eq. �9�. If the wave function � were propor-
tional to �N0, we would find a shot-noise limited resolution,
�q	1 /N0

1/2. Due to atom-atom interactions, this limit can be
overcome, as we shall see.

3. Gaussian images

Given the mean atom number per pixel �̄s�q� and the �pix-
elized� density correlation matrix Psj�q� with �cf. Eq. �4��

�̄s�q� = �
apx�s�

dx��x;q� , �14�

Psj�q� = �
apx�s�

dx�
apx�j�

dyP�x,y ;q� , �15�

we may make the assumption of a joint Gaussian probability
distribution. Since a Gaussian is fully characterized by its
first and second moments the probability measure is simply
given by �25�

p��;q� =
�2
�−M/2

�det�P�
exp�−

1

2
�� − �̄� · P−1�� − �̄�� , �16�

where the vector � of length M collects the detected atom
number variables, �̄ collects the corresponding mean values,
and P is the covariance matrix with elements Psj�q�. The
likelihood function p�� ;q� depends on q through �̄s�q� and
Psj�q�.

With the ansatz �16� for the LF and by replacing the sum
over discrete particle counts by continuous integrals, the FI
is given by the following analytical expression �18�:
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F�q� =
1

2� �q
2 det�P�
det�P�

− � �q det�P�
det�P� �2

+ 

s,j
� �2�P−1�sj

�q2 Psj + 2�P−1�sj
��̄s

�q

��̄ j

�q
�� . �17�

If no correlations exist between neighboring pixels, this ex-
pression reduces to Eq. �9� for the Poisson case, provided
one takes both the limit of small pixel size and large average
atom number per pixel. This is as expected since for a large
average, Poisson and Gaussian statistics become similar. We
discuss an example taken from Ref. �18� below. Correlations
between pixels may increase or decrease the FI and make the
parameter estimate more or less precise. A detailed calcula-
tion is discussed in Sec. III C.

C. Examples: Kinks and vortices

We evaluate now the Fisher information for measure-
ments of the position of a solitonic excitation in a Bose-
condensed gas. We consider first a 1D setting where the
quantum field theory is given by the following nonlinear
evolution equation for the field operator �the Gross-
Pitaevskii equation �GPE�� �19,30�:

i�
�

�t
�̂ = �−

�2

2m

�2

�x2 + Vext + g�̂†�̂��̂ , �18�

where m is the atom mass, Vext is an external potential, and g
the binary interaction strength proportional to the s-wave
scattering length as. Within mean-field theory, the field op-
erator is replaced by the complex order parameter ��x� �the
condensate wave function or order parameter� that also sat-
isfies Eq. �18�. The mean atom density is then �̄�x�= ���x��2,
thus normalizing the order parameter to the particle density.

A family of “dark” solitonic excitations of the Bose con-
densate exists for repulsive interactions �g�0�. In the homo-
geneous case �Vext=0�, it is given by �19�

��x;q� =
�n

c
�iv + �c2 − v2 tanh�
�v��x − q��	 , �19�

which shows a local minimum in the density at the position
q�q�t�=q�0�+�t. The width of this dip is specified by

���= ��2��−1�1−�2 /c2 where �=� /�2mgn is the so-called
healing length and n is the one-dimensional “background”
density. The soliton moves with constant velocity � that does
not exceed the sound velocity c=�ng /m. For a soliton at
rest, the density is strictly zero at x=q, and the phase of the
condensate wave function increases by 
 when crossing this
point �a “kink soliton”�. The kink becomes wider and the
density dip disappears as the velocity �→ �c. The wave
function in Eq. �19� is normalized such that the atom density
asymptotically approaches the constant value of n �actually,
after a few healing lengths�. Such solitons have been created
in BEC experiments by shining a laser field on one-half of
the atomic ultracold cloud, which induced a relative phase by
the ac Stark effect �31�.

Topological excitations in two dimensions are vortices
where the phase of the wave function increases by a multiple

of 2
 when circling around a zero in the density. We discuss
an example below.

1. Dark soliton

Due to the shot noise fluctuations in the detected atoms
the density dip is washed out and one has to find a good
estimate for the kink position q. The formula �9� for the FI
within Poisson statistics can be evaluated exactly for the dark
soliton given by Eq. �19�. The result is �recall that Eq. �9�
implies the limit of infinitely small pixels�

F =
4n�2

�

v
c�arctan�v/c − c/�2v�

�2�
�v�
� − arctan� v/c

�2�
�v�
��

+
8n

3
�2 +

v2

c2�
�v� . �20�

As expected from translation invariance, after integration
over x, this does not depend on the soliton position q. In Fig.
1 we plot the minimum uncertainty �q=F�q�−1/2 of the soli-
ton position in units of the condensate healing length, as a
function of the soliton velocity �. This behavior makes good
sense: when the soliton is almost at rest, the dip is very sharp
and a precise knowledge of the soliton position can be gath-
ered; when the velocity approaches c, the dip in the density
becomes very shallow, and less information is available from
density measurements. For comparison, the dashed curve
shows the width 1 /
��� of the density dip: we see that the
measurement precision can largely exceed this value. The
maximum information is

F =
16

3�2

n

�
=

16

3

�mg

�
n3/2 for v = 0, �21�

which implies that, for a soliton at rest, the uncertainty in q
scales like n−3/4 with the background density n. As pointed
out in Ref. �18�, this is a better scaling than the usual shot
noise limit ��n−1/2�. We emphasize that this enhancement
does not require any squeezed or otherwise entangled mul-
tiatom state. It simply follows from the shorter wavelengths
that occur in a BEC matter wave interferometer due to the
atom-atom interactions.

The scaling with the density can be understood with the
following statistical argument: the atom number on a pixel of

υ/c

0 0.2 0.4 0.6 0.8 1
0

1

2

3

∆
q/

ξ

n ξ = 50

1
�

F �(υ)

1
ξκ(υ)

FIG. 1. �Color online� Soliton position uncertainty �q, in units
of the healing length �, versus soliton velocity � �c is the speed of
sound�. The scaled Fisher information is given by F�=F�2.
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area �x at position x is given by N�x�=��x��x����x��x,
assuming fluctuations at the shot-noise level. From error
propagation theory the uncertainty �q on the soliton position
q is given by

�q =
�N�x�

�d��x�/dx��x
�

�

�n�x
, �22�

where the healing length � sets the scale for the density
variation around the dip. By processing different data points
across the relevant region, this uncertainty can be reduced by
a factor 1 /�M where M �� /�x is the number of pixels
across the dip, which leads to a precision of the order of

�q ���

n
	 n−3/4. �23�

Let us now turn to the Gaussian approximation to the
likelihood function of an image and discuss the Fisher infor-
mation �17� for the dark soliton. We recover the variance and
mean of the Poisson distribution by choosing a covariance
matrix with Psj =Var��s��sj = �̄s�sj, with the variance of the
number of atoms on the sth pixel equal to its mean value
�̄s�q�.

The integral in Eq. �14� with the order parameter given in
Eq. �19� can be worked out analytically and the derivative
with respect to q performed. The FI �17�, scaled to F�=F�2,
then becomes

F� = n2�2�1 − v2/c2�2�

s

gs

�̄s�0�
+

1

2

s

gs

�̄s
2�0�� , �24�

where we have put q=0 without loss of generality and

gs = �sech2�
�v��xs + �x�� − sech2�
�v�xs�	2, �25�

�̄s�0� = n�x − 2n�2
�v��tanh�
�v��xs + �x�� − tanh�
�v�xs�	 ,

�26�

with xs=s�x, and s an integer. This expression is giving
those pixels a stronger weight where the density profile sig-
nificantly changes, as could have been expected. As a conse-
quence, pixels at the outer limits where the atomic density is
flat �already a few healing lengths away from the soliton
position q� do not contribute to the FI. We can therefore
safely assume that the soliton is located well in the interior of
a detection window for imaging, and even take the limit of
an infinitely large window. �For a discussion of the limit
�x→0, see Ref. �18�.� That is also confirmed in Fig. 2�a�:
we show the dependence of the FI on the soliton position q
within a pixel. The oscillations occur at the pixel size �x, but
for �x→0, their amplitude becomes smaller and F� is almost
flat. In Fig. 2�b�, we fix the value of �x and change the
soliton velocity �. Also in that case the FI has a maximum for
q=0 �soliton at the border between two pixels�.

2. Trapped soliton

The previous discussion shows that the information con-
tent is concentrated near the soliton position. This suggests
that trapped solitons, in an inhomogeneous background, be-
have in a similar way.

Consider first a soliton at rest in a square potential of
length 2�. Assuming a single-mode picture with Poissonian
number statistics, the FI becomes

F� = n2�2

s

gs��x�
�̄s�0�

��� − �xs�� , �27�

where the step function ��x� appears. As expected, only
those pixels covering the confining box contribute to the in-
formation. In the limit �→�, we recover the result of an
infinite Bose gas given by the first sum of Eq. �24� with �
=0. The same discussion can be applied to the Gaussian
approximation for the complete counting statistics.

In a harmonic trap, the order parameter can be approxi-
mately written as �32�

��x;q� � �bg�x�tanh� x − q
�2�0

� , �28�

where �bg�x� is the Thomas-Fermi �TF� solution for the trap
ground state �33�, �0 is the healing length for the background
density at the soliton position �it depends on the density n0
= ��bg�q��2 �34��. Let us focus on solitons at rest, close to the
center of the trap, q�0, and much smaller than the size RTF
of the background field. The FI �9� then turns out to be

Ftrap�q� �
16

3�2

n0

�0
, �29�

which is very similar to the homogeneous case, keeping the
density n0 the same.

This result can be written in different ways by expressing
the central density n0 in terms of other parameters. Taking,
for example, the total number of atoms, we find

−1 −0.5 0 0.5 1
0

100

200

300

F
�

nξ = 100
υ/c = 0

(a)

−1 −0.5 0 0.5 1
0

100

200

q/ξ

F
�

nξ = 100
∆x/ξ = 2

(b)

FIG. 2. �Color online� �a� Rescaled Fisher information as a func-
tion of soliton position, q, for a Poissonian LF. The solid �black�
line is the result for pixel size �x /�=3, the dashed �red� line for
�x /�=2, and the dashdot �blue� line for �x /�=1. �b� Fisher infor-
mation as a function of soliton position, q, for a Poissonian LF,
shown for two different soliton velocities and fixed �x. The solid
�black� line is for �=0 and the dashed �red� line is for �=0.3c.
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Ftrap � 14.1
N0

ax
2 , �30�

where ax is the �single-particle� ground state size in the har-
monic trap. This leads to the usual shot-noise scaling N0

−1/2

for the soliton position. Most of the atoms, however, are not
needed for the image since the information content is con-
centrated near the soliton minimum. In this respect, the
trapped situation is favorable compared to the homogeneous
case since the central density is higher and the healing length
is smaller in the center than in the condensate wings. This
can be made quantitative by comparing the harmonic trap to
a homogeneous sample of the same size and same total num-
ber of atoms. The ratio of the Fisher information between the
two cases is then

Fhom

Ftrap
� 0.11, �31�

where corrections of order � /RTF are neglected, consistent
with the TF approximation. It should be noted that the size of
the system in both cases scales in a different way with the
atom number.

3. Solitons with three-body interactions

The GPE relies on the two-body pseudopotential g��x�,
which describes the interaction between the particles. One
can also consider low-dimensional Bose superfluids in a
strong-coupling regime with three-body collisions. We ana-
lyze here the solitonic solution in a quasi-1D setup governed
by the equation �homogeneous case�

i�
�

�t
� = �−

�2

2m

�2

�x2 + ����4�� �32�

with the universal coupling constant �= ��
�2 / �2m�. This
system has been investigated in detail in Refs. �35,36�. There
exists an analytical soliton solution for the order parameter
��x ;q�=�nf�x�ei��x�, with

f2�x;q� = 1 −
3�1 − �v/c�2�

2 + �1 + 3�v/c�2cosh�
��x − q��
, �33�


� = 2
n�1 − �v/c�2. �34�

This kind of solitons can also appear in a degenerate electron
plasma �37�, since the equation for the order parameter de-
scribing the electron density is almost the same. As opposed
to Eq. �19�, the soliton width 1 /
 is scaling here �1 /n with
the density n, and we therefore expect an improvement in the
soliton kink estimation. Indeed, using the Poisson formula
�9� for the Fisher information we obtain for a soliton at rest

F = 2�3
 ln�2 + �3�n2 �35�

that can be compared to Eq. �21�. With such topological ex-
citations we thus reach a 1 /n scaling as in the Heisenberg
limit, without any entanglement or squeezing.

4. Vortex line

Finally, we consider a two-dimensional situation with a
vortex line. The vortex solution of the 3D GPE is described

by a core region where the density goes to zero. Vortices are
not stable solutions, however, and only in a frame rotating
with a high angular velocity they correspond to local or glo-
bal energy minima �19�. Vortices in a rotating BEC with
respect to the laboratory frame were observed in several ex-
periments, as, for example, in Ref. �38�.

We assume the simple case of a Bose gas with uniform
confinement along the z axis �length L� and homogeneous in
the xy plane. The solution of the GPE for a gas rotating
around the z axis is given by �19�

��r;q� = �n/Lf�x,y,z;q�� x − q + iy

x − q − iy
�s/2

, �36�

where n is the two-dimensional density, f is a real function,
�q ,0� is the position of the vortex line in the xy plane, and s
is an integer �the “winding number” or “topological
charge”�. The order parameter �36� is an eigenfunction of the
angular momentum with eigenvalue �s. Since we are inter-
ested in the calculation of the FI �9�, which depends only on
the absolute value ���, the angular dependence is not rel-
evant in the present setting. In the following we specialize to
the case of a singly charged vortex s= �1. The function f
can then be well-approximated by �30�

f�x,y,z;q� �
��x − q�2 + y2

�2�2 + �x − q�2 + y2
. �37�

We generalize Eq. �9� for the FI to this two-dimensional
setting and obtain

F = 4�
0

L

dz� dxdy� ����r,�,z;0��
�q

�2

= 
n , �38�

where the integration is easy to perform in cylindrical coor-
dinates. It is interesting to note that for a vortex line, the FI
depends on the �two-dimensional� density n linearly. Hence
the fact that the vortex core scales with the healing length
does not improve the shot-noise limit for its position detec-
tion. This can be understood from the simple argument of
Eq. �23� because the relevant number of atoms scales with
n�2��2 / �2mg2D� which is only weakly dependent on the
density: the dimensionality of the topological excitation
plays a crucial role.

5. Dimensionality crossover

The last example has shown that the dimension of the
topological excitation is very important. Coming back to the
quasi-1D situation, we discuss here briefly the crossover of
the nonlinear terms in the GPE as one changes the confine-
ment transverse to the long trap axis. The 1D solitons de-
scribed by Eq. �18� are difficult to realize in an experiment
because one needs a high ratio between radial and axial trap
frequency. When transverse effects are taken into account
with more accuracy, the GPE is modified into a 1D nonpoly-
nomial Schrödinger equation �39–42�. This changes, for ex-
ample, the oscillation frequency of a dark soliton in a har-
monic trap �41�. In the limits of weak and strong coupling,
the nonlinearity in the effective GPE becomes polynomial,
and analytical results for solitonic solutions �bright and dark�
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can be given �39�. By inspecting these dark solitons, it is
easy to show that the Fisher information scales, in the strong
coupling regime, as n2 with the background density n, iden-
tical to the scaling found in Sec. II C 3. This beats the shot
noise scaling �F	n� and illustrates that also with the help of
two-body interactions, one can reach the scaling of the
Heisenberg limit in a strongly interacting system.

III. QUANTUM FIELD THEORY FOR IMAGES

A. Motivation

Mean-field theories are ubiquitous in physics and play an
important role in the explanation of many phenomena in con-
densed matter physics �43,44�, e.g., superconductivity in
metals, and even in high energy physics as, for example, the
quark condensate in the so-called instanton ensemble in
QCD �quantum chromodynamics� �45�. The mean-field ap-
proach describes successfully key features of quantum de-
generate dilute gases �19,30�, for example, the static, dy-
namic, and thermodynamic properties of trapped Bose-
Einstein condensates �46�, and it has been well-confirmed in
a number of experiments �see, e.g., Ref. �47��. The mean-
field approximation applied to an ultracold Bose gas leads to
the Gross-Pitaevski equation �18�. The stationary solutions of
the GPE represent the macroscopically occupied spatial
mode functions when the temperature of the trapped gas is
well below the critical transition temperature. This concept
can be formally translated, in the U�1� symmetry broken ap-
proach, in the following way: the total matter field is split

into �̂�x�=��x�+��̂�x�, where ��̂�x� represents quantum
fluctuations around the Gross-Pitaevskii solution ��x�. The
mean-field approach essentially neglects the fluctuation field.

Mean-field methods, however, assess only the average
atomic density and do not provide information about quan-
tum noise correlations, which are important in the under-
standing of quantum phase transitions in ultracold atoms,
e.g., antiferromagnetic structures or charge density waves
�48�.

B. Bogoliubov approximation

1. Phonon and zero modes

Even at zero temperature, the particle density shows fluc-
tuations that lead to the phenomenon of “quantum depletion”
�19,49,50�. This can be described by linearizing the total
many-body problem around the mean-field solution. In other
words, one expands the second quantized Hamiltonian up to

quadratic terms in the fluctuation field ��̂. The dynamics of
the latter is then generated by the Bogoliubov-de Gennes
linear operator

L = �H + g���2 g�2

− g�*2 − H − g���2� , �39�

where we have introduced the Gross-Pitaevskii Hamiltonian

H = −
�2

2m

�2

�x2 + Vext�x� + g���x��2 − � , �40�

and � is the chemical potential.

The mode expansion of the fluctuation operator ��̂ is
complicated by the fact that L has eigenvectors with eigen-
value zero. These arise from continuous symmetries that
leave invariant the energy of the Bose-Einstein order param-
eter � �43�. A well-known example is the U�1� global phase
invariance of the GPE �40�, another one is the translation in
space of the soliton solution �19� for a homogeneous system.
By choosing a dark soliton solution with a definite phase �
and a given position q, one has spontaneously broken these
symmetries. According to the nonrelativistic Goldstone theo-
rem �44,51�, this spontaneous symmetry breaking is associ-
ated with gapless excitation modes, the Goldstone modes, for
any system of particles with finite range interactions. The
Goldstone modes produce quantum fluctuations of the phase
and position of the soliton order parameter, even at zero tem-
perature. The global phase is conjugate to the number of
particles, and the phase fluctuations can indeed be interpreted
as a consequence of the variations of the chemical potential
with particle number �33�.

The eigenvalues Ek of the Bogoliubov-de Gennes operator
�39� correspond to eigenvectors �uk ,vk� that we denote “pho-
non modes.” They are normalized and orthogonal according
to

�kp =� dx�u
k
*�x�up�x� − vk

*�x�vp�x�� �41�

and are accompanied by partner modes �vk
* ,u

k
*� with nega-

tive norm and eigenvalue −E
k
*. This construction fails for the

so-called zero modes �u� ,v�� that are in the kernel of L
�50,52,53�. For the global U�1� symmetry, the zero mode is
�� ,−�*� that is generated by applying −i� /�� to
��ei� ,�*e−i��. The norm �41� of this mode is zero. We need
partner or adjoint modes �u�

ad ,v�
ad� to saturate the complete-

ness relation in the space of fluctuation fields. They can be
constructed by solving the equation L�u�

ad ,v�
ad�=m��u� ,v��.

The generalized eigenvalue m� is called the “effective mass.”
One gets zero modes of L2 and a completeness relation in the
form �53�

��x − y� = 

k

�uk�x�u
k
*�y� − vk

*�x�vk�y��

+ 

�

�u��x��u�
ad�y��* − v�

ad�x�v
�
*�y�	 , �42�

where � enumerates all broken symmetries and the adjoint
modes are normalized such that

��� =� dx�u
�

ad*�x�u��x� − v
�

ad*�x�v��x�� . �43�

In our one-dimensional soliton system, we expect two Gold-
stone modes associated with the global soliton phase � and
its position q. The corresponding quantum fluctuations will
prove important for our analysis. We give the phonon and
zero modes for this geometry in the Appendix.

The fluctuation operator ��̂�x� around the Gross-
Pitaevskii solution ��x� is expanded as
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��̂�x� = 

k

�b̂kuk�x� + b̂k
†vk

*�x�� + 

�

�P̂�u�
ad�x� − iQ̂�u��x�� .

�44�

The operators are constructed to implement the commutation

relation ���̂�x� ,��̂†�y��=��x−y�: b̂k, b̂k
† are bosonic annihi-

lation and creation operators, �b̂k , b̂p
†�=�kp, and for all broken

symmetries in the problem, the “position” and “momentum”

operators Q̂�, P̂� are canonically conjugate, �Q̂� , P̂��= i���.
The completeness and orthogonality relations �42� and �43�
are compatible with the construction

Q̂� = i� dx�u
�

ad*�x���̂�x� − v
�

ad*�x���̂†�x�� , �45�

P̂� =� dx���̂†�x�u��x� − ��̂�x�v��x�� . �46�

The operator P̂� can be identified with the generator of the
symmetry transformation behind the corresponding zero
mode.

2. Mean density and correlations

We now provide a general framework for the mean atomic
density and the density correlations within Bogoliubov
theory. Going beyond Ref. �18�, we consider the case of
phonon modes at finite temperature. The field expansion �44�
is useful for the computation of expectation values because
different modes are not correlated.

Evaluating the average density, we get


�̂†�x��̂�x�� = ���x��2 + 

k

�1 + 
b̂k
†b̂k���vk�x,q��2

+ 

k


b̂k
†b̂k��uk�x,q��2 + Z�x� , �47�

with the occupation number 
b̂k
†b̂k�=1 / �e�Ek −1�. For thermal

states, 
b̂q�=0. The so-called quantum depletion is related to
the finite contribution ��vk�2 of phonon modes even at zero
temperature: this is a direct manifestation of quantum density
fluctuations. Finite temperature adds thermal contributions to
the phonon modes.

The zero mode contribution is obtained as

Z�x� = 

�

��u�
ad�x��2
P̂�

2� + �u��x��2
Q̂�
2� − Re�u

�
*�x�u�

ad�x��

− Im�u
�
*�x�u�

ad�x��
�P̂�,Q̂�	�	 , �48�

where �·,·	 denotes the anticommutator. For the global U�1�
symmetry, the relevant operator averages are 
P̂�

2�=N0,


Q̂�
2�=1 / �4N0�, and 
�P̂� , Q̂�	�=0, they follow from the as-

sumption that the condensate mode is in a coherent state with
N0 particles on average. The state for the Goldstone mode
associated with soliton displacement is discussed in Sec.
III B 3 below. For the moment, we only assumed that the

operators Q̂�, P̂� average to zero which is plausible since
they appear only quadratically in the Hamiltonian.

When quantum fluctuations around the mean field are
taken into account, different spatial locations can become
correlated beyond the level of Eq. �6� because they probe the
same delocalized excitation modes. We find the density cor-
relation function P�x ,y ;q� �Eq. �4�� by a straightforward ex-
pansion of the four-point field correlations to second order in

the fluctuation operator ��̂ �this is consistent with the Bo-
goliubov approximation�. Thus we get for phonons in a ther-
mal state

P�x,y ;q� � 
��*�x����x� + ��†�x���x��

���*�y����y� + ��†�y���y���

= 

k

��1 + 
b̂k
†b̂k��fk�x�fk��y� + 
b̂k

†b̂k�fk�y�fk��x��

+ 

�

�
P̂�
2����x��

�
*�y� + 
Q̂�

2����x��
�
*�y�� ,

�49�

where we introduced the functions

fk�x� = �*�x�uk�x� + vk�x���x� ,

fk��x� = �*�x�vk
*�x� + u

k
*�x���x� �50�

for the phonons, and the abbreviations

���x� = �*�x�u�
ad�x� + u

�

ad*�x���x� ,

���x� = i�*�x�u��x� − iu
�
*�x���x� �51�

that appear like “mode functions” for the zero mode opera-
tors. We have simplified Eq. �49� by noting that
Im�u

�
*�x�u�

ad�x��=0 for the zero mode functions given in the
Appendix. To proceed, we have to specify the quantum state
of the soliton displacement modes.

3. Quantum statistics of soliton position

In the second-quantized many-body theory, the soliton po-

sition is described by an operator Q̂q whose fluctuations “fill”
the density dip, as discussed by Dziarmaga �32,54�. In a

homogeneous geometry, the dynamics of Q̂q is similar to a
free particle, the corresponding Hamiltonian in the Bogoliu-

bov approximation being P̂q
2 /2mq. The stationary states of

this Hamiltonian are momentum eigenstates where the soli-
ton position is maximally uncertain. However, the effective
mass occurring here is negative, mq=−4m�n /
�. This mim-
icks the negative kinetic energy of the classical �nonquan-
tized� moving soliton �55,56�. A similar phenomenon occurs
in a harmonic trap where the soliton displacement mode has
a negative frequency �the mode is called anomalous� �32�.
These degrees of freedom are therefore thermodynamically
unstable, and we cannot use thermal statistics. Dziarmaga in
Ref. �32� has suggested an alternative approach to specify the
quantum state of this degree of freedom, to be used as the
initial condition for the subsequent dynamics. The idea is to
“pin” the soliton to the position q by minimizing the density

�̂†�q��̂�q�, which is a quadratic form in P̂q and Q̂q �see Eq.
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�48� at x=q�. As shown in Ref. �18�, one finds in this way a
Gaussian state similar to the ground state of a harmonic os-
cillator with respect to the “Hamiltonian” �in quotes since it
does not have the dimensions of energy�:

ĥ�P̂q,Q̂q� =
1

16n
P̂q

2 + n
2Q̂q
2 −




4
, �52�

where the mode functions of the Appendix, Eqs. �A7� and
�A8�, have been used. The ground state of this Hamiltonian

gives 
ĥ�=0 and can also be written as the vacuum state
corresponding to the annihilation operator

b̂q =
− i

�8n

P̂q − �2n
Q̂q. �53�

With the help of b̂q and its conjugate operator, we can write

the expansion of ��̂�x� in the same form as for the phonon
modes.

We consider here two classes of states that generalize this
ground state: “squeezed” states and “thermal” states. The
squeezed state depends on the positive parameter �: it is
defined as a Gaussian state with quadrature variances


P̂q
2�� =

2n


�
, 
Q̂q

2�� =
�

8n

, �54�

where �=1 corresponds to the ground state. For this state, we

get an average density 
ĥ��= �
 /8���−1+�−2��0. The den-
sity at x=q vanishes for �=1, and Fig. 3 actually shows the
result of Eq. �47�, including contributions from quantum
noise, for that case.

The thermal state is defined by analogy to the canonical
ensemble as a state that maximizes entropy at a given mean

value of ĥ. This mean value is given by 
ĥ��

= 1
2
 / �exp�
 / �2���−1	 and it is controlled by a parameter �

with the dimension density. The quadratures are


P̂q
2�� = 2n
 coth�
/�4���, 
Q̂q

2�� =
coth�
/�4���

8n

. �55�

We note that these states give average density profiles that
resemble a partially filled dark soliton, as illustrated in Fig.
3. The deviations from the “optimal case” are controlled by
the parameters � or �. The quantum states constructed here
are not stationary states of the Bogoliubov Hamiltonian,
however, and will evolve in time, as discussed in Ref. �32�.

C. Discussion of results

In Fig. 3 we show density profiles corresponding to dif-
ferent values of the squeezing parameter �=1, 100 and for
the thermal parameter �=5 /�. The plot confirms that the
choice �=1 �or when �→0+ for a “thermal” q state� gives the
state with minimum depletion that best resembles a conden-
sate with a perfect soliton. For �=5 /� the minimum in the
notch is not zero �as for ��1�, but the density at the edges
becomes higher than the density of the squeezed quantum
state, reflecting the “thermal” and the long wave nature of
the zero q-mode state.

For what concerns the density correlations, it is conve-
nient to bring them in a form where the �-correlated term in
Eq. �3� that appears due to normal ordering, is subtracted. To
this effect, we use the completeness relation �42� to rewrite
the sum over uk�x�u

k
*�y� in the correlation function �49� as

P�x,y� = ��x���y����x − y� + J�x,y�� , �56�

where the function J�x ,y� is found as

J�x,y� = Re�

k

�2vk�x�vk
*�y� + uk�x�vk

*�y� + vk�x�u
k
*�y���

+ 4�
P̂�
2�u�

ad�x�u
�

ad*�y� + 
Q̂q
2�uq�x�u

q
*�y��

− 

�

�u��x��u�
ad�y��* + u�

ad�x�u
�
*�y�	 . �57�

In Fig. 4 we show the behavior of J�x ,y� for two different
values of the squeezing parameter. Between �=1 �left� and
�=100 �right�, the overall magnitude of J�x ,y� changes sig-
nificantly, demonstrating a strong influence of the soliton dis-

placement mode. For a large uncertainty in Q̂q ��=100�, the

x/ξ
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)Ψ̂

(x
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FIG. 3. �Color online� Density profiles in the notch: the solid
�black� line corresponds to the squeezing parameter �=1 whereas
the dashdot �red� line to �=100, while the dashed �blue� line corre-
sponds to the thermal state with parameter �=5 /�. Other parameters
are �=10�, n�=100, and 140 phonon modes have been taken into
account.

FIG. 4. �Color online� Plot of the function J�x ,y� defined in Eq.
�57�. Parameters: �=10�, n�=100, and 140 phonon modes have
been taken into account. On the left, squeezing parameter �=1 �op-
timal� and on the right �=100.
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function J�x ,y� is positive everywhere and concentrated
near x�y�q. The choice �=1 leads to negative values �an-
ticorrelations� along the diagonal x=y away from the point
x=y=q.

The calculation of the Fisher information is done numeri-
cally by using the phonon and zero modes of the Appendix,
normalizing them in a box of length 2�. In Fig. 5�a�, we
show the Fisher information for different approximations: a
single-mode BEC with Poisson statistics �dotted line: homo-
geneous system, solid line: in a finite box, Eq. �27�� is com-
pared to a multimode calculation with a Gaussian counting
statistics �dashed, dot-dashed, and thin solid lines�. The cor-
relation matrix gives contributions to the FI via the deriva-
tives of P−1 and det�P� with respect to the soliton position
�see Eq. �17��. We have chosen the “optimal dark soliton”
�=1.0 �dashed line� and a slightly filled �squeezed� one, �
=1.5 �dash-dotted line�. The thin solid line corresponds to
the FI for a thermal state with a parameter �=0.2 /�.

First, it is interesting to note that one gets more informa-
tion in a box than in the homogeneous case. This is a finite-
size effect which enhances the impact of “missing atoms” in
the soliton center. Second, the exact result for the Gaussian
multimode theory �17� shows that correlations, including the
zero modes, increase the level of information that we can
extract, beyond mean-field theory �single-mode approxima-
tion�. Moreover, the dashed curve for �=1 shows that mini-
mizing the quantum “filling” of the notch provides the high-
est information. The divergence of F� at small pixel size is
due to the failure of the Gaussian approximation which be-
comes unphysical, as the average atom counts per pixel drop
below unity, see Ref. �18�.

In Fig. 5�b� we show the scaled Fisher information versus
the scaled density n. Both mean-field and multimode theory
give a linear scaling with n which translates into the same
power law n−3/4 for the sensitivity of the soliton position.

In order to understand why the inclusion of noise with the
Bogoliubov description provides an even better resolution
than the mean field, we use the formalism of signal process-
ing introduced in Sec. II B 2. The signal-to-noise ratio gives
an assessment of the amount of information that can be ex-
tracted from a given statistical estimation strategy. By using
the completeness relation �42� and the result �57� it can be
easily shown that the noise �S2 �Eq. �11�� splits into

�S2 = �SMF
2 + �Sph

2 − �SG
2 �58�

for any gain function g�x�. The three terms here are the con-
tributions of the mean field, the phonon contribution, and the
sum over the Goldstone �or zero� modes. The Goldstone con-
tribution is negative and reduces the noise even below the
phonon level. This is related to the behavior of the function
J�x ,y� in Eq. �57� for �=1, Fig. 4�left�: its negative values
are larger in magnitude that its positive ones. Recall that for
the density correlations �56�, J�x ,y� is multiplied by the
product ��x���y� that is zero for x=y=q and increases to a
positive constant n for x=y�q after a few healing lengths.
This further enhances the negative contributions of J�x ,y�,
and reduces the noise �S2 relative to the mean-field ap-
proach.

The above discussion clarifies how the Cramér-Rao bound
can be smaller for multimode fields compared to the mean-
field description; but can one also identify a strategy to reach
the CRB? In the Poissonian case, without correlations, the
SNR with the optimal gain function gopt�x� �Eq. �13�� reaches
the sensitivity given by the Fisher information �9�, and this

happens when the variance �S2	 S̄�q�. We shall proceed in
the same way with the multimode theory, but work with
finite pixel areas to avoid the breakdown of the Gaussian
approximation. In that case signal and noise are given by

S̄�q� = g ·
��̄

�q
�x , �S2 = g · Pg�x2, �59�

where the vector g �length M� represents the values of the
gain function g�xs� on the pixels. These expressions are the
discrete versions of Eqs. �10� and �11�.

We can achieve �S2	 S̄�q� by solving the linear system
Pg=�q�̄, giving an optimal gain function gao. It is then easy
to check that the last term in Eq. �17� becomes



s,j

�P−1�sj
��̄s

�q

��̄ j

�q
=

��̄

�q
· P−1��̄

�q
	 S̄�q� . �60�

We were not able to find a similar proportionality for the
term Tr���2P−1 /�q2�P�. A numerical analysis, illustrated in
Fig. 5�b�, shows that we are nevertheless very close to the
CRB with the gain function gao.

0.1 1 2 3
0

100

200

300

400

500

600

700

∆x/ξ

F
�

n ξ = 100

υ/c = 0

ζ = 1.0 (and τ → 0+)

ζ = 1.5

(a)

τ = 0.2/ξ

50 100 150 200 250 300
100

300

500

700

900

1100

1300

1500

n ξ

(b)

FIG. 5. �Color online� �a� Rescaled Fisher information F�
=F�2 versus pixel size for different regimes: solid �black� line for a
Poissonian counting statistics in a box and the dotted �green� line in
the uniform Bose gas limit. The other lines take into account quan-
tum and thermal density fluctuations, using a Gaussian approxima-
tion to the counting statistics. They differ in the quantum state of
the Goldstone mode associated with the soliton displacement.
Dashed �red� line: state with zero density at soliton position
�“squeezing” parameter �=1, effective “temperature” �=0�; dashdot
�blue� line: squeezed state �=1.5; and thin solid �magenta� line:
thermal state �=0.2 /�. �b� Rescaled Fisher information versus lin-
ear density: dashed �black� line corresponds to Eq. �21�, and the
dashdot �red� line is the information extracted from the signal-to-
noise ratio for a gain function goa �see text�, and the solid �blue�
line is the Fisher information within Gaussian and Bogoliubov ap-
proximations for a finite pixel size �x=0.7�, and �=1. In both
pictures the numerical simulations were made with a box length
2�=20�, and by considering 140 phonon modes.
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We emphasize that this argument only requires the first
and second moments of the counting statistics to optimize
the SNR. It does not directly rely on the Fisher information
which is only available within the approximation that the
entire counting statistics is Gaussian.

IV. CONCLUSION

We have analyzed in this paper the quantum fluctuations
in the counting statistics of an atomic density image. We
used Bogoliubov theory, and we observed that zero modes,
due to the breaking of the U�1� and translation symmetries,
makes quantitatively a significant change in the information
content of the counting distributions. We applied our theory
to identify the ultimate information theoretical limits for po-
sition measurements of dark solitons and other topological
excitations in a quasi-one-dimensional and two-dimensional
Bose-Einstein condensate.

In the case of a pure condensate, where all particles oc-
cupy the same quantum state described by the GPE, the best
estimation of the soliton position has an uncertainty that
scales, for a weakly interacting system, as n−3/4 with the
linear background density n. This beats by a factor n−1/4 the
scaling of the classical shot noise limit 1 /�n. We emphasize
that this limit is reached without the need of any entangle-
ment or squeezing of the system state. Even more favorable
scalings are found for strongly interacting systems where the
nonlinearity appears with a different exponent in the GPE. In
optical and atomic interferometry, shorter wavelengths pro-
vide a better resolution of phase changes, and we can explain
our result as a consequence of the high wave number con-
tent, i.e., the steepness, of the soliton dip. A similar improve-
ment could also be obtained by simply applying fast coun-
terpropagating beams of atoms. We believe, however, that
the stability properties of solitons and the fact that there is no
or only little net particle current makes this system suitable
for interferometric investigations over longer time scales
compared to a thermal beam.

We have investigated the influence of quantum fluctua-
tions with the help of Bogoliubov theory in the weakly in-
teracting case. The scaling law �n−3/4� remains stable, but the
prefactor is different. The Goldstone modes that are associ-
ated to spontaneously broken symmetries in fact increase the
sensitivity of the measurements. While signal processing
theory provides a theoretical limit for the sensitivity �the
Cramér-Rao bound�, it generally does not provide a method
to achieve this limit. In our approach, we were able to find a
nearly optimal filtering function, and showed with a signal-
to-noise ratio analysis that it almost reaches the Cramér-Rao
bound.
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APPENDIX: EXCITATION MODES FOR A DARK
SOLITON

Here we sketch the derivation of the Bogoliubov eigen-
modes for a system with a soliton in a box of length 2�. The
analysis complements results given in Ref. �54�. We are
looking for the eigenstates of the Bogoliubov-de Gennes op-
erator �39� with Vext�x�=0. The background or condensate
field is given by the wave function �=��x ;q� of Eq. �19�.
We focus here on the stationary case �soliton velocity �=0�.
Simple and compact expressions for the Bogoliubov eigen-
modes can be found in the limit ���, when the soliton is
located well within the quantization box. The integral of
���x ;q��2 over the box gives the number of condensed atoms
N0:

N0 = 2�n − 2n/
 , �A1�

where the negative correction describes the atoms “missing”
in the soliton notch. We have set 
�
��=0�=1 /�2�. For the
sake of simplicity in the notation, we shall hereafter drop the
parametric dependence on q in the order parameter �, the
phonon modes uk ,vk, and the zero modes.

1. Phonon modes

Following the approach in Refs. �54,57�, we find that the
modes of L in a box with periodic boundary conditions can
be written as

�uk�x�
vk�x� � = Mke

ikx� k



sech2�
�x − q��

+ �k
�� k

2

+ i tanh�
�x − q���� , �A2�

where the upper �lower� sign applies to uk �vk�, respectively.
Here, Mk is a normalization constant �given in Eq. �A6��,

�k
� = � k



�2

�
2Ek

mc2 , �A3�

c is the speed of sound, and the phonon energy is given by

Ek = �c�k��1 +
k2

4
2 . �A4�

This energy is the same as on a homogeneous background
condensate.

The presence of the soliton becomes manifest in the total
phase shift of a phonon passing from the left to the right end
of the box. It is given by 2k�+���k�, where ���k�
=2 arctan�2
 /k� is due to the interaction with the density
notch. The quantization condition for the wave number k is
thus

2kj� + ���kj� = 2
j, j = � 1, � 2, . . . . �A5�

�The case j=0 is excluded because �2k�+���k� � �
.� In
Sec. III B, sums over k are understood as running over this
discrete set of wave numbers.
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From the normalization condition �41� for the phonon
modes, we obtain the normalization constant Mk,

Mk =



2k
�
gn

2�k
��
� k2

2
2 + 2� − 1�−1/2
. �A6�

In Fig. 6 we show the first three eigenfunctions v j with j
=1,2 ,3, for q=0.

2. Zero modes

For our quantum degenerate Bose gas the Goldstone
modes originate from the breaking of the global U�1� phase

symmetry and translational symmetry by assigning a phase �
and a value of the displacement q to the order parameter �,
respectively. In order to determine the associated mode func-
tions, we simply differentiate the order parameter � with
respect to its global phase � or the parameter q, as described
in Sec. III B and Ref. �54�. We obtain

u��x� = ��x� ,

uq�x� = − i
�n sech2�
�x − q�� , �A7�

with v��x�=−u
�
*�x�. We have chosen here �=0, i.e., a real-

valued ��x�, otherwise the phase of uq�x� would be different.
With respect to the Bogoliubov scalar product Eq. �41�, the
modes �A7� have zero norm and are mutually orthogonal.
The zero modes are accompanied by adjoint vectors that sat-
isfy Lu�

ad	u� and are found as

u�
ad�x� =




2�N0
 + n�
���x� + ixuq�x�� ,

uq
ad�x� =

− i

4�n
. �A8�

They have zero norm because v�
ad�x�=u

�

ad*�x�. The adjoint
modes are mutually orthogonal with respect to Eq. �41�
which explains the presence of the second term in Eq. �A8�.
For the normalization and this extra term, we consider the
limit 
��1 and neglect exponentially small corrections.
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