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We compute the phase diagram of the one-dimensional Bose-Hubbard model with a quasiperiodic potential
by means of the density-matrix renormalization group technique. This model describes the physics of cold
atoms loaded in an optical lattice in the presence of a superlattice potential whose wavelength is incommen-
surate with the main lattice wavelength. After discussing the conditions under which the model can be realized
experimentally, the study of the density vs the chemical potential curves for a nontrapped system unveils the
existence of gapped phases at incommensurate densities interpreted as incommensurate charge-density-wave
phases. Furthermore, a localization transition is known to occur above a critical value of the potential depth V2

in the case of free and hard-core bosons. We extend these results to soft-core bosons for which the phase
diagrams at fixed densities display new features compared with the phase diagrams known for random box
distribution disorder. In particular, a direct transition from the superfluid phase to the Mott-insulating phase is
found at finite V2. Evidence for reentrances of the superfluid phase upon increasing interactions is presented.
We finally comment on different ways to probe the emergent quantum phases and most importantly, the
existence of a critical value for the localization transition. The latter feature can be investigated by looking at
the expansion of the cloud after releasing the trap.
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Disordered media are known to allow for the localization
of waves in many physical systems, both quantum and clas-
sical. As demonstrated by Anderson �1,2�, increasing disor-
der induces a transition to an insulating state. The occurrence
of this Anderson transition strongly depends on the dimen-
sionality of the system: in one dimension, a localized phase
is expected as soon as disorder is present �3�. One of the key
questions in the field of strongly correlated systems is the
interplay between interactions and disorder. Using field the-
oretical methods �4,5�, it was shown that, for one-
dimensional systems of bosons and fermions, interactions
can lead to a localization-delocalization transition. For one-
dimensional �4,5� or higher-dimensional �6� bosons, the
combination of interactions and disorder leads to a transition
between a superfluid phase for weakly repulsive bosons and
a localized phase �Bose glass� for strong repulsion. When an
additional commensurate potential is present, there is a com-
petition between the three possible phases, namely, the su-
perfluid �SF� phase, the Mott-insulating �MI� phase, which
occurs for commensurate fillings and large interactions, and
the so-called Bose-glass �BG� phase, which is induced by
disorder. Numerical studies �7,8� supported the general pic-
ture and provided phase diagrams �9,10� in one dimension
where mean-field theory fails. However, experimental setups
in solid state physics lack a good control of the interactions
and the disorder strength. More recently, cold atomic gases
offered the possibility of a fine-tuning of the Hamiltonian
parameters in particularly clean setups. As a paradigm for
strongly interacting gases, the SF-MI phase transition was
demonstrated using an optical lattice �11�. A fine-tuning of

the disorder strength is likewise conceivable. In this direc-
tion, several proposals were put forward: the use of a laser
speckle �12–18�, the use of heavy atoms, which provide a
quasistatic potential for lighter atoms �19,20�, and finally, the
addition of a superlattice potential with a wavelength incom-
mensurate with that of the lattice potential �21–24�.

This paper is devoted to the study of the latter situation,
the so-called bichromatic setup, for which experiments have
recently been carried out �23–26�. The one-particle
Schrödinger equation with an incommensurate lattice has
been widely studied �21,27–31� and was found to exhibit
anomalous diffusion properties �32�. The main result of these
studies, as we will recall later on, is the existence of a critical
value of the potential above which localization occurs. For
the many-body physics, a weak-coupling treatment of the
potential was carried out using bosonization �33�. Quasiperi-
odic potentials were found to have an intermediate behavior
between commensurate ones, and disordered ones. Exact nu-
merical results on the Bose-Hubbard model with a quasiperi-
odic potential already exist �34–36� but are limited to small
systems and thus could not investigate the nature of the tran-
sition nor their precise location. The physics of the Bose-
Hubbard model with a periodic superlattice has been inves-
tigated �37–39� and a “weakly superfluid” phase at large
potential depth was found �39�. Very recently, Roscilde �40�
carried out a more detailed study using quantum Monte
Carlo calculations and a “random atomic limit” approach.
This study gave results on the bulk system for a special
choice of parameters, and an accurate description of the
physics of the trapped cloud, focusing on static observables.
A particularly important point in which we go beyond Ref.
�40� is the description of the phase diagrams of the bulk
system at fixed densities which are essential to understand
the interplay between the competing orders at stake.*roux@physik.rwth-aachen.de
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Our main motivation is to address the shape of these
fixed-density phase diagrams for a one-dimensional system
using the density-matrix renormalization group �DMRG� al-
gorithm �see Sec. I C for details�, whose results are inter-
preted within the framework of the Luttinger liquid theory.
We focus on the differences and similarities between the de-
terministic bichromatic lattice potential and a truly random
one, usually consisting of a random box distribution �RBD�
and for which the phase diagrams without a trap are known
�9,10�. An account of our main results is depicted in Fig. 1,
which gathers the phase diagrams for three typical densities
as a function of the interaction strength U and the disorder
potential strength V2 �see Sec. I A and Eq. �3� for a precise
definition of the Hamiltonian�. n is the density of bosons and
r is the ratio of the employed lattice wavelengths, which
characterizes the incommensurability of the potential. A first
interesting result is that a finite V2�4 is always required to
stabilize the BG phase. We must specify that the term BG is
used to call a localized phase which is compressible �with a
zero one-particle gap�, but the detailed features of the BG
phase of the bichromatic potential differ from the usual RBD
BG phase as will be discussed in what follows. Contrary to
the RBD phase diagram, we argue, based on numerical evi-
dence, that there is no intervening BG phase between the SF
and the MI phase at density n=1. An incommensurate
charge-density-wave �ICDW� phase—referred to as the in-
commensurate band insulator �IBI� phase in Ref. �40�—
emerges at finite V2 for a density n�r. Lastly, we observe
that the larger the density, the larger the extension of the SF
phase is.

The paper is organized as follows: in Sec. I, we first give
the conditions under which the Hamiltonian describing the
many-body physics simplifies into a simple lattice Hamil-
tonian used for numerical calculations. We then discuss one
of the strongest differences compared to a random box dis-

tribution which is the emergence of plateaus in the density-
chemical potential curve �Sec. II�. We next discuss, in Sec.
III, the competition between the disorder potential and the
interactions by computing the phase diagrams at integer den-
sity one and for a density for which an ICDW plateau occurs.
Lastly, Sec. IV is dedicated to the possible relevant experi-
mental probes of localization by focusing on the out-of-
equilibrium dynamics of the system.

I. BOSE-HUBBARD MODEL WITH AN
INCOMMENSURATE SUPERLATTICE

A. Energy scales hierarchy: Validity of the model

This section gives qualitative arguments on the hierarchy
of energy scales, which leads to a simple lattice Hamiltonian
that captures the physics of cold bosonic atoms experiencing
two optical lattice potentials with wave vectors k1 ,k2 and
amplitudes V1 ,V2. Similar considerations were given re-
cently in Ref. �25�. For the sake of clarity, we keep the fol-
lowing discussion on the regime of experimental parameters
under which the lattice Hamiltonian under study is valid. The
potential energy in a one-dimensional setup of two standing
waves is the Harper potential

V�x� = V1 cos2�k1x� + V2 cos2�k2x + �� , �1�

which is sketched in Fig. 2. A constant phase � is introduced
to shift the second lattice with respect to the other, and the
wave vectors k1 and k2 can take any value. We work in the
limit of a large depth V1�Er1 for which we can restrict
ourselves to the lowest Bloch band �Er1= ��k1�2 /2M is the
recoil energy associated with the first lattice and M is the
mass of the atoms� and in a situation where one intensity is
much larger than the other, V1�V2. An exact derivation of
the lattice parameters of the Hamiltonian should resort to

FIG. 1. �Color online� Phase diagrams of the bichromatic Bose-Hubbard model for densities n=1, r �the ratio of the potential wave-
lengths�, and n=0.5. The diagrams are shown as a function of the interaction strength U and the bichromatic potential strength V2, both
normalized by the hopping J �lines are guides to the eyes�. SF stands for the superfluid phase, MI for the Mott-insulating phase, BG for the
“Bose-glass” phase �meaning localized but with zero one-particle gap�, and ICDW for incommensurate charge-density-wave phase. The
U=V2 line on the phase diagram with n=1 indicates the J=0 limit for which the gap of the one-particle excitation vanishes. Black error bars
are deduced from calculations averaging over the phase shift � �cf. Sec. I A� and finite-size scaling �see Figs. 12 and 13 for details on the
n=1 phase diagram�. Gray error bars are roughly evaluated from calculations on systems with L=35 and fixed �=0 �see Figs. 11 and 14 for
details�. In the phase diagram with density n=1, the darker �violet� region in the BG phase is localized but could have a small gap which
cannot be resolved numerically.
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numerical calculations as described in Refs. �22,40�. Our
motivation is to evaluate the physical effect of the perturbing
potential to deduce the relative magnitudes of the different
terms.

To proceed, we neglect the effect of the trap on the local
chemical potential and displacements, meaning that we con-
sider the realistic situation for the bulk physics with
�1�2 / ��1−�2�, �1 ,�2��� /M� with � the trap frequency. If
V2=0, the effective model is the Bose-Hubbard model �11�
with hopping J0 and on-site interaction U0,

H0 = − J0�
j

�bj+1
† bj + bj

†bj+1� + U0�
j

nj�nj − 1�/2. �2�

bj
† is the operator that creates a boson at site j corresponding

to the minimum of the lattice potential. The local particle
number operator reads nj =bj

†bj. The dependence of the pa-
rameters J0 and U0 upon V1 ,Er1 ,k1 and the scattering length
a can be evaluated numerically or analytically in this limit
�11�. We now qualitatively discuss the effect of V2�x� to the
lowest order in 	=V2 /V1.

Perturbation of the chemical potential. First, to zeroth
order in 	, the minima of V�x� are located at k1xj =
j+
 /2
with j integer and 
 /2 can be absorbed in the redefinition of
�. Since V1�xj�=0+O�	2�, we have

V�xj� = V2 cos2�r
j + �� = 	
V1

2
�1 + cos�2r
j + 2��� .

The important number which characterizes this bichromatic
potential is the ratio of the wave vectors r=k2 /k1. If r is a
rational number p /q, the Hamiltonian is q periodic. For r
irrational, it has no translational invariance and the V�xj� can
take any value in �0,V2� in a deterministic way: the resulting
bounded distribution is sketched in Fig. 2. The chemical po-
tential thus shares features with a one-dimensional quasicrys-
tal. The order of magnitude of the coefficient of this term is
of course V2=	V1. This term can be larger than J0 or U0,
even though 	�1, because of the factor V1. Taking the pa-

rameters of Ref. �23�, one finds that 	�0.003–0.12, while
V2 /J0�2.6–53.3.

Perturbation of the hopping. It is difficult to treat the
perturbation of the hopping exactly because one needs to
know the nontrivial shape of the perturbed Wannier func-
tions. However, we expect the hopping to be perturbed
mainly because of the displacement of the local minima and
because tunneling depends exponentially on the distance. We
only consider the term associated with the perturbation of the
minima xj and xj+1 and assume a typical exponential depen-

dence �11� for the hopping Jj,j+1	e−h�xj+1−xj� with h=
k1

2
�V1

Er
,

valid for V1�Er1. The modulation induces a slight fluctua-
tion �xj at site j which, to the lowest order in 	, reads

�xj = −
1

2k1
	r sin�2r
j + 2�� ,

so that the distance between two neighboring sites is altered
as

xj+1 − xj =



k1
− 	

r

k1
sin�
r�cos�r
�2j + 1� + 2�� .

Hence, to the lowest order in 	, we may write for this term,

Jj,j+1 = J0
1 + 	A cos�r
�2j + 1� + 2��� ,

with, up to approximations, A=� V1

Er1

r
2 sin�
r�. We write J2

=	AJ0. Even though A could be large because of �V1 /Er1,
the factor 	 ensures that J2 can be made much smaller than
J0. More precisely, taking the parameters of Ref. �23� and
using the above approximation, one finds J2 /J0

�0.002–0.1, the latter occurring for very large V2, much
larger than the ones used in this paper. Numerical calcula-
tions of the Hamiltonian parameters �22,40� confirm that the
magnitude of J2 is small within our approximations. Hence,
we will shorten the notation to J�J0 from now on. Another
feature which results from this approximation is that the
Jj,j+1 have the same typical fluctuations cos�2
rj� as the
V�xj�, which is observed numerically in Ref. �40�, yet for
rather large 	.

Perturbation of the local interaction. In the deep well
limit, the bare interaction U0 is obtained by the relation �11�

U0 =� 8



k1aEr1
 V1

Er1
�3/4

,

where a is the scattering length. Note that the ratio U0 /J0

	exp�2�V1 /Er1� increases exponentially with the lattice
depth �11�. This result can be obtained by approximating the
bottom of the cosines with a parabola and using Gaussian
Wannier functions as the simplest approximation. The fact
that U0 increases with V1 simply corresponds to the squeez-
ing of the parabola. This squeezing may also be changed at
first order by V2. To give a rough estimate, we can compute
the second derivative of Eq. �1� and obtain for the on-site
interaction,

FIG. 2. �Color online� The bichromatic potential �full line� with
the same parameters as in the experiment of Ref. �23�. Dashed lines
show the two beating standing waves from which the bichromatic
potential originates. We observe that not only the depths of the
potential wells fluctuate but so do their positions and their width.
The energetic landscape displays wells of typical width 1 / �1−r�.
The plot on the right-hand side shows the bounded distribution
which behaves as 1 /�x�V2−x� and is thus peaked around 0 and V2.
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U0 + U2 cos�2r
j + 2�� with U2 =
3

4
	r2U0.

Here again, since 	 can be tuned to be very small, one can
work within the U2�U0 regime. The perturbation of the on-
site interaction can thus be neglected and we will use the
shorter notation U�U0 in the following. We also note that
the fluctuations of the local interactions have roughly the
same cosine dependence as the chemical potential.

To conclude, in the deep well limit V1�Er1, the following
hierarchy of energy scales

J2,U2 � U0,J0,V2 � V1

can be realized experimentally. Thus, we assume the corre-
sponding lattice model for the bichromatic optical lattice as
follows:

H = − J�
j

�bj+1
† bj + H.c.� + U�

j

nj�nj − 1�/2

+
V2

2 �
j

�1 + cos�2r
j + 2���nj +
�2

2 �
j

�j − j0�2nj ,

�3�

with j0= �L+1� /2 the center of the trap. In what follows,
results for the phase diagrams are computed with �=0. The
trap confinement is added in a few illustrating figures and
more importantly, for the preparation of the out-of-
equilibrium state in the study of dynamics �Sec. IV�.

We can briefly comment on the distribution of the on-site
potential energies as it is the first difference with the RBD.
We shall use the shorthand notation for the bichromatic po-
tential V2�xj��Vj =V2�1+cos�2r
j+2��� /2. The distribu-
tion of the Vj with an irrational r behaves as 1 /�x�V2−x�,
which diverges close to 0 and V2 and is symmetrical with
respect to V2 /2 �see Fig. 2� but is relatively flat at the center.
Thus, this distribution qualitatively lies in between a RBD
and a binary one. Its autocorrelation function reads

VjVj+d − Vj
2 = �V2�2 cos�2
rd + 2��/8,

where the overbar means averaging over all sites j. The po-
tential is thus deterministic and correlated. Though trivial,
this remark stresses the fact that the very features of the
localization mechanism under study originates from the qua-
siperiodicity rather than the distribution itself. For instance,
an uncorrelated disordered potential with the same distribu-
tion would induce localization as soon V2 is finite, which is
not true for the bichromatic one. As sketched in Fig. 2 by
black and dashed gray lines, wells develop over a character-
istic length scale 1 / �1−r��4.4 sites, which comes from the
beating of the two periods 1 and r of the two lasers.

Working with finite systems raises the question of taking
the thermodynamical limit. The system length L is given in
units of the first lattice spacing �1 /2. First, to what extent
can an irrational number r be approximated by a rational
number? This can be answered by looking at its continuous
fraction decomposition �41�, which gives the successive best

rational approximations. From Ref. �23�, r=830.7 /1076.8
=0.77145245. . . is a realistic “irrational” parameter as 8307
and 10 768 are coprimes. The successive best rational
approximations are 3 /4,7 /9,10 /13,17 /22,27 /35,
908 /1177, . . . which gives the lengths L=13,22,35,1177,
best “fitting” the potential for nontrapped systems. As 27 /35
is already a fairly good approximation of the “irrational” r of
the experiments, multiples of 35 such as 70 and 105, can be
used as well. We will also use other lengths L and we have
checked that the physics does not change qualitatively if the
system size does not perfectly fit the potential. The fact that
35 is a rather large period ensures that r is not too close to a
simple fraction which would induce strong commensurabil-
ity effects on finite systems. In what follows, we choose to
work with the experimental parameter r=0.771 452 45 as
Roscilde did �40� to be as close as possible to the experi-
ments but we expect the general picture to remain true for
any irrational number. Furthermore, a phase shift � enters in
the Hamiltonian and, though we expect the potential to be
self-averaging for fixed �, averaging over � can help recover
the thermodynamical limit. This averaging will be denoted
by � �� in the following. As experimental setups generally
consist in an assembly of one-dimensional cigar-shaped
clouds with different lengths �see Fig. 3 of Ref. �24� for
instance�, clouds with different lengths would effectively ex-
perience a different phase shift �. Furthermore, from one
shot to another, the tubes experience slightly different poten-
tials. This is due to the difficulty to lock the position of the
cloud in the trapping and optical lattice potentials over sev-
eral shots. Consequently, � may fluctuate from one prepara-
tion to another.

The last crucial parameter in the physics of the system is
the density which plays an important role as we will see. For
a nontrapped system, we use the notation n=N /L with N the
total number of bosons which is kept fixed as we work in the
canonical ensemble. For a trapped system, the local density
varies as one moves away from the middle of the trap and the
thermodynamical limit is recovered for �→0 keeping N��
constant. Roscilde �40� gave a detailed analysis of the static
properties in the presence of a trap. Our focus is more on the
phase diagram of the model, which is always understood to
be in the thermodynamical limit. More details with respect to
experimental probing will be given in Sec. IV. All results of
the paper are for zero temperature.

B. Low-energy approach: Bosonization

We briefly review known results from the low-energy ap-
proach �close to a hydrodynamic description�, which will be
useful for the interpretation of the numerics and offer a
complementary point of view on the physics. The low-energy
physics of interacting bosons in one dimensional �1D� are
described using Haldane’s harmonic fluid approach �42–44�
in which the density operator is expanded as

��x� = �n −
1



� ��x�� �

p=0,
1,
2,. . .
eip�2
nx−2��x��, �4�

where n is the boson density which encompasses the lattice
spacing d. The effective Hamiltonian of the system has ge-
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nerically a quadratic part which includes a kinetic energy
term 	�2, with �= 1


 �� the conjugate field of � �the com-
mutation relations ���x� ,��x���= i��x−x�� and
���x� , 1


 ���x���= i��x−x�� hold�, and a density-density-like
interaction term 	����2. Two Luttinger parameters u and K
give a simple parametrization of the quadratic part of the
Hamiltonian as follows:

H =� dx

2

�uK�
��2 +

u

K
����2� , �5�

where u has the dimension of a velocity and K is dimension-
less. For free bosons, only the first term remains, which
would formally correspond to the K→� limit and u
=�n
 /M is the sound velocity. Taking into account a local
interaction U

2 ��x�2 like in the Bose-Hubbard model, the Lut-
tinger parameters read u=�nU /M and K=
�n /MU in the
limit U�J. When interactions are large, higher harmonics in
the density operator have to be taken into account to describe
correctly the local fluctuations and not only the long-distance
ones. In the U=� limit, i.e., for hard-core bosons �HCB�,
one obtains K=1 as one would find for free fermions. The
strong interaction, i.e., the second term in Eq. �5�, acts as a
Pauli exclusion term. We thus generically have 1�K�� for
on-site repulsive interactions. The effective Hamiltonian �5�
provides the general low-energy description of the SF phase,
which can undergo various instabilities.

By bosonizing the standard Bose-Hubbard model �2�,
commensurability effects can arise from the higher harmon-
ics �44� as follows:

��x�2 = n2 +
1


2 ����2 + n2 �
p�1

cos�2
pnx − 2p��x�� + ¯ .

From studying the renormalization group �RG� flow equa-
tions, it is known that cosine terms such as

U� dx cos�2
pnx − 2p��x�� �6�

can lock the density field � and induce a commensurate-
incommensurate transition �45� �C-IC� depending on the
density and of K. Working at fixed density and varying in-
teractions, such a term is relevant only if the density satisfies
the commensurability condition pn=1,2 , . . . and if K�Kc
with Kc=2 / p2. The opening of the gap follows a Kosterlitz-
Thouless �46� �KT� law �c	exp�−A /�U−Uc� with A a con-
stant and Uc the critical value. Working at fixed interaction
and varying the density, the commensurate phase is obtained
for Kc=1 / p2. For instance, for p=1, integer densities n
=1,2 ,3 , . . . allow for a Mott-insulator phase for K below
Kc=2. For p=2, charge-density-wave phases can appear for
half-integer densities but nearest-neighbor repulsion is re-
quired �44,47,48� to get K�1. It is important to note that
such cosine effective potential terms effectively arise from
the interactions. The transition towards the charge-density-
wave �CDW� state with one atom every two sites �48� is
associated with a spontaneous breaking of the translational
symmetry. The other possibility to generate Mott-insulator
phases is to artificially introduce a cosine chemical potential

which directly couples to the density. Similarly, a CDW
phase induced by an external potential is associated with an
explicit breaking of the translational symmetry. This latter
solution is possible in cold atoms by adding a superlattice.

Effect of a superlattice potential. We first consider a co-
sine potential V2�x�=V2 cos�Qx� which has only one Fourier
component at wave vector Q=2
r with r rational. The addi-
tional term reads

� dxV2�x���x� =
V2

2
� dx cos��2
n 
 Q�x − 2��x�� + ¯ .

�7�

As seen previously, such terms may induce a C-IC transition
when increasing V2 if the condition n
r�Z is satisfied. In
particular, the superlattice potential can become relevant for
the densities n=r ,1−r ,1+r ,2−r , . . .. Higher harmonics can
be generated, as discussed in Sec. II A. If the potential term
is not relevant, the Luttinger parameter K is, however, renor-
malized to a lower value by the potential as it happens with
interactions. Such commensurate potentials have, for in-
stance, been studied in the context of Mott transitions �47�
and of magnetization plateaus �49�. The physics of cold at-
oms with induced commensurate CDW phases was studied
in detail in Ref. �39�. Vidal et al. �33� generalized this result
to irrational r. For the case of a quasiperiodic potential, the
critical value Kc remains equal to 2 if the density approxi-
mately satisfies the relation n
r�Z. If the density does not
fulfill this condition but remains close enough, an insulating
phase can be reached but for smaller critical value �for a
spinless fermion model, Kc�1 was found from RG�.

Disorder with a random box distribution. From Refs.
�4–6�, the main result is that the potential is relevant below
the critical value Kc=3 /2, whatever the density. The result-
ing Bose-glass phase has no one-particle gap but an expo-
nentially decaying one-particle Green’s function due to local-
ization. The correlation length scales according to
�	exp�−A / �V2−V2

c�� where V2
c is the critical value for the

transition.

C. Numerical methods

The hard-core bosons physics can be solved exactly using
a Jordan-Wigner transformation which maps the model onto
free fermions with boundary conditions that depend on the
number of bosons. As the method has been widely described
in the literature, we refer the reader to Refs. �40,50�. This
method is also used to investigate the out-of-equilibrium
properties �50� of the cloud in Sec. IV.

We use the DMRG algorithm �51–53� to treat the soft-
core Bose-Hubbard model �3�. For disordered systems,
sweeping has proven to be particularly important to get reli-
able results �10,54�. DMRG has also been used to investigate
the physics of quasiperiodic electronic systems �55,56�. Our
implementation is based on a matrix-product-state varia-
tional formulation �57�, which enables us to start sweeping
from any state. In practice, we have started from either a
random or a classical state �where the particles are located

QUASIPERIODIC BOSE-HUBBARD MODEL AND… PHYSICAL REVIEW A 78, 023628 �2008�

023628-5



according to the J=0 limit of the Hamiltonian� contrary to
the usual warm-up method. The algorithm works in the ca-
nonical ensemble �fixed number of particles N� and at zero
temperature. We typically use from 200 to 400 kept states.
The number of bosons allowed on site is usually fixed to
Nbos=4 but results for densities larger than one have also
been checked with up to Nbos=6. For U�1 and V2�20, the
classical distribution of particles does not have more than
four bosons per sites.

A drawback of this variational method is the occasional
tendency to get trapped in an excited �metastable� state with
a slightly higher energy that is difficult to distinguish nu-
merically from the ground state. Indeed, the usual measures
of the convergence of DMRG, the discarded weight and the
variance ��H−E�2� are very small for these states. System-
atic tests have been carried out in the U→� limit. Starting
from the classical state improves convergence for small den-
sities or close to one at large V2 as one would expect intu-
itively. Below V2�4, convergence is always good, which
can be related to the physics of the systems as the potential
does not induce localization in this regime. In the case of
soft-core bosons, we expect an enhancement of quantum
fluctuations at finite U to help the particles redistribute more
easily. Such equilibration is rendered very difficult for HCB
as for strong V2, local densities can be very close to one.
Most of the data have been obtained for U�V2. Further-
more, relying on the variational principle, we can use the
smallest of the two energies obtained from starting either
from the classical or a random state. Lastly, the coherence of
the results obtained from observables computed indepen-
dently, such as the correlation length and the one-particle gap
�see Sec. III�, supports the good convergence of the algo-
rithm.

II. DENSITY PLATEAUS: MOTT AND
INCOMMENSURATE CHARGE-DENSITY-WAVE PHASES

This section describes the relation between the density n
and the chemical potential � for a nontrapped cloud. The
motivation is to find first the location of the compressible
and incompressible phases. The chemical potential is com-
puted via

��N� = E0�N� − E0�N − 1� ,

where E0�N� is the ground-state energy with N bosons. If a
plateau emerges in the n��� curve, its width is directly re-
lated to the one-particle gap defined by

�c = E0�N + 1� + E0�N − 1� − 2E0�N� = ��N + 1� − ��N� .

Lastly, the compressibility of the system �=�n /�� is evalu-
ated through its discretized expression as

�−1 = L�E0�N + 1� + E0�N − 1� − 2E0�N�� . �8�

For a Luttinger liquid, the compressibility is simply related
to the Luttinger parameter and the sound velocity as follows:

� =
K


u
. �9�

The compressibility naturally vanishes in a plateau phase.

A. Plateaus in the hard-core boson limit

Following Ref. �6�, setting J=0 gives insight into the J
�U physics. This gives the width U−max�Vj�+min�Vj� of
the various Mott plateaus centered at � /U=0.5,1.5,2.5, . . ..
This is due to the fact that in the limit J=0 one can reorder
the energies by increasing values and therefore the n���
curve, which is the integrated density of states, is simply
linear between Mott plateaus for the random box distribution
and U�max�Vj�−min�Vj�. For a bichromatic lattice, we
have �=V2 sin�
n /2�. What happens when J is small but
finite? The density of states evolves smoothly with J for the
random box distribution �see Fig. 3�. For V2=0, the band-
width that develops between the Mott plateaus has a width
4J and a cosine relation can be observed �7� because Mott
subbands with cosine dispersion are well separated. On the
contrary, for the bichromatic lattice intermediate plateaus ap-
pear as soon as J is nonzero. This behavior is reminiscent of
the situation for rational r and was discussed extensively for
free fermions, which in our case would be equivalent to the
HCB limit.

The energy spectrum and the wave function properties
have been widely studied in the literature �27–31,58�. It was
shown that gaps open in the energy spectrum. If r is rational,
there is a finite number of gaps. If r is irrational, there is an
infinite number of gaps at large V2, the width of which
strongly depends on p and q if one writes n= p /q and gets
larger as V2 increases. We here recall the method usually
followed: these gaps are studied by m successive approxima-
tions rm= pm /qm of the irrational number r. For a given m,
the potential is qm periodic and we can use Bloch’s theorem
on supercells of length qm. The one-particle Schrödinger
equation of the Hamiltonian �3� reads

− J�� j+1 + � j−1� + �Vj − E�� j = 0. �10�

Using Vj+qm
=Vj and Bloch’s theorem � j+qm

=eikqm� j, the
spectrum is obtained by solving the determinant of size qm as
follows:

-3 -2 -1 0 1 2 3 4
µ

0

1

n

Random box, V
2
=2

Bichromatic, V
2
=2

r

1-r

-1+2r
2-2r

FIG. 3. �Color online� Comparison of n��� for a random and a
bichromatic potential �irrational r� for hard-core bosons. Plateaus
open for the bichromatic potential, the main ones being at n=r and
1−r.
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�
V1 − E − J − Je−ikqm

− J V2 − E − J

− J � − J

− Jeikqm − J Vqm
− E
� = 0.

For qm=2, this is the simple band folding mechanism which
opens a gap at n=1 /2, with a doubling of the unit cell. More
generally, at most qm−1 gaps appear in the spectrum made of
qm bands E1,. . .,qm

�k� with k� �−
 /qm ,
 /qm�. Examples of
effective dispersion relations for the bichromatic potential
can be found in Sec. IV. Figure 4 displays the opening of the
plateaus for HCB with V2. A simple real-space interpretation
can be given for the main plateau at n=1−r: it amounts to
fill each well of size 1 / �1−r� with one particle �see Fig. 2�.
The plateau at n=r is simply obtained with the same argu-
ment with holes instead of particles. Putting two particles
�holes� in each well can lead to plateau at densities 2�1−r�
and 1−2�1−r�=−1+2r. The fact that the main plateaus at
n=r, 1−r develop as soon as V2 is turned on is expected
from the bosonization arguments of Sec. I B, since K�V2
=0�=1�Kc=2 for HCB. From a momentum space point of
view, these openings are associated with umklapp processes
with a momentum transfer Q which, modulo 2
, gives back
the conditions n=r, 1−r. In perturbation theory, processes
with larger momentum transfers can be obtained from Eq. �7�
with higher order terms in V2. For instance, to second order,
terms with transfers 2Q �corresponding to n=2−2r and −1
+2r� will appear if K�1 /2. Consequently, a finite V2 is re-
quired to stabilize these plateaus �see also Fig. 9�. As V2 is
increased, such processes break the spectrum up and make it
pointlike for the critical value V2=4, which is beyond this
weak-coupling bosonization interpretation. Lastly, we note
that this is particular to the Harper model. For the Fibonacci
chain �33�, the Fourier transform of the potential is already
dense at small V2. In our situation, the Fourier spectrum gets
denser as V2 is increased.

B. Plateaus for soft-core bosons

We now consider the case of a finite interaction U. First of
all, the hard-core boson limit is likely to give the correct

qualitative behavior for large U. Indeed, at low densities, an
interaction U slightly larger than V2 might be sufficient to
recover the HCB physics as multiple occupancies are already
strongly suppressed. Densities larger than one are allowed
for soft-core bosons. For large U, we expect to find plateaus
in between each Mott plateau. One may recover the hard-
core bosons band folding mechanism inside each Mott sub-
band �or at least for the lowest ones�. These simple observa-
tions are coherent with the large U numerical data displayed
in Fig. 5. A comparison with HCB results is provided in the
inset of Fig. 5, which proves that U=16 is sufficiently large
to reproduce the HCB physics within the first three Mott
subbands.

Figure 6 gathers the results when U�V2, unveiling a
more surprising behavior. As discussed previously, we expect
the HCB behavior to account for the low-density part of the
curve, which is actually observed through the rather large
width of the n=1−r plateau. Indeed, because this plateau
corresponds to one particle in each well, the effect of inter-
actions is restricted to virtual processes. For higher densities,
a large compressible phase is obtained, manifested by the
smooth increase of the density. From a phenomenological

FIG. 4. �Color online� Opening of plateaus in the n��� curves
with V2 for hard-core bosons �V2 is increased by steps of J /4 and is
in units of J, as ��. Above the critical value V2

c =4, the curves
acquire a devil’s staircaselike behavior: plateaus become dense.

FIG. 5. �Color online� n��� for soft-core bosons with a large
interaction parameter U=16 at small and large V2 computed on a
system with L=35 and a fixed phase shift �=0. Inset: curves at low
density show the comparison between hard-core bosons �U=�� and
soft-core ones, which is good up to finite-size effects.
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FIG. 6. �Color online� Plateaus with a large V2	U. Some of the
largest plateaus found do not correspond to the hard-core boson
limit. The two sizes L=35 and 70 give an idea of the �weak� finite-
size effects.
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point of view, adding atoms fills the well minima. Since U is
not too large, the effective potential coming from the com-
bination of the interaction and the superlattice potential gets
smoother and smoother. Consequently, the associated gain in
kinetic energy favors a compressible and actually a super-
fluid state as we will see in Sec. III H where delocalization
by increasing the density is discussed. In between those two
regimes, the behavior is nontrivial. Strikingly, some plateaus
existing in the HCB limit totally disappear, such as the n
=r plateau, while others acquire a larger width. Having gaps
whose size increases when interactions are reduced is some-
thing rather counterintuitive. These plateaus result from the
interplay of the potential and the interactions. A real-space
picture was given by Roscilde �40� following a random
atomic limit: considering wells of typical size 1 / �1−r� sepa-
rately, the fine structure of the energy levels for each number
of atoms inside the wells depends strongly on U ,V2, and also
on J. Connecting wells with J allows for the computation of
the integrated density of states, which is n���. Though physi-
cally enlightening, this approach is quantitatively correct for
rather small densities. Since the observed plateaus stem from
the interplay of the interactions and the potential, we call the
corresponding plateau phase an incommensurate charge-
density-wave phase. They appear to be the extension of both
the Mott and the incommensurate HCB phases at smaller U.
Bosonization explains, at least qualitatively, the mechanism
of plateaus opening in the HCB limit by considering high
order perturbative terms coming from Eq. �7�, which gives
for instance the first two densities r ,1−r and 2�1−r� ,−1
+2r. At finite U and when U	V2, the situation is more
involved as both terms should be treated nonperturbatively
and on an equal footing. Predicting the observed densities at
which these ICDW phases occur is thus beyond the pertur-
bative approach.

III. LOCALIZATION INDUCED BY INTERACTIONS OR
DISORDER: PHASE DIAGRAMS

We have seen that contrary to the standard random box
situation, there is not only one phase �either the BG or the
SF� between the MI phases but a succession of phase transi-
tions as the chemical potential is increased. This renders the
usual �6� interpretation of the phase diagram in the �� ,J /U�
plane for a fixed ratio V2 /U rather strenuous �40� as the
succession of phase transitions breaks it up into many com-
pressible and incompressible pieces. Thus, we prefer to work
at fixed density and varying the two competing parameters
V2 /J and U /J. These phase diagrams were first sketched
numerically in Refs. �34–36� but on very small systems and
without a discussion of the boundaries and the nature of the
transitions. We here provide a more precise determination, in
particular, by using scaling over different sizes and averaging
over � when necessary. We now describe more precisely the
various observables used to sort out the phases.

A. Observables

In addition to the compressibility, we need further observ-
ables to sort out the different phases realized in the bichro-

matic setup. The first natural one is the superfluid density �s.
It can be computed using twisted boundary conditions as
follows:

�s = 2
L
E0

apbc − E0
pbc


2 , �11�

where the ground-state energies are computed for periodic
�pbc� and antiperiodic �apbc� boundary conditions. With this
definition, �s actually matches the superfluid stiffness. Other
definitions �10� contain the density of particles n as a pref-
actor. The superfluid density is zero in the BG, ICDW, and
MI phases and finite only for the SF phases. In a Luttinger
liquid, the superfluid density is directly related to the Lut-
tinger parameters through

�s = uK . �12�

Combined with Eq. �9�, K can then be computed using K
=�
�s�. This numerical evaluation only requires the calcu-
lation of energies. K can be independently extracted from
correlation functions. For instance, the one-particle density-
matrix or bosonic Green’s function reads �bi

†bj� where � �
indicates the expectation value in the ground state. Following
Ref. �59�, we extract the contribution of the phase ��x� fluc-
tuations by dividing it by the local inhomogeneous densities
ni as follows:

G��i − j�� =
�bi

†bj�
�ninj

. �13�

The motivation for this renormalization stems from the ob-
servation that the density-phase expression of the boson cre-
ation operator is bi=���xi�e−i��xi�, and the fact that the cor-
relator that features superfluid properties in bosonization is
�ei��xi�e−i��xj��. For a translationally invariant model, both
definitions only differ by a constant factor. Since there is no
translational invariance, one must likewise average correla-
tions over all couples of points with the same distance x
= �i− j� to obtain a smooth behavior for this correlation. A
typical plot is given in Fig. 20. In the case of the BG, ICDW,
or MI phases, the Green’s function decays exponentially
G�x��e−x/�. In the Mott-insulator phase, the correlation
length � goes as the inverse one-particle gap �	1 /�c. An
effective correlation length can also be computed on a finite
system using �48�

�2�L� =

�
x

x2G�x�

�
x

G�x�
. �14�

This gives a correct estimate of the correlation length for the
localized phases in the thermodynamical limit up to a factor
�2. A divergence of � with L signals a superfluid state in
which the asymptotic behavior of the Green’s function is
algebraic with an exponent controlled only by the parameter
K,
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G�x� �
1

x1/2K . �15�

This allows for the evaluation of K by using an accurate
fitting procedure on a finite system with open boundary con-
ditions. This is briefly described in Appendix A.

Characterizing the Bose condensation of the cloud is often
done by looking at the condensate fraction fc. It is usually
computed on finite clusters as the largest eigenvalue of the
matrix �ij = �bj

†bi�. No average over sites nor normalization
by the local density is performed here. The largest possible
value fc can reach is the number of bosons N. In the limit of
HCB, quasicondensation results in the scaling fc�N���N. A
finite fc is a feature of either the BG, the ICDW, or the MI
phase. Experimentally, time-of-flight measurements are re-
lated to the Fourier transform of �ij, namely,

n�k� =
1

L
�
lm

eik�l−m��lm. �16�

Coherence of the quantum gas is deduced from the appear-
ance of a narrow central peak n�k=0�.

B. Localization of free bosons

We start with the simplest situation of free bosons, the
U=0 limit, in which all bosons lie in the ground-state single-
particle wave function ��0�. In Fig. 1 of Ref. �23�, the struc-
ture of the trapped wave function is obtained from the Gross-
Pitaevskii equation. Similar results are found here for the
lattice model �3� as shown in Fig. 7, which displays the
qualitative change of shape from a Gaussian to an exponen-
tial structure. In order to quantify the localization transition
of a single-particle wave function ���, one can use the in-
verse participation ratio, which is usually defined as

I��� = �
j

����j��4. �17�

�j� is the state at site j in the real-space basis. In the thermo-
dynamical limit, I��� goes to zero for a delocalized state with

a typical scaling 1 /L or �� for, respectively, a nontrapped
and a trapped system, while it remains constant for a local-
ized wave function. Based on an exact duality transformation
of the one-particle Schrödinger equation �10�, the localiza-
tion of the wave function has been conjectured by Aubry and
André �27� to happen at the critical value V2

c =4. This con-
jecture is illustrated in Fig. 8, which displays �I��0��� as a
function of V2. In comparison with the RBD evolution, the
bichromatic setup displays a sharp transition even for a finite
trap frequency provided it is small enough. For the RBD,
localization occurs as soon as V2�0 �3� with a typical scal-
ing I��0�	�V2.

C. Localization of hard-core bosons

We have seen that plateaus emerge in the n��� curve as
soon as V2 is turned on and that the spectrum is pointlike
above V2

c =4. The extension of the wave functions is related
to the nature of the energy spectrum and it was shown
�27,28� that all wave functions are extended below V2

c while
they are all localized above. Consequently, we expect the
HCB to localize above V2

c, whatever the density. Below V2
c,

HCB can be either in a SF or in an ICDW state. To illustrate
this situation, we plot in Fig. 9the behavior of the Luttinger
exponent K as a function of V2 and the density n. It nicely
shows that K=1 in superfluid phases as expected for HCB
but vanishes �up to finite-size effects� for the densities cor-
responding to the ICDW phases, the main ones being located
at n=r and 1−r. Many gaps develop as the critical point is
approached and the shrinking of the bands renders the low-
energy approximation and calculation of K difficult close to
this point.

As a partial conclusion, the two limiting cases U=0 and
U=� of the �U ,V2� phase diagrams of Fig. 1 can be summed
up as follows: �i� for a generic density n �meaning that it
does not correspond to an ICDW plateau� and also for the
U=0 limit whatever the density, the system remains super-
fluid for V2�4 and localizes in a BG phase for V2�4 with a
correlation length which behaves according to �−1

	 ln�V2 /4� �27–29�; �ii� for a density close to a plateau phase

FIG. 7. �Color online� Ground-state wave function of the lattice
model �3� with a smooth trap but no interaction for increasing per-
turbing potential V2. There is a crossover from a Gaussian wave
function �logarithm scale� to an exponential one. Note that the
maximum of the wave function in the presence of strong V2 is not
centered at the middle of the trap.
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FIG. 8. �Color online� The averaged inverse participation ratio
�I��0��� as a function of V2 for a bichromatic lattice and a random
box distribution. There is a sharp transition at V2

c =4 in the thermo-
dynamical limit �L=420 for �=0�. A similar sharp transition is also
found for the system with a smooth trap.
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�for instance n=r or 1−r� and U=�, there is a transition
towards an ICDW phase for a critical value of V2 which is
smaller than 4 �and precisely equal to 0 for n=r or 1−r�; and
�iii� for the commensurate integer density n=1 and U=�, the
system remains in the MI phase ground state for any V2.

D. Superfluid–Bose-glass transition
for soft-core bosons

We address here the direct transition from the SF to the
BG phase, which occurs for a generic density by increasing
the strength of the potential V2. Figure 10 provides the evo-
lution of the Green’s function G�x� showing the localization
transition. First, a finite “disorder” strength with a critical

value V2
c �6.9 is necessary to obtain exponentially decaying

correlations. This value is larger than the U=0 and U=�
limits; interactions have a delocalization effect on the BG
phase similarly to the RBD box results. Qualitatively, this
can be understood by starting from the localized state. There,
the condensate is fragmented into pieces. Repulsive interac-
tions will make the condensate fragments inflate and, by do-
ing so, will help make them overlap and build coherence. For
bosons, interactions thus help delocalization. Interestingly,
computing the Luttinger exponent from the correlations
shows that the critical value Kc at the transition is smaller
than the RBD result 3 /2. The scaling properties of the tran-
sition thus differ from the standard SF-BG transition. Find-
ing a Kc smaller than the RBD result for the Harper potential
is well compatible with the analytical finding for K found for
the Fibonacci potential in Refs. �33�.

To proceed with the discussion of the competition be-
tween interactions and the disordered potential, we compute
with DMRG the phase diagrams of the system in the three
generic cases n=1 �competition between the SF, Mott-
insulator, and BG phases�, n�r �competition between the
SF, ICDW, and BG phases�, and lastly, n=0.5 �competition
between the SF and BG phases only�. The summary of the
phase diagrams is given in Fig. 1.

E. Phase diagram at n=1

All observables relevant for the construction of the phase
diagram as a function of the interaction U and the potential
depth V2 are reported in Fig. 11 for the integer density n
=1. The Mott-insulator phase is characterized by a finite gap
�c	1 /�, a zero SF density, and a finite and small �of order
unity� condensate fraction. It emerges at the bottom right
corner above the critical value �48� Uc�3.3 for V2=0. We
observe that Uc increases with V2 as for the RBD, meaning
that V2 destabilizes the Mott-insulator phase. One can under-
stand from a simple local on-site energies argument: the dis-
order reduces the minimum one-particle energy gap in the
atomic limit. The BG phase exhibits exponentially decaying
correlations, a zero SF density, and a nondiverging conden-
sate fraction but no gap. It emerges for the large V2 region of
the V2�U half-part of the phase diagram. Note that the BG
has a condensate fraction fc that is slightly larger than for the
MI phase, qualitatively due to the fact that coherence should
remain significant over the typical length scale of the wells,
namely, 1 / �1−r�. The SF phase has a finite SF density but no
gap and algebraic correlations. It generically emerges at low
U and low V2 and surprisingly extends into a handprintlike
pattern. A very small �compared to U and V2� one-particle
gap is observed for large U and large V2 but we cannot
conclude whether it is a finite-size effect or not �see Fig. 12�.

Superfluid—Mott-insulator transition and intervening
Bose-glass phase. An important question is whether the SF
and MI touch each other at small but finite V2. In other
words, is there always an intervening BG phase between the
SF and the MI phases as for the RBD �9,10�? For the bichro-
matic potential, we however have reason to think that small
V2 might not be as relevant as for true disorder since a large
critical value exists for both hard-core and free bosons. To
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FIG. 9. �Color online� The Luttinger parameter K for hard-core
bosons as a function of V2 and the density n on a finite system with
L=175 for an irrational r=0.7714. . .. Strictly speaking, K should be
equal to 1 in all superfluid phases and 0 in the gapped phases. Up to
finite-size effects, vertical bands reveal the successive openings of
gaps as V2 is increased.
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FIG. 10. �Color online� Superfluid–Bose-glass localization tran-
sition. The parameters U=2 and n=0.63 are chosen such that the
system is in the superfluid phase at V2=0. �a� The inverse correla-
tion length scales roughly as �V2−V2

c, where V2
c =6.9 is much larger

than the noninteracting critical value V2
c =4. Below V2

c, we have the
scaling �	L typical of a superfluid state. �b� �s provides an inde-
pendent determination of the transition. �c� Evolution of the Lut-
tinger exponent K as a function of V2. The dashed line displays the
RBD result Kc=3 /2. �d� Averaged one-particle density matrix G�x�
for increasing V2 showing the transition from an algebraic to an
exponential decay.
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address this issue numerically, we have compared the scaling
of the most relevant observables for the known case V2=0
and for V2=2 �see Fig. 13�. When V2=0, the SF-MI transi-
tion is of the Kosterlitz-Thouless type leading to an opening
of the one-particle gap �c�exp�−A /�U−Uc� above the criti-
cal value Uc, with A a constant. Such an opening gives a
good fit to the extrapolated data �see Fig. 13� but does not
precisely give Uc. Finding Uc is rather achieved by using the
weak-coupling RG result Kc=2 for the KT transition. Figure
13 shows that Uc�3.3
0.1 for V2=0 in agreement with
results of Ref. �48�. Within error bars, the scalings of the
superfluid stiffness �s and correlation length also agree with
this critical point. Note that because of the very slow opening
of the one-particle gap in a KT transition, the correlation
length and superfluid density show much smoother finite-size
effects than for the SF-BG transition illustrated in Fig. 10.
For V2=2, if a BG is present in between the SF and MI
phase, the one-particle gap �c should open after the super-
fluid stiffness scales to zero. Up to numerical accuracy, data
are consistent with a direct SF-MI transition of the KT type
with a slightly larger critical interaction Uc�3.6
0.1. We
observed that averaging over � is needed to ensure a good
crossing of the scaling curves �see the insets of Fig. 13�.
Note that for the RBD situation, V2=2 would correspond to a
disorder amplitude �=1 in Ref. �10� �or �=0.5 in Ref. �9��
for which the BG phase already has a significant width. In-
terestingly, the n=1 phase diagram has a similar shape as the
one with a commensurate potential with r=1 /2 �39�. In this
case, there is at large V2 a charge-density-wave phase gapped
with two particles, each two sites for which Kc=1 /2. A direct
SF-MI transition is found because the term �7� will not be

relevant for small V2. Our results suggest that in the incom-
mensurate case, the potential remains irrelevant as well.

Superfluid–Bose-glass transition. We now turn to the dis-
cussion of the contour of the SF-BG transition which dis-
plays a “handprint” pattern. First, contrary to the RBD, the
BG phase emerges only above V2

c =4 and for much larger
values for small U. Secondly, V2

c increases with U at small U,
which is similar to the delocalization by interactions ob-
served in the RBD case. Similarly to what was found in Fig.
10, the inverse correlation length has a power-law behavior
above the critical point with a Luttinger parameter smaller
than 3 /2. The convexity of the SF phase contours changes
contrary to the RBD phase diagram, leading to this handprint
pattern. To understand if these reentrances of the SF phase
inside the BG phase are not a finite-size effect and remain
after averaging over �, we show the averaged ��s�� and ����

for various system sizes in Fig. 13. The behavior of � and �s

suggests two reentrances of the SF phase and, in particular, a
sharp but clear one close to the transition to the MI phase.
The U=V2 line corresponds to the “transition” between the
MI and BG phases in the atomic limit. It gives a rough esti-
mate for the extension of a SF phase at large U and V2,
which does not occur for the RBD situation. We expect that
the SF phase vanishes for large U and that there is a direct
MI-BG transition around the U=V2 line. A similar emer-
gence of the superfluid phase around the atomic limit was
found in Ref. �39� for the case of a commensurate potential
where the SF phase competes with a CDW and a MI phase.
In Fig. 12, the intermediate localized phase between the two
SF reentrances displays a small gap. This phase could have a
finite gap but we observe that if so, it cannot be distinguished
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FIG. 11. �Color online� Phase diagram for n=1. Observables are computed with DMRG for a system with L=35 and fixed phase shift
�=0 as a function of U and V2. The V2=0 line shows the Mott transition at Uc=3.3 while the U=0 line shows the free boson localization
transition around V2

c =4. The Mott-insulating phase gets qualitatively delocalized as V2 increases for U not too large. Increasing U delocalizes
the BG phase if V2 is not too large.

QUASIPERIODIC BOSE-HUBBARD MODEL AND… PHYSICAL REVIEW A 78, 023628 �2008�

023628-11



from finite-size effects. Comparing again with the commen-
surate case �39�, the main difference �apart from the finite
gap� is the extension of the SF phase along the U=0 line. For

the Harper model, there is no such extension because of the
localization of the single-particle wave function.

F. Phase diagram close to the density n=r

A density which satisfies the criteria n�r allows for the
realization of an ICDW phase which competes with the SF
and BG phases. The �U ,V2� map of the observables is given
in Fig. 14. The ICDW phase has a finite gap and exponen-
tially decaying correlations as the MI phase. Similar qualita-
tive features are found with the ICDW phase replacing the
MI phase. However, a finite V2 is of course required to sta-
bilize the ICDW phase contrary to the MI phase. Secondly, a
finite V2 is needed to stabilize the BG phase. As a conse-
quence, the SF phase extends to large U close to the V2=0
line. As discussed in Sec. II, the ICDW is a new feature
compared with the RBD phase diagram given in Refs. �9,10�
for n=0.5. Similar reentrances of the SF phase into the BG
phase are found at fixed V2 and increasing U. The U=� line
of the phase diagram would give an ICDW phase every-
where except for V2=0 since the n=r plateau occurs as soon
as V2 is finite in the HCB limit.

G. Phase diagram for a generic density n=1 Õ2

Lastly, the phase diagram for a generic density n=1 /2 has
been computed to discuss only the competition between the
SF and BG phases �data not shown; see phase diagram in
Fig. 1 for results�. We must note that, ICDW plateaus can,
however, appear for generic density in a region where U
	V2, as we show in Fig. 6 for the particular choice of pa-
rameters V2=8 and U=6. In this case, the ICDW phase
would have a finite domain in the �U ,V2� map �contrary to
the n=r phase diagram�, because the ICDW phase is not
realized in the HCB limit. The observables suggest that �c
remains zero in the whole parameter range, while the BG is
bounded by the V2=4 line and the SF phase slightly extends

FIG. 12. �Color online� Superfluid–Mott-insulator transition for
n=1. Cuts along the U axis for V2=0 and 2. Left: data giving
similar results to those of Ref. �48� �the vertical bar being Uc

�3.33
0.1�. Data are computed with Nbos=4 and the Luttinger
exponent K is determined using either �s and � or G�x� �see Sec.
III A�. Scaling of �s, � /L, and the criteria Kc=2 gives the same
critical point within error bars. The scaling of the condensate frac-
tion fc �not shown� is not simple at the transition and the HCB
scaling fc��N does not hold. Right: the same observables for V2

=2 and Nbos=3 �this cutoff induces a nonphysical decrease of the
superfluidity at small U, but does not affect the transition as seen,
for instance, from the behavior of the Luttinger parameter K for
Nbos=4�. The insets show scaling behavior for �s and � /L after
averaging over several different �. A critical point Uc�3.6
0.1 is
found which corresponds to Kc�2. Furthermore, the one-particle
gap �not averaged over �� is best fitted by a Kosterlitz-Thouless
opening �we fixed Uc=3.6 for the fit�. Up to numerical precision,
we infer from these results that there is a direct transition between
the SF and the MI phases, with no intervening BG phase.
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FIG. 13. �Color online� Reentrances of the SF phase with increasing interactions. Cut at V2=10 in the phase diagram of Fig. 11. Error
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inside the BG phase for small U. However, critical values V2
c

for the SF-BG transition are found to be smaller than for n
=r, themselves smaller than for n=1. The same qualitative
argument stating that the lower the density, the closer the
physics is to the HCB can be put forward. The SF region
extends with the density of the system. This observation will
now be more precisely discussed.

H. Delocalization via increasing the density of bosons

A complementary approach to these �U ,V2� phase dia-
grams at fixed density is to keep U and V2 constant and to
look at the observables as a function of the density n. From
dipole oscillation measurements, Lye et al. �23� observed a
delocalization transition by increasing the number of par-
ticles. We now address the nontrivial case of U	V2 by set-

ting U=6 and V2=8 corresponding to the parameters of the
n��� curve of Fig. 6. Results for the same observables as for
the phase diagrams are plotted in Fig. 15. We found transi-
tions between the three different phases BG, ICDW, and SF.
At low densities, double occupation for bosons is strongly
suppressed because of the finite U. Consequently, the behav-
ior is qualitatively the one HCB would have: V2 being larger
than 4, localization exists at low densities. The superfluid
density, correlation length, and one-particle gap confirm the
presence of the BG phase. At large densities, a SF emerges
which is something well known without disorder because the
lobes of the Mott-insulator phases shrink at large densities
�48�. In addition, the disordered potential has a tendency to
reduce the size of the Mott-insulator phases as we have seen.
Very qualitatively, some particles fill the wells of the disorder
potential so that the remaining ones feel a smoother effective
potential allowing for a gain in kinetic energy leading to
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FIG. 14. �Color online� Phase diagram for n�r. Observables are computed on a system with fixed size L=35 and fixed phase shift
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FIG. 15. �Color online� Delocalization by increasing the number of particles. Observables for increasing density when V2�U �same
parameters as in Fig. 6�. There is a delocalization transition with increasing density. A few ICDW phases can be seen at intermediate fillings
�dashed brown vertical lines in the right-hand figure showing the one-particle gap �c�. Gray areas denote the localized regions �either BG or
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superfluidity. This behavior for an irrational r is qualitatively
similar to what was observed for a rational r �see Fig. 23 of
Ref. �39�� except that no BG, but a “weakly superfluid”
phase is realized in this latter case. Besides this sharp BG-SF
transition, peaks in the one-particle gap �c uncover the pres-
ence of ICDW phases within both the BG and the SF phases.
These phases naturally correspond to the plateaus in Fig. 6.

IV. PROBING THE BOSE-GLASS PHASE WITH
OUT-OF-EQUILIBRIUM DYNAMICS

A. Static observables

The question of probing experimentally the BG phase
with respect to the other possible phases is particularly im-
portant. First, the simplest observable obtained after time-of-
flight measurements is related to the momentum distribution
of the atoms n�k�. This measure helps distinguish between
coherent and incoherent phases by looking, in particular, at
the k=0 peak. A sharp and high peak is the signature of a
coherent phase, the superfluid phase. Because of short-range
correlations, both the MI and the BG phases will give a
much smaller peak broadened with a typical width of �−1.
Figure 16 displays n�k� in the BG at small U. In addition to
the central peak, satellite peaks at k= 
2
�1−r� emerge as a
signature of the underlying superlattice. However, in the ex-
periment pictures, the Wannier envelope and the broadening
of the peaks due to scattering events during the time-of-flight
will change the observed shape. It is expected that the addi-
tional satellite peaks are too small to be experimentally re-
solved and are washed out if either V2 and/or U are too large.
Thus, n�k� can only be used to distinguish the superfluid
from the Bose-glass or Mott-insulating phases. However, it
would not help distinguish the MI from the BG phase. Ref-
erences �34,40� found a similar behavior and, in the second
reference, a nonmonotonic evolution of the central peak
n�k=0� with increasing V2 has been established. The rein-
forcement of the superfluidity upon increasing V2 at fixed U
in a trapped cloud must be reminiscent of the MI-SF-BG
transitions of the phase diagrams of Fig. 1. Noise correla-

tions �60� were proposed �40,61� as a possible probe for the
BG phase and measured in Ref. �26�. However, this observ-
able catches the fact that density correlations reveal the pres-
ence of the underlying superlattice �40,61� but not the gap-
less nature of the excitations �40�. It is therefore necessary to
look for additional evidence of localization.

B. Expansion in the lattice potential

As often done in experiments �12–14,16–18,23�, transport
measurements are a better fashion to probe localization. In
order to show the existence of a critical point for the local-
ization, we propose to look at the expansion of the cloud
when the trap is released �13,14,16,18,50,62,63�. Observing
the expansion in the optical lattice is a particularly appealing
experiment as the Hamiltonian governing the dynamics is the
one of the bulk system �with �=0� for which we have com-
puted the equilibrium phase diagram. The confinement is
used here to prepare an out-of-equilibrium state for this
Hamiltonian.

For the sake of clarity, we first discuss the expansion of
HCB. The spreading has been studied before in the HCB
limit for homogeneous lattices �50�, and for soft-core bosons
in commensurate lattices �64�. Figure 17 displays the expan-
sion for free HCB �V2=0�, for two bichromatic potential
amplitudes, below �V2=2� and above �V2=6� the equilibrium
critical point, and also a situation with a RBD potential of an
amplitude V2=2. The system is prepared in the ground state
of the Hamiltonian with the confining potential �we chose a
trap frequency of �=0.03�. At t=0, the trap frequency is set
to zero and the condensate is free to expand into the lattice.
For V2=0, the expansion of the edges of the condensate is
roughly linear, with a typical velocity 2J corresponding to
the maximum group velocity �see below�. For the RBD po-
tential, the expansion is inhibited for the amplitude V2=2.
However, for the bichromatic setup, the same potential
strength does not prevent the condensate from expanding.
Still, V2=6 induces a localization of the condensate similar
to the one observed for the RBD potential.

One may ask whether the critical point of the dynamical
localization observed in Fig. 17 is the same as the equilib-
rium one. In the case of HCB, we know that all single-
particle wave functions are localized above V2=4 �see Sec.
II A, and references therein�. Consequently, we expect the
dynamical critical point to be identical to the equilibrium
one. To support this statement, we show in Fig. 18 the width
of the atomic distribution of the condensate after several
times of expansion, as a function of the “disorder strength”
V2. The dynamical critical point is found to be very close to
V2=4, within a 
0.1 window �gray rectangle in Fig. 18�.
One observes that, slightly above V2=4, the condensate still
spreads a little bit with time. This may be understood as a
finite trap frequency effect. Indeed, the edges of the conden-
sate can spread over a few sites if the initial trap is too steep.
In this case, the starting atomic distribution is too far from
the local atomic distribution that is expected �locally� in the
bulk of a nontrapped system, and particles have to be redis-
tributed. In the limit of vanishing initial trap frequency, we
expect the transition to be sharper. Note that, as the localiza-

-π -π/2 0 π/2 π
k

0

1

2

3

4

n(
k)

U=2, V2=8, n=0.63

��
��

��
��

2π(1-r)-2π(1-r)

~ξ -1

FIG. 16. Typical n�k� in the Bose-glass phase of Fig. 10 in a
system without a trap. Satellite peaks at wave vector 2
�1−r� are
visible if the disorder is not too strong. The width of the middle
peak typically gives the inverse correlation length �a Lorentzian of
width � computed from Eq. �14� is given in dashed lines for a
qualitative comparison�.
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tion of all single-particle wave functions in the spectrum
does not depend on r �provided it is irrational�, we expect the
equality of the dynamical and equilibrium critical points to
hold independently of r. Figure 18 may be interpreted as the
vanishing of all effective group velocities at the critical point
�see below�. Thus, the exact critical value V2

c =4 for the lo-
calization could be probed experimentally with this tech-
nique for free or hard-core bosons.

Following Ref. �21�, a more precise description of the
HCB expansion can be carried out by looking at the one-
particle effective dispersion 	�k� for HCB. Without transla-
tional symmetry, wave vectors k are not good quantum num-
bers but looking at the Fourier transform of the one-particle
wave functions �k	� je

ikj� j and plotting ��k�2 as a function
of the pseudomomentum k provides an effective dispersion.
The features of the expansion depend mainly on two proper-
ties. First, the group velocities vg�k�=�	�k� /�k derived from
the effective dispersion relation convey the typical maximal
speed at which expansion evolves. Second, the expansion
also strongly depends on the initial occupation numbers
n	�t=0� of the eigenstates of the Hamiltonian with �=0.
This occupation is plotted together with the dispersion rela-
tion as a function of the “single-particle energy” 	 in Fig. 19
corresponding to the expansion observed in Fig. 17. For V2
=2, for which there is no localization, the effective relation
dispersion displays gaps as we have seen from Section II and
well-defined bands with a shorter periodicity originating
from the band foldings induced by the potential �see Sec. II�.
Compared with the single cosine dispersion obtained without
disorder, several shifted bands exist due to Bragg scattering
with the potential. One can convince oneself that opening
gaps lowers the maximum possible group velocity. Thus,
compared to a system with no disorder �Fig. 19, V2=0�, the
expansion for the bichromatic potential below V2=4 will al-
ways be slower if the 	=0 state �associated with the maxi-
mum group velocity 2J� is occupied in the initial state with-
out disorder. This explains the qualitative features of the
situations for which the condensate expands in Fig. 17.

FIG. 17. �Color online� Expansion of HCB condensates. At t=0, the system is in the ground state of the Hamiltonian with the trap plus
“disorder” potentials using a fixed chemical potential �=0 �about 51 particles� and a trap frequency �=0.03. At t�0, the trap confinement
is switched off abruptly. Figures show the evolution of the local density profile as a function of time. An expansion is observed for systems
with V2=0 �without disorder� and V2=2, but not for a random potential and a bichromatic potential with V2=6�V2

c. For the RBD, V2 defines
the width of the box distribution. When there is an expansion, reflections on the boundaries of the box in which the condensate expands can
be seen.
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FIG. 18. �Color online� Dynamical critical point—width of the
atomic distribution W=�nj�j− j0�2 of a HCB condensate as a func-
tion of V2 for several increasing times �in units if the hopping�. The
width W0 at t=0 has been subtracted for clarity. Parameters are the
same as in Fig. 17. Up to finite trap frequency effects �see the text�,
the dynamical critical point is identical to the equilibrium one �at
least for HCB�.

QUASIPERIODIC BOSE-HUBBARD MODEL AND… PHYSICAL REVIEW A 78, 023628 �2008�

023628-15



When V2=0, the expansion is slower when the chemical po-
tential is much below 0 �not shown�, as can be guessed from
the initial occupation numbers in Fig. 19. When V2=2, the
structure of the expansion is rather homogeneous at low
chemical potential �not shown� but becomes inhomogeneous
and faster for larger � �see Fig. 17�. The presence of two
different speeds might stem from populating bands with dif-
ferent maximum group velocities as can be seen in Fig. 19.
For the bichromatic potential with V2=6, no bands can be
distinguished as the signal does not show well-defined
pseudomomentums. The RBD potential displays a very dif-
ferent effective dispersion faded by the disorder, but which
still retains the whole feature of the cosine dispersion with-
out disorder. These two pictures illustrate that the localiza-
tion mechanism for the bichromatic and a RBD potential is
qualitatively different: the first one is rather associated with a
band folding mechanism while the second rather corresponds
to strongly scattered single-particle states. In this respect, one
can view the “weakly superfluid” phase found for commen-
surate superlattices with a large V2 in Ref. �39� as a precursor
of the Bose-glass phase of incommensurate lattices.

How these results can carry to investigate the physics at
finite U is an important and challenging question that needs
further investigations going clearly beyond the goal of this
paper. Indeed, from the numerical point of view, the expan-
sion of strongly correlated soft-core bosons is accessible with
time-dependent DMRG only until times of order 10J �64�,
while Fig. 18 shows that a reasonable determination of the
out-of-equilibrium critical point requires times of, at least,
100J. Thus, the question of the dynamical localization at
finite U of the model �3� and its relation with the equilibrium
phase diagrams of Fig. 1 remains an open question. First, the
most naive prediction would be to expect a similar physics as
the HCB one to hold, at least for large enough iterations.
Further qualitative arguments can be given on the expansion
for intermediate U, for which we can use two results from

the equilibrium phase diagrams studied in Sec. III: �i� the
critical values to observe localization are all larger than V2

=4, whatever U or the density, and �ii� at small densities, the
physics is essentially equivalent to the one of HCB. First
consider a situation where V2�4. The starting trapped state
is expected to have regions that can be locally SF or MI but
not BG, since there is no intervening BG phase. Provided
V2�4, an expansion is then expected systematically �what-
ever U or the total number of particles�, because the edges of
the condensate would be in a SF state �see examples of ex-
pansions of strongly correlated soft-core bosons in Ref.
�64��. For V2�4, the situation is more subtle as, for a given
U and V2, the occurrence of localization depends on density
in the nontrapped condensate �see, for instance, Fig. 15�. The
starting state structure is complex and local-density approxi-
mation not necessarily valid �40�. Very qualitatively, the
edges of the condensate would be in a localized state while,
if the density at the center of the cloud is large enough, SF or
Mott-insulating regions could also appear. However, if there
is expansion, the local density will decrease with time. When
the density becomes small enough to neglect interactions,
localization would then be expected since V2�4 and one
enters the HCB regime. A possible scenario could thus be a
systematic localization after either a transient regime with
expansion, or no transient regime. However, ascertaining
whether the above qualitative arguments could be spoiled by
other effects is difficult. For instance, it is known in the
completely different limit of very weakly interacting bosons
�Gross-Pitaevskii limit� that nonlinear effects due to interac-
tions can lead to some kind of localization even in a purely
effective periodic potential �65,66�. How to go from such a
limit to the relevant one for the Anderson localization in
strongly interacting one-dimensional systems is clearly a
question that will need further experimental and theoretical
work.

FIG. 19. �Color online� Effective dispersion relations for HCB—the Fourier transform of the single-particle wave functions ��k�2 is
plotted as a function of the single-particle energy and the pseudomomentum k. At the right of each dispersion curve is the initial occupation
numbers �from the state prepared using the trap confinement� vs the same single-particle energies for two different chemical potentials �
=−1.5,0. This shows which states participate to the expansion. Other parameters are the same as for the expansions shown in Fig. 17.
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V. CONCLUSION

The Bose-Hubbard model with a quasiperiodic potential
was shown to display a rich phase diagram including a Bose-
glass phase �localized but compressible�, and incommensu-
rate charge-density-wave phases in addition to the superfluid
and Mott-insulator phases. While localization induced by this
randomlike potential is found, the underlying mechanism
differs from the RBD situation: the band folding mechanism
known previously for free and hard-core bosons �or fermi-
ons� holds for soft-core bosons, leading to a finite critical
value of the localization transition V2

c �4. The critical values
found are high, possibly sufficiently high to allow for an
experimental demonstration of a localization transition. In
this perspective, static observables give clear evidence to dis-
tinguish between coherent and localized phases, but their
ability to sort the BG from the �small-V2� MI phase is less
obvious. On the contrary, the expansion of the condensate
after switching off the confinement is proposed to provide a
simple and rather clear signal to detect the localization tran-
sition. This was shown explicitly in the case of hard-core
bosons but remains an open question for soft-core bosons.
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APPENDIX: METHOD TO FIT THE BOSONIC GREEN’S
FUNCTION ON FINITE SYSTEMS

We use conformal field theory results �43� for a system of
length L with open boundary conditions to fit the bosonic

Green’s function defined in Eq. �13�. In the case of correla-
tions of the type �ei��x�e−i��x��� one has

G�x,x�� = A� �d�2x�2L�d�2x��2L�
d�x + x��2L�d�x − x��2L��1/2K

, �A1�

with K the Luttinger parameter, A a constant, and d the con-
formal length,

d�x�L� =
L



�sin

x

L
�� .

Because there is no translational invariance, the correlations
depend on both x and x�. Hence, in order to perform a fit, one
has to average Eq. �A1� over the results obtained with fixed
distance x�−x. Strictly speaking, formula �A1� is valid for
1�x ,x�, �x�−x��L and we have to remove the correspond-
ing contributions. Practically, fits are rather good up to dis-
tances comparable with L as one can see in Fig. 20 and
significantly improves the determination of K compared with
a simple algebraic fit.
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