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The quantum Monte Carlo method for spin-1
2 fermions at finite temperature is formulated for dilute systems

with an s-wave interaction. The motivation and the formalism are discussed along with descriptions of the
algorithm and various numerical issues. We report on results for the energy, entropy, and chemical potential as
a function of temperature. We give upper bounds on the critical temperature Tc for the onset of superfluidity,
obtained by studying the finite-size scaling of the condensate fraction. All of these quantities were computed
for couplings around the unitary regime in the range −0.5� �kFa�−1�0.2, where a is the s-wave scattering
length and kF is the Fermi momentum of a noninteracting gas at the same density. In all cases our data are
consistent with normal Fermi gas behavior above a characteristic temperature T0�Tc, which depends on the
coupling and is obtained by studying the deviation of the caloric curve from that of a free Fermi gas. For
Tc�T�T0 we find deviations from normal Fermi gas behavior that can be attributed to pairing effects.
Low-temperature results for the energy and the pairing gap are shown and compared with Green-function
Monte Carlo results by other groups.
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I. INTRODUCTION

The last few years have witnessed an extraordinary
progress in the field of cold fermionic atoms, particularly
since the experimental observation of superfluidity in these
systems �1�. Ultracold atomic gases provide an exceptional
opportunity to investigate strongly correlated fermions. Tak-
ing advantage of Feshbach resonances, experimentalists vary
the strength of the interaction between the atoms at will,
offering an unprecedented ability to study the BCS-BEC
crossover. It is by now well established that, for the case of
broad resonances, the physics of these systems is chiefly cap-
tured by a model of spin-1

2 fermions with a contact s-wave
attractive interaction. On the theoretical side, our overall un-
derstanding of these remarkable many-body systems has im-
proved dramatically, although many questions still remain
unanswered. Systems in the BCS-BEC crossover are
strongly correlated, and nonperturbative approaches are
needed. As a consequence, numerical simulations of spin-1

2
fermions at zero and nonzero temperature have lately at-
tracted extraordinary attention �see Refs. �2–9��.

Of particular interest within the BCS-BEC crossover is
the so-called unitary regime �see Refs. �10–13��. This regime
is formally defined as the limit of diluteness with respect to
the range of the interaction, r0, and large scattering length a,
such that nr0

3�1�n�a�3, where n is the particle number den-
sity. The thermal behavior in the crossover is characterized
by a dimensionless universal function conventionally called
��T /�F ,1 /kFa�, which depends on the temperature T �in
units of the free gas Fermi energy �F=�2kF

2 /2m, where kF
= �3�2n�1/3�, and the strength of the interaction, usually pa-
rametrized by �kFa�−1. Throughout this work we shall use

units in which Boltzmann’s constant is kB=1. The function �
represents the ratio of the energy E to the energy of a free
Fermi gas at the same density EF= 3

5N�F. The value of � at
unitarity and at T=0, which we shall denote �s, has been
determined approximately by various authors, and recent
quantum Monte Carlo calculations and extrapolations to zero
range yield �s=0.40�1� �see Ref. �14� and references therein�.
Besides ultracold atomic gases, the unitary regime is relevant
for dilute neutron matter, although in that case finite effective
range effects cannot be neglected �15�.

In this paper the determination of the universal function
��T /�F ,1 /kFa�, along with other thermodynamic quantities
�including the critical temperature Tc for the onset of super-
fluidity�, will constitute our main results. We explore the
unitary limit, where kF�a�→	, as well as the case of finite
scattering length in the range −0.5� �kFa�−1�0.2. The paper
is organized as follows: in Sec. II we formulate the problem
and describe the nonperturbative technique based on the dis-
cretization of the space-time and subsequent evaluation of
the thermodynamic quantities through a quantum Monte
Carlo simulation. In Sec. III we describe the numerical and
computational techniques that were used. The main results
are discussed in Sec. IV �at unitarity� and Sec. V �away from
unitarity� and the final conclusions in Sec. VI.

II. MATHEMATICAL FORMULATION: FERMIONS
ON A SPACE-TIME LATTICE

A. Hamiltonian and running coupling constant

The interaction that captures the physics of a dilute, un-
polarized system of fermions is a zero-range two-body inter-
action V�r1−r2�=−g
�r1−r2�. The Hamiltonian of the sys-
tem in the second-quantization representation reads
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Ĥ =� d3r�− �
�=↑,↓

�̂�
†�r�

�2�2

2m
�̂��r� − gn̂↑�r�n̂↓�r�	 ,

�2.1�

where n̂��r�= �̂�
+�r��̂��r�. This interaction requires that we

specify a regularization procedure, which we do by introduc-
ing a momentum cutoff �kc �thus requiring all two-body ma-
trix elements to vanish if the relative momentum of the in-
coming particles exceeds the cutoff�. Once this cutoff is
imposed, the value of the bare coupling g can be tuned to fix
the value of the physical renormalized coupling, which in
this case will be the s-wave scattering length a. Indeed, the
diagonal T matrix describing two-particle scattering induced
by the interaction takes the simple form

T�k� =
g

�2��3 �
n=0

	 
g� d3k�

�2��3��2k2

m
−
�2k�2

m
+ i0+	−1�n

= −
g

�2��3�1 +
gm

2�2�2
− kc + k atanh� kc

k
	�−1

,

�2.2�

which is equivalent to finding the vacuum four-point ampli-
tude and determining the scattering length by summing all
the “bubble” diagrams �see Fig. 1�. The low-momentum ex-
pansion of the scattering amplitude reads

f�k� � 
− ik +
4��2

gm
−

2kc

�
+

2k2

�kc
+ O�k3��−1

. �2.3�

At low momentum we have, by definition, f�k�
= �−ik−1 /a+reffk

2 /2+O�k3��−1, which gives the relation be-
tween the bare coupling constant g and the scattering length
a at a given momentum cutoff �kc:

1

g
= −

m

4��2a
+

kcm

2�2�2 . �2.4�

Note that an effective range reff is generated which is inde-
pendent of the coupling constant reff=

4
�kc

.

B. Discrete variable representation

To determine the thermal properties of spin-1
2 fermions in

a nonperturbative manner, we have placed the system on a
three-dimensional �3D� cubic spatial lattice with periodic
boundary conditions. The lattice spacing l and size L=Nsl
introduce natural ultraviolet �uv� and infrared �ir� momentum
cutoffs given by �kc=�� / l and �0=2�� /L, respectively.
The momentum space has the shape of a cubic lattice, with
size 2�� / l and spacing 2�� /L. To simplify the analysis,
however, we place a spherically symmetric uv cutoff, includ-
ing only momenta satisfying k�kc�� / l.

The discretization transforms the functions of continuous
variables into functions defined on a discrete set of coordi-
nate values:

�̂��ri� → �̂��i� , �2.5�

�̂�
+�ri� → �̂�

+�i� , �2.6�

n̂��ri� → n̂��i� , �2.7�

where ri= il and i= �ix , iy , iz� denotes the lattice sites, and
ix , iy , iz=1, . . . ,Ns. The discretization can affect the accuracy
of the obtained results and therefore requires careful analy-
sis. We address this issue by discussing the so-called discrete
variable representation �DVR� basis sets, which is the under-
lying framework of our lattice approach �see Ref. �16��.

Let us call H=L2�M� the Hilbert space of our problem—
i.e., the set of square-integrable wave functions on the mani-
fold M. Let P be a projector defined on H such that S
= PH is the projected subspace. Given a set of N grid points
�x� ,�=0, . . . ,N−1� in d dimensions, one can define pro-
jected 
 functions: ���x�= P�
�x−x���. Alternatively ����
= P�x�� or ���x�= �x ����, in Dirac notation.

It follows that

������� = ���x�� = �
�
*�x�� , �2.8�

and as a result, the set of projected 
 functions ��� ,�
=0, . . . ,N−1� is orthogonal if and only if

���x�� = K�
��, �2.9�

where K�= ��� ����, and we can normalize the projected
functions to get their orthonormalized version:

�F�� =
1

�K�

���� . �2.10�

Given a wave function ��S, an expansion of the form

��x� = �
�

c�F��x� �2.11�

exists, and the coefficients are given by the values of ��x� at
the lattice sites x�:

c� =� dx F
�
*�x���x� =

1
�K�

��x�� . �2.12�

On the other hand, if ��x� is not fully contained in S, then
our basis set will not be sufficiently rich to represent it. How-
ever, if the semiclassical region of phase space that we wish
to represent �see Fig. 2� is contained in S �and in particular if
the uv momentum cutoff �kc is larger than the highest mo-
mentum we wish to represent, or equivalently if the lattice
spacing l is chosen to be sufficiently small�, then it can be
shown �see �16�� that the errors are exponentially suppressed.

The representation of the Hamiltonian on the lattice has
been obtained by noticing that two terms representing the
kinetic and interaction energy are local in momentum and
coordinate spaces, respectively. Thus, the kinetic term reads

1 2 n

FIG. 1. nth term in the bubble sum.
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K̂ = l−3 �
�=↑,↓

�
ĩ

�2k
ĩ

2

2m
n̂��ĩ� , �2.13�

where ĩ= �ĩx , ĩy , ĩz� enumerates the lattice sites in the momen-

tum space, ĩx , ĩy , ĩz=0,�1,�2, . . . ,Ns /2 �or −Ns /2�, and

kĩ= ĩ2� /L. The operator n̂��ĩ� denotes the occupation num-
ber operator of the single-particle state with momentum �kĩ
and spin �. On the other hand, the interaction becomes a
simple Hubbard attractive potential

V̂ = − gl3�
i

n̂↑�i�n̂↓�i� . �2.14�

From this point on we shall omit any factors of l3 or l−3

coming from the volume elements in real and momentum
space, which amounts to a specific choice of units. If the
cutoff is chosen to be kc=� / l, then infinite scattering length
corresponds to a coupling given by g=2��2l /m �see Eq.
�2.4��.

In order to avoid numerical inaccuracies associated with
the discretization of the differential operators on the lattice,
we use both momentum and coordinate representations of
the lattice and a fast Fourier transform �FFT� to switch be-
tween the two. In the following we shall rename the indices

ĩ and i in favor of the more suggestive names k and r, re-
spectively.

C. Discrete auxiliary fields and positivity of the probability
measure

In order to study the thermal properties we chose the
grand canonical ensemble, where the thermodynamic vari-
ables are the temperature T, the chemical potential �, and the
volume V. The partition function and the average of an ob-

servable Ô are calculated according to

Z��,�,V� = Tr�exp�− ��Ĥ − �N̂��� ,

O��,�,V� =
Tr�Ô exp�− ��Ĥ − �N̂���

Z��,�,V�
, �2.15�

where �=1 /T �as mentioned before, in this work we will
take Boltzmann’s constant to be kB=1�. By factorizing the
statistical weight using the Trotter formula, one obtains

exp�− ��Ĥ − �N̂�� = �
j=1

N�

exp�− ��Ĥ − �N̂�� , �2.16�

where �=N��. The next step is to decompose the exponen-
tials on the right-hand side into exponentials that depend on
the kinetic and potential energy operators separately. This
can be achieved to a suitable order through the factorization

exp�− ��Â + B̂�� � �
k=1

M

exp�− ak�Â�exp�− bk�B̂� ,

�2.17�

where the coefficients ak and bk are determined by the re-
quired order of accuracy �17�. However, in order to obtain
stable numerical results all of the coefficients have to be
positive. This poses a practical limitation on the above for-
mula which works only up to the second order, for which the
expansion is

exp�− ��Ĥ − �N̂�� = exp
−
��K̂ − �N̂�

2
�

�exp�− �V̂�exp
−
��K̂ − �N̂�

2
� + O��3� ,

�2.18�

where K̂ is the kinetic energy operator, whose dispersion
relation, for momenta smaller than the cutoff, is given by
�k=�2k2 /2m. It is important to note that, because we have
used the expansion up to O��3�, when calculating the parti-
tion function this becomes O��2�. Indeed, the statistical
weight involves a product of N� factors and is given by the
following expression:

exp�− ��Ĥ − �N̂�� = exp
−
��K̂ − �N̂�

2
�

���
j=1

N�

exp�− �V̂�exp�− ��K̂ − �N̂��	
�exp
+

��K̂ − �N̂�
2

� + O��2� . �2.19�

Notice also that this approach does not depend on the choice
of dispersion relation. One may choose to implement a dis-
crete derivative for the kinetic energy �which corresponds to
the Hubbard model� based on the second-difference formula


2f�x� =
f�x + l� + f�x − l� − 2f�x�

l2 . �2.20�

This results in a dispersion law �k�sin2�kxl /2�+sin2�kyl /2�
+sin2�kzl /2�, where l is the lattice spacing. Notice that this

FIG. 2. �Color online� Representation of phase space. The
dashed line shows a classical trajectory, while the shaded region
represents the quantum fluctuations around such trajectory. The
horizontal and vertical lines show the cutoffs in real space L and in
momentum space �kc=�� / l, where l is the lattice spacing �assum-
ing the lattice is a uniform square lattice�. Functions within the
larger oval region are well described by a given basis if the cutoffs
enclose that region, as shown in this figure.
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dispersion relation is not spherically symmetric in momen-
tum space. In that case the energy of the higher-momentum
states differs noticeably from the continuum case. Indeed, as
we show in Fig. 3, the dispersion relation that results from
the second-difference formula deviates significantly from k2

behavior already at k�� /2l, and as a result, the number of
physically meaningful available states is only �1 /23 of the
whole phase space. Furthermore, the deviation from the k2

law depends on the angle in momentum space, and as a
result, the discrete derivative formula sweeps the shaded area
in Fig. 3. This is not the case with our choice of �k as we
shall consider the kinetic energy operator in momentum
space. According to our experience this indeed minimizes the
discretization �high momentum� errors.

The interaction factor can be represented using a discrete
Hubbard-Stratonovich transformation, similar to the one in
Ref. �18�:

exp�g�n̂↑�r�n̂↓�r�� =
1

2 �
��r,�j�=�1

�1 + A��r,� j�n̂↑�r��

��1 + A��r,� j�n̂↓�r�� , �2.21�

where A=�exp�g��−1, � j labels the location on the imagi-
nary time axis, where j=1, . . . ,N�, and ��r ,� j� is a field that
can take values �1 at each point on the spacetime lattice �the
name of this field should not to be confused with the spin
variable, conventionally also called ��. This identity can be
proven simply by evaluating both sides at n̂�↑,↓��r�=0,1. This
discrete Hubbard-Stratonovich transformation is sensible
only for A�1, which means that the imaginary time step
which cannot exceed g−1 ln 2. In practice, however, the ac-
tual value of � has to be much smaller due to the finite size of
the � step in formula �2.19� �see also next section�. The fact
that � takes only discrete values is a consequence of Fermi-
Dirac statistics and results in a discrete configuration space
for the field �. This is the main advantage for numerical

applications as compared to the case of a continuous
Hubbard-Stratonovich field �18�.

Taking all this into account, the grand canonical partition
function becomes

Z��,�,V� = Tr�exp�− ��Ĥ − �N̂���

=� �
r�j

D��r,� j�TrÛ����� , �2.22�

where we define

Û����� = �
j=1

N�

Ŵ j����� �2.23�

and

Ŵ j����� = exp
−
��K̂ − �N̂�

2
���

i
�1 + A��r,� j�n̂↑�r��

��1 + A��r,� j�n̂↓�r��	exp
−
��K̂ − �N̂�

2
� .

�2.24�

Since � is discrete, the integration is in fact a summation:

� �
r�j

D��r,� j� = �
���

=
1

2Ns
3N�

� �
���r,�1��=�1

�
���r,�2��=�1

¯ �
���r,�N�

��=�1
,

�2.25�

where

�
���r,�j��=�1

= �
�„�1,0,0�,�j…=�1

�
�„�2,0,0�,�j…=�1

¯ �
�„�Ns,Ns,Ns�,�j…=�1

.

�2.26�

In a shorthand notation we will write

Û����� = T� exp�−� d��ĥ����� − �N̂� ,

where T� stands for an imaginary time ordering operator and

ĥ����� is a resulting �-dependent one-body Hamiltonian. It is

crucial to note that Û����� can be expressed as a product of
two operators which describe the imaginary time evolution
of the spin-up and spin-down fermions:

Û����� = Û↓�����Û↑����� ,

Û↓����� = �
j=1

N�

Ŵ j↓�����, Û↑����� = �
j=1

N�

Ŵ j↑����� .

�2.27�

The operators for spin up and spin down are identical for the
case in which the chemical potential is the same for each
spin: �↑=�↓=� �which is the case we consider in this work�.

The expectation values of operators take the form

FIG. 3. �Color online� The solid blue line shows the dispersion
relation used in this work, and the dashed lines and purple areas
result from a lowest-order second-difference discrete derivative �see
text for discussion�. The units in this plot are set by the lattice
spacing: the wave vector k is in units of 1 / l and the energy in units
of �2 /2ml2.
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O��,�,V� =
Tr�Ô exp�− ��Ĥ − �N̂���

Z��,�,V�

=� �ijD��r,� j�TrÛ�����
Z��,�,V�

TrÔÛ�����

TrÛ�����
,

�2.28�

where we have introduced TrÛ����� for convenience: in the
numerator it represents the probability measure used in our
simulations �see below�, and in the denominator it serves the

purpose of moderating the variations of TrÔÛ����� as a func-
tion of the auxiliary field �.

All of the above traces over Fock space acquire very
simple forms �19,20� �see next section� and can be easily

evaluated. In particular, TrÛ����� can be written as

TrÛ����� = det�1 + U������

= det�1 + U↓������det�1 + U↑������ , �2.29�

where U �without the caret� is the representation of Û in the
single-particle Hilbert space. The second equality is a result
of the decomposition �2.27�. This identity is easy to prove by
expanding both sides, taking into account that U is a product
of exponentials of one-body operators. In the case considered
in this work the chemical potential is the same for spin-up
and spin-down fermions, so it follows that det�1+U↓������
=det�1+U↑������. This implies that TrÛ����� is positive—
i.e., that there is no fermion sign problem for this system.
Indeed, this allows us to define a positive-definite probability
measure:

P����� =
TrÛ�����
Z��,�,V�

=
�det�1 + U↑�������2

Z��,�,V�

=
1

Z��,�,V�
exp†2tr„ln�1 + U↑������…‡ , �2.30�

where the exponent in the last equation defines the negative
of the so-called effective action.

The many-fermion problem is thus reduced to an auxiliary
field quantum Monte Carlo problem, to which the standard
Metropolis algorithm can be applied, using Eq. �2.30� as a
probability measure. Before moving on to the details of our
Monte Carlo algorithm, we briefly discuss the expressions
used to compute a few specific thermal averages.

D. Calculation of observables

Let us consider the one-body operator

Ô = �
s,t=↓,↑

� d3r1d3r2�̂s
+�r1�Ost�r1,r2��̂t�r2� . �2.31�

From Eq. �2.28� it follows that

�Ô� = �
���

P�����
TrÔÛ�����

TrÛ�����
= �

���
P�����

TrÔÛ�����
det�1 + U������

.

�2.32�

The calculation of the last term requires the evaluation of

Tr��̂s
+�r1��̂t�r2�Û������ = 
st det�1 + U������2ns�r1,r2,���� ,

�2.33�

where s and t denote spin �↑ or ↓� and

ns�r1,r2,���� = �
k1,k2�kc

�k1
�r1�
 Us�����

1 + Us������k1,k2

�k2

* �r2� .

�2.34�

Here �k�r�=exp�ik ·r� /L3/2 are the single-particle orbitals on
the lattice with periodic boundary conditions. This holds for

any one-body operator Ô, if U is a product of exponentials of
one-body operators, as is the case once the Hubbard-
Stratonovich transformation is performed. It is then obvious
that the momentum representation of the one-body density
matrix has the form

ns�k1,k2,���� = 
 Us�����
1 + Us������k1,k2

, �2.35�

which, for a noninteracting homogeneous Fermi gas, is diag-
onal and equal to the occupation number probability
1 / �exp����k−���+1� of a state with the energy �k= �2k2

2m .
Summarizing, the expectation value of any one-body op-

erator may be calculated by summing over samples of the
auxiliary field ��r ,� j�:

�Ô� =� �
r�j

D��r,� j�P����� �
r1,r2

�
s=↑,↓

Oss�r1,r2�ns�r1,r2,���� .

�2.36�

In particular, the kinetic energy can be calculated accord-
ing to

�K̂� =� �r�j
D��r,� j�TrU�����

Z��,�,V�
TrK̂U�����
TrU�����

=� �
r�j

D��r,� j�P����� �
k

k�kc

�
s=↑,↓


ns�k,k,����
�2k2

2m
� .

�2.37�

Analogously, for a generic two-body operator,

Ô = �
s,t,u,v=↓,↑

� d3r1�d
3r2�d

3r1d3r2�̂s
+�r1���̂t

+�r2��

�Ostuv�r1�,r2�,r1,r2��̂v�r2��̂u�r1� �2.38�

in order to calculate �Ô� one needs to evaluate the expression
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Tr��̂s
+�r1���̂t

+�r2���̂v�r2��̂u�r1�Û������

= „det�1 + U������…2�
su
tvns�r1�,r1,����nt�r2�,r2,����

− 
sv
tuns�r1�,r2,����nt�r2�,r1,����� . �2.39�

Hence, for the expectation value of the two body operator we
get

�Ô� =� �
r�j

D��r,� j�P�����

� �
r1�,r2�,r1,r2

�
s,t=↑,↓

�Ostst�r1�,r2�,r1,r2�ns�r1�,r1,����

�nt�r2�,r2,���� − Ostts�r1�,r2�,r1,r2�ns�r1�,r2,����

�nt�r2�,r1,����� . �2.40�

In particular, the expectation value of the interaction energy
reads

�V̂� = − g� �
r�j

D��r,� j�P������
r

n↑�r,r,����n↓�r,r,���� .

�2.41�

It should be noted that in the symmetric system ��↑=�↓�

n↑�r,r�,���� = n↓�r,r�,���� . �2.42�

Hence,

�V̂� = − g� �
r�j

D��r,� j�P������
r

�n↑�r,r,�����2.

�2.43�

It is useful to introduce the correlation function

g2�r� = � 2

N
	2� d3r1d3r2��↑

†�r1 + r��↓
†�r2 + r��↓�r2��↑�r1��

= � 2

N
	2� �

r�j

D��r,� j�P�����

�� d3r1d3r2n↑�r1 + r,r1,����n↓�r2 + r,r2,����

�2.44�

�where N is the average particle number�, which is normal-
ized in such a way that for a noninteracting homogeneous
Fermi gas g2�r�=3

j1�kFr�
kFr and g2�0�=1.

III. NUMERICAL METHODS AND COMPUTATIONAL
ISSUES

A. Metropolis Monte Carlo approach

Once we have written the observables as in Eq. �2.28�, the
next step is to sum over all possible configurations of
��r ,� j�. For a lattice size Nx

3�N� �where typically Nx=8 and

N��1000�, performing the sum over the 2Nx
3
�N� points in

configuration space is an impossible task for all practical

purposes. It is in these cases that a Monte Carlo �MC� ap-
proach becomes essential. By generating N independent
samples of the field ��r ,� j� with probability given by �2.30�
and adding up the values of the integrand at those samples,
one can estimate averages of observables with O�1 /�N� ac-
curacy.

The standard Metropolis algorithm was chosen to gener-
ate the samples. At every MC step the sign of � was changed
at randomly chosen locations on the space-time lattice. An
adaptive routine increased or decreased the fraction of sites
where � was updated, so as to maintain an average accep-
tance rate �over �100 consecutive Metropolis steps� between
0.4 and 0.6.

In order to compute the probability of a given � configu-
ration, it is necessary to find the matrix elements of U, which
entails applying it to a complete set of single-particle wave
functions. For the latter we chose plane waves �with mo-
menta �k��kc�. This choice is particularly convenient be-
cause one can compute the overlap of any given function
with the whole basis of plane waves by performing a single
FFT on that function.

In practice, the calculation of the matrix elements of U
proceeds by evolving the above-mentioned set of wave func-

tions in imaginary time, applying the N� operators Ŵj in Eq.

�2.23� in sequence. The operator Ŵj is in turn made up of
kinetic energy and potential energy factors �see Eq. �2.24��,
in a specific order. The application of such factors was
implemented in momentum space and real space, respec-
tively, using FFT to switch between them.

B. Singular value decomposition

Matrix multiplication, especially in the form of FFTs, is
ubiquitous in our algorithm. It is well known that matrix
multiplication is numerically unstable when the matrices in-
volved have elements that vary over a large range. This is
true in our case at low T, with exponentially diverging
scales. To avoid instabilities it is necessary to separate the
scales when multiplying matrices, and the singular value de-
composition �SVD� technique serves such purpose. In this
section we follow the same approach developed in Ref. �19�
to introduce the SVD technique in our calculations.

Let us write the matrix U����� more explicitly:

U����� = �
j=1

N�

W j����� = WN�
WN�−1 ¯ W2W1, �3.1�

where the Wk����� will be N�N matrices, for a single-
particle basis of dimension N. Let us then define

U0 = 1,

U1 = W1,

U2 = W2W1,

]

Un = WnWn−1 ¯ W1 = WnUn−1. �3.2�

BULGAC, DRUT, AND MAGIERSKI PHYSICAL REVIEW A 78, 023625 �2008�

023625-6



To separate the scales one decomposes the matrix Un−1
before multiplying it by Wn to get Un. This process begins as
follows:

U0 = 1,

U1 = W1 = S1D1V1,

U2 = W2W1 = �W2S1D1�V1 = S2D2V2V1, �3.3�

where S1 and V1 are orthogonal matrices �not necessarily
inverse of each other� and D1 is a diagonal positive matrix
containing the singular values of U1. The idea is that the
actual multiplication should be done by first computing the
factor in parentheses in the last equation. This factor is then
decomposed into S2D2V2, in preparation for the multiplica-
tion by W3, and so on. A generic step in this process looks
like this:

Un = WnUn−1 = WnSn−1Dn−1Vn−1Vn−2 ¯ V1, �3.4�

so in the end

UN�
= U����� = SN�

DN�
VN�

VN�−1 ¯ V1 = SDV , �3.5�

where we have decomposed the full product in the last step.
Calculation of the determinant, and therefore of the probabil-
ity measure, becomes straightforward if we perform one
more SVD, in the following chain of identities:

det�1 + U������ = det�1 + SDV�

= det�S�S†V† + D�V� = det�SS̃D̃ṼV�

= det�SS̃�det�D̃�det�ṼV� . �3.6�

For equal densities �symmetric case�, where we need this
determinant squared, we only care about the factor in the
middle of the last expression, since the other two are equal to
1 in magnitude. Indeed, in that case we can write the prob-
ability measure as

P����� = exp��
i=1

M

ln d̃i	 , �3.7�

where d̃i�0 are the elements in the diagonal of D̃ and M is
the dimension of the single-particle Hilbert space.

The SVD is useful when evaluating occupation numbers.
Indeed,

U�����
1 + U�����

= 1 −
1

1 + U�����
= 1 − V†Ṽ†D̃−1S̃†S†,

�3.8�

which is very easy to compute since the matrix D̃ is diago-
nal.

In Fig. 4 �top panel� we show the behavior of the condi-
tion number �defined as the ratio of largest to smallest eigen-
value� of the matrix UN�

in the single-particle Hilbert space.
The number of SVDs required to stabilize the calculation
grows as we increase �. If no SVDs are used, the condition
number saturates, indicating loss of information due to poor

separation of scales in matrix multiplication. In our calcula-
tions we have made limited use of SVD, ranging from two
decompositions at the highest T to eight decompositions at
low T’s.

C. Tests and cross-checks

In order to verify the correctness of our code, we per-
formed several tests. As a first check, the thermodynamics of
a free gas was reproduced when setting g=0. This is an
elementary test, as in this case the MC part of the algorithm
is superfluous.

To check our results at g�0 we diagonalized the Hamil-
tonian exactly, restricting the phase space to the lowest seven
single-particle momentum states. This entails constructing all
of the 214 states �27 for each spin� and computing and block
diagonalizing the Hamiltonian �which comes in blocks iden-
tified by fixed particle numbers �N↑ ,N↓��. An average desk-
top computer can complete the whole task in about 5 min.
This test provided an estimate for the size of the step in the
imaginary time direction. In Fig. 4 �bottom panel� we plot
the difference between the simulated number of particles N
and the exact value N0, as a function of the time step, in units
of �0=ln 2 /g, with all the other parameters �T, �, etc.� fixed.
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FIG. 4. Top panel: condition number of U as a function of �.
Squares: with SVD. Crosses: without SVD. Bottom panel: conver-
gence of simulated particle number N relative to exact solution N0,
as a function of time step � in units of �0, defined in the text.
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We conclude from this data that it is safe to take �=�0 /10, as
the relative error falls below 10%.

In the unitary limit universality implies thermodynamic
relations that provide self-consistency checks. For instance,
it can be proven that if E= 3

5�FN��T /�F�, then

�

�F
= �� T

�F
	 −

3

5

T

�F
�

0

T/�F

dy
���y�

y
. �3.9�

In our simulations �, T, and V are input parameters, while E
and �F are part of the output. We have checked that the
above relation is satisfied by our data.

D. Density dependence and the role of periodic boundary
conditions and the high-momentum cutoff

An MC simulation of a Fermi gas in the unitary regime
makes sense only if the following conditions are satisfied:

0 =
2�

L
� kF � kc =

�

l
. �3.10�

The size of the box L defines the lowest momentum scale
�0=2�� /L one can resolve in such a simulation, while the
lattice constant l defines the smallest interparticle separation
accessible. To better appreciate how the restriction �3.10�
affects the simulations we present in Fig. 5 the errors one
incurs due to both the upper momentum cutoff, needed to
regularize the two-body interactions, and the use of boundary
conditions. We calculate the total particle number in a box
with periodic boundary conditions in three different ways:

N = L3� d3k

�2��3
1 −
��k� + U − �

����k� + U − ��2 + �2� , �3.11�

Ncont = L3�
k�kc

d3k

�2��3
1 −
��k� + U − �

����k� + U − ��2 + �2� ,

�3.12�

Nlatt = �
k

k�kc 
1 −
��k� + U − �

����k� + U − ��2 + �2� , �3.13�

where ��k� is the single-particle kinetic energy,
k=2� /L�nx ,ny ,nz� and nx,y,z are integers, and using param-
eters characteristic for the unitary Fermi gas at zero tempera-
ture; see Eq. �5.4� and Ref. �21�. Thus N is the exact particle
number in such a box if no restrictions on momenta were
imposed; Ncont would be the actual particle number only if all
momenta smaller than the upper cutoff momentum �kc
=�� / l would be taken into account, and Nlatt is the particle
number one would obtain if the simulation were performed
in a box with periodic boundary conditions and an upper
cutoff momentum �kc. The quantity �N−Ncont� /N is thus a
measure of the error introduced by a finite cutoff momentum
�kc alone. It is debatable whether one has to take into ac-
count in Ncont the contributions from momenta larger than the
cutoff momentum �kc, since the physics at those momenta is
not simulated correctly anyway. In a box with periodic
boundary conditions by default one can access only a finite
set of discrete momenta. As is clear from the figure, impos-
ing periodic boundary conditions alone leads to very large
errors, especially in the case of small densities, when the
Fermi momentum �kF=��3�2N /L3�1/3 becomes smaller than
the momentum �0=2�� /L. It is important to notice as well
that the magnitude of these errors is independent of the pres-
ence or absence of the upper cutoff momentum �kc. A rule of
thumb would suggest that one has to have at least ten par-
ticles in a box in order to keep the errors at an acceptable
level. This is relatively easy to understand physically, as in a
box with periodic boundary conditions the lowest single-
particle levels are one level with zero energy, six levels with
energy �20

2 /2m, and 12 levels with energy 2�20
2 /2m, not

counting spin degeneracy.
The quantity kFL /2� is basically the ratio between half of

the box size �L /2� and the average interparticle separation
��� /kF�, and in our simulations we were able to probe
kFL /2��2.5. In Ref. �22� this ratio was increased to about
5; i.e., the system was significantly more dilute. Notice, how-
ever, that the errors incurred in a calculation in a box with
periodic boundary conditions and very small particle number
�and thus very low density� become unacceptably large, as
demonstrated in Fig. 5.

With the densities used in this work, we find excellent
agreement between our results and Green-function MC
�GFMC� and diffusion MC �DMC� results �2–5,13,14� for
essentially all of the quantities of interest. All these calcula-
tions, however, were performed typically for particle num-
bers between 10 �2,3� and less than 66 �2–5,13,14�, where
the errors arising from imposing periodic boundary condi-
tions are minimal. Only the long-range universal critical
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FIG. 5. �Color online� The error in particle number obtained in
a simulation in a box with periodic boundary conditions and upper
momentum cutoff �Nlatt−N� /N, solid line �blue�, compared with the
error obtained in a truly continuum model with no periodic bound-
ary conditions imposed but only an upper momentum cutoff �Ncont

−N� /N, dash-dotted line �red�, and the “numerical” apparent error
�Nlatt−Ncont� /N, dotted line �green�. We display here two cases, of
simulations in a box with lattice sizes 103 and with 203. In the case
of the quantity �Nlatt−Ncont� /N we see no lattice size dependence.
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behavior of the two-body density matrix discussed in Sec. IV
�G�r��r−�1+��� requires very low filling factors, but in very
large box sizes and in a very narrow temperature interval
around the transition.

IV. RESULTS IN THE UNITARY LIMIT

The results of our simulations for lattices ranging from
83�1732 �at low T� to 83�257 �at high T� and for
�2–20��105 MC samples �after thermalization� are shown
in Fig. 7. The imaginary time step was chosen as �
=min�ml2 /15�2�2 , ln 2 /10g�. The first bound comes from
the inverse of the highest single-particle kinetic energy avail-
able on the lattice—namely, Ek,max=3�2�2 /2ml2—and the
second bound results from our specific choice for the discrete
Hubbard-Stratonovich transformation �in both cases an extra
factor of 1 /10 was included based on our comparison with
an exact calculation, as described in Sec. III C�. The MC
autocorrelation length was estimated �by computing the au-
tocorrelation function of the total energy� to be approxi-
mately 200 Metropolis steps at T�0.2�F. Therefore, the sta-
tistical errors are of the order of the size of the symbols in
the figure. The chemical potential was chosen so as to have a
total of about 45 particles for the 83 lattice. We have per-
formed, however, calculations for particle numbers ranging
from 30 to 80, for lattice sizes 83 and 103 and various tem-
peratures, and in all cases the results agreed within discussed
above errors and systematics. In all runs the single-particle
occupation probabilities of the highest-energy states were
well below a percent for all temperatures. This can be seen in
Fig. 6, where the dispersion in the data at fixed momentum is
the result of statistical errors and the fact that the lattice is
not spherically symmetric.

We tried to extract from our data the asymptotic behavior
in the limit of large momenta n�k��C�kF /k�n, which accord-
ing to the theory �23,24� should at all temperatures be gov-
erned by the same exponent—namely, n=4. Our results are

consistent with a value of the exponent n=4.5�5�, thus in
reasonable agreement with the theoretical expectation.

All the quantities computed present a number of common
features that are easily identified, in particular a low- and a
high-temperature regime, separated by a characteristic tem-
perature that we estimate to be T0=0.23�2��F. We shall dis-
cuss in the next sections whether T0 can be interpreted as the
critical temperature Tc for the onset of superfluidity.

As T→0 the energy tends to the T=0 results obtained by
other groups �2–4�. This confirms such results, as the algo-
rithms they used �namely, GFMC and DMC� are constrained
by the existence of a sign problem, which is not the case in
the present approach. The solid line in Fig. 7 shows the en-
ergy of a free Fermi gas, with a shift down given by 1−�n,
with �n=�s+
��0.55, where �s=0.4 and
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FIG. 6. �Color online� Occupation probability in y-log scale at
intermediate temperatures, T=0.20�F, in blue circles for 83 and red
squares for 103.
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FIG. 7. Top panel: total energy E�T� with open circles and the
chemical potential ��T� with squares, both for the case of an 83

lattice. The combined Bogoliubov-Anderson phonon and fermion
quasiparticle contributions Eph+qp�T� �Eq. �4.2�� is shown as a
dashed line. The solid line represents the energy of a free Fermi gas,
with an offset �see text�. Bottom panel: entropy per particle with
circles for 83 lattice and with a dashed line the entropy of a free
Fermi gas with a slight vertical offset. The statistical errors are the
size of the symbol or smaller.
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� =

E

3

5
�FN

=
5

8
� �
�F
	2

� 0.15 �4.1�

is the condensation energy in units of the free-gas ground-
state energy. Here we have used the BCS result 
E= 3

8
�2

�F
N

�see Ref. �25��, where � is the pairing gap found in Ref. �13�
to be ��0.50�F. One can also find the value of �n from our
data by determining what shift is necessary to make the solid
curve in Fig. 7 �which corresponds to the free gas� coincide
with the high-temperature data �where the gas is expected to
become normal�. We find that such procedure gives �n
�0.52, which is roughly consistent with the value quoted
above. This number should also be compared with the results
of Refs. �2,26�—namely, �n�0.54—and Ref. �27�, which
finds �n�0.56.

For T�T0 we observe that the temperature dependence of
the energy can be accounted for by the elementary excita-
tions present in the system in the superfluid phase: bosonlike
Bogoliubov-Anderson phonons and fermionlike gapped Bo-
goliubov quasiparticles. Their contribution is given by

Eph+qp�T� =
3

5
�FN
�s +

�3�4

16�s
3/2� T

�F
	4

+
5

2
�2��3T

�F
4 exp�−

�

T
	� , �4.2�

� � �2

e
	7/3

�F exp� �

2kFa
	 , �4.3�

where � is the approximate value of pairing gap at T=0
determined in Ref. �2� to be very close to the weak-coupling
prediction of Gorkov and Melik-Barkhudarov �28�, and �s
�0.44 �3� and �F=�2kF

2 /2m and n=kF
3 /3�2, respectively.

Notice that the estimate for central value of �s has decreased
in the last years: Reference �13� reported �s=0.42�2�, while
recently �s=0.40�1� has been reported in Refs. �14,29�, and
�s=0.37�5� in this work �see Table I�, even though all these
results agree within quoted errors. The sum of the contribu-
tions from the excitations; namely, Eq. �4.2� is plotted in Fig.
7 as a dashed line. Both of these contributions are compa-

rable in magnitude over most of the temperature interval
�T0 /2,T0�. Since the above expressions are only approximate
formulas for T�Tc, the agreement with our numerical results
may be coincidental.

At T�Tc the system is expected to become normal. If T0
and Tc are identified, then the fact that the specific heat is
essentially that of a normal Fermi liquid EF�T� above T0 is
somewhat of a surprise, as one would expect the presence of
a large fraction of noncondensed unbroken pairs. Indeed, the
pair-breaking temperature has been estimated to be T*

�0.55�F, based on fluctuations around the mean field �see
Refs. �30,31��, implying that for Tc�T�T* there should be
a noticeable fraction of noncondensed pairs. As we shall see,
Tc�0.15�F�T0 �this result for Tc was first obtained in Ref.
�7��, and as one can see in the caloric curve of Fig. 7, the
specific heat deviates from the normal Fermi gas, in the
range Tc�T�T0.

On the other hand, the chemical potential � is almost
constant for T�T0, a fact reminiscent of the behavior of an
ideal Bose gas in the condensed phase, even though in such
a phase our system is strongly interacting and superfluid.
This implies a strong suppression of fermionic degrees of
freedom at those temperatures. Moreover, assuming ��T�
=const for T�T0 implies that

E�T� = N
3

5
�F�� T

�F
	, �� T

�F
	 = �s + �� T

�F
	n

, n =
5

2
,

�4.4�

which is the temperature dependence of an ideal Bose con-
densed gas. According to our QMC results, the value of n
extracted from our data is n=2.50�25�.

B. Entropy

From the data for the energy E and chemical potential �
one can compute the entropy S, because in the unitary limit
the relation PV= 2

3E holds �true of a free gas as well�, where
P is the pressure, V is the volume, and E is the energy. It is
straightforward to show that

TABLE I. Results for the ground-state energy, the characteristic temperature T0, and the corresponding
chemical potential and energy, from the caloric curves of Fig. 12, and the upper bounds on the critical
temperature Tc from finite-size scaling and the corresponding chemical potential and energy.

1 /kFa E�0� /EF T0 �0 /�F E0 /EF Tc� �c /�F Ec /EF

−0.5 0.60�4� 0.14�1� 0.685�5� 0.77�2�
−0.4 0.59�4� 0.15�1� 0.65�1� 0.75�1�
−0.3 0.55�4� 0.165�10� 0.615�10� 0.735�10� 0.105�10� 0.61�1� 0.64�2�
−0.2 0.51�4� 0.19�1� 0.565�10� 0.725�10� 0.125�10� 0.56�1� 0.61�2�
−0.1 0.42�4� 0.21�2� 0.51�1� 0.71�2� 0.135�10� 0.50�1� 0.54�2�
0 0.37�5� 0.23�2� 0.42�2� 0.68�5� 0.15�1� 0.43�1� 0.45�1�
0.1 0.24�8� 0.26�3� 0.34�1� 0.56�8� 0.17�1� 0.35�1� 0.41�1�
0.2 0.06�8� 0.26�3� 0.22�1� 0.39�8� 0.19�1� 0.21�1� 0.25�1�
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S

N
=

E + PV − �N

NT
=
��x� − ��x�

x
, �4.5�

where ��x�=� /�F and x=T /�F, which determines the en-
tropy per particle in terms of quantities we know from our
simulation. The entropy also departs from the free-gas be-
havior as the temperature is lowered below T0.

As indicated in �32�, these data can be used to calibrate
the temperature scale at unitarity. Indeed, extending the sug-
gestion of Ref. �33�, from known T in the BCS limit, the
corresponding S�TBCS� can be determined. Then, by adiabati-
cally tuning the system to the unitary regime, one uses
S�TBCS�=S�Tunitary� to determine T at unitarity �in practice,
the experimental procedure goes in the opposite direction;
namely, measurements are performed at unitarity and then
the system is tuned to the deep BCS side �see Ref. �34���.

On the other hand, knowledge of the chemical potential as
a function of temperature �see previous section� allows for
the construction of density profiles by using of the local den-
sity approximation. In turn, this makes it possible to deter-
mine S�E� for the system in a trap, fixing the temperature
scale via �S /�E=1 /T. Direct comparison with experimental
results, in remarkable agreement with our data, has been
demonstrated by us in Ref. �35�. In Fig. 8 we show the en-
tropy per particle, S /N, as a function of the energy per par-
ticle, �, for the homogeneous system �see Ref. �35� for the
corresponding result for the case of the unitary gas in a trap�.

C. Two-body density matrix and condensate fraction

Information about the onset of critical behavior �e.g., a
superfluid phase transition� can be obtained by studying an
appropriate order parameter, both as a function of tempera-
ture and system size. In the case of superfluidity in two-
component Fermi systems, which is a particular example of
off-diagonal long-range order �36�, the order parameter is the
long-distance behavior of the two-body density matrix g2�r�,

defined in Eq. �2.44�. At unitarity, knowledge of g2�r� is
enough to determine the condensate fraction �
=limr→	

N
2 g2�r�. On the BCS side of the resonance, as dis-

cussed in �5�, the calculation of � demands also knowledge
of the one-body density matrix:

��r� =
2

N
� d3r1��↑

†�r1 + r��↑�r1�� �4.6�

and �=limr→	
N
2 g2�r�−�2�r�.

In Fig. 9 we show our results for g2�r�, as a function of
the dimensionless lattice position kFr �top panel� and the
extracted condensate fraction � at unitarity for several lattice
sizes �bottom panel�. In Fig. 10, on the other hand, we show
schematically the generic form of a correlation function
G�r /�corr� �such as g2�r��. At short distances, r� l �where
here l should be regarded as an intrinsic short distance scale
of the problem�, the behavior of G depends on the system
under consideration; i.e., it is nonuniversal. In the region l
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FIG. 8. Entropy per particle as a function of the energy per
particle, �. The dotted line shows the location of Tc �see next two
sections�; the dashed line shows the location of T0.
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FIG. 9. �Color online� Top panel: projected two-body density
matrix �see text� as a function of position on the lattice. In solid
blue for a 103 lattice, for the temperature range �0.1�F ,0.3�F�. The
T=0 results from Ref. �5� are shown with green circles and error
bars. Bottom panel: condensate fraction ��T�, black for 63 �high-
est�, red for 83 �middle�, and blue for 103 �lowest� lattices,
respectively.
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�r��corr �which extends to infinity at a phase transition
because there �corr→	; see next section� the form of G is
universal, in the sense that it depends, quite generally, only
on the spatial dimensionality of the problem and the internal
symmetries of the Hamiltonian. In that region G�r−�1+��,
where ��0.038 is a universal critical exponent �see, e.g.,
�37��. Finally, for r��corr the correlation decays exponen-
tially with r /�corr.

Below the critical temperature, where � is nonzero, its
value can be extracted from the asymptotic form of g2�r�. In
Fig. 9 �top panel�, one can see that the asymptotic value of
g2�r� for 103 is approached even for r�L /2, so the lattice
sizes used are reasonable large to determine �. It is possible
that for larger lattice sizes � could become smaller. On the
other hand, there is virtually no room for finding the power
law that characterizes the universal critical behavior of this
function �see Fig. 10�. In other words, corrections to univer-
sal scaling will be important close to the critical point for
these small volumes �see next section�.

D. Finite-size scaling and the critical temperature

By definition, the correlation length characterizing the
nonlocal degree of correlation of a system diverges at a criti-
cal point. Moreover, close enough to the transition it diverges
as

�corr � �t�−�, �4.7�

where t=1−T /Tc and � is a universal critical exponent. For
the U�1� universality class �which contains superfluid phase
transitions�, this exponent is well known: �=0.671.

When dealing with systems that have a finite size L3, the
theory of the renormalization group �RG� predicts a very
specific behavior for the correlation functions close enough
to the transition temperature �see, e.g., Ref. �38��. In particu-
lar, the two-body density matrix K�L ,T�, which gives the
order parameter for off-diagonal long-range order, scales as

R�L,T� = L1+�K�L,T� = f�x��1 + cL−� + ¯ � , �4.8�

where �=0.038 is another universal critical exponent, f�x� is
a universal analytic function, x= �L /�corr�1/�, c is a nonuni-

versal constant, and ��0.8 is the critical exponent of the
leading irrelevant field. One should keep in mind that typi-
cally one knows neither c nor Tc, but is interested in finding
the latter.

In a typical Monte Carlo calculation K�L ,T� is computed
for various lengths Li and temperatures T. The procedure to
locate the critical point �characterized by scale invariance�
involves finding the “crossing” temperatures Tij, for which
R�Li ,Tij�=R�Lj ,Tij� at two given lengths Li and Lj. Assum-
ing that one is close to the transition �so that the correlation
length is large compared to any other scale�, one can expand
f(x��t � �)= f�0�+ f��0�L1/�b � t� �where �corr=b�t�−� was used�
and derive the relation

�Tc − Tij� = �g�Li,Lj� , �4.9�

where

g�Li,Lj� = Lj
−��+1/��� �Lj

Li
	� − 1

1 − �Li

Lj
	1/�� �4.10�

and �=cTcf�0� /bf��0�. If there were no nonuniversal correc-
tions to scaling �i.e., if c=0�, then �=0 and Tc=Tij, which
means that, upon scaling by the appropriate factor �as
above�, all the curves K�L ,T� corresponding to different L’s
would cross exactly at Tc. In general, these corrections are
present, and it is therefore necessary to perform a linear fit of
Tij vs g�Li ,Lj� and extrapolate to infinite L in order to deter-
mine the true Tc. Following such procedure our data for the
condensate fraction of the unitary Fermi gas indicate that
Tc�0.15�1��F, considerably lower than the characteristic
temperature T0=0.23�2� found by studying the behavior of
the energy and the chemical potential. Even though this re-
sult for Tc is close to estimates by other groups �see, e.g.,
�7��, it should be pointed out that the experimental data of
Ref. �34� show a distinctive feature in the energy versus
entropy curve at a temperature close to T0 �see Ref. �35��,
whereas a clear signature of a transition at a lower tempera-
ture remains to be found.

V. RESULTS AWAY FROM UNITARITY

In the following we describe the results of our calcula-
tions away from unitarity. The system was placed on a lattice
of volume V= �8l�3, filled with N=45�15 particles. In all
cases the temperatures cover the range 0.07�T /�F�0.5,
corresponding to N� steps in the imaginary time direction
varying from N��1700 to N��200, respectively. The tem-
perature is limited from below by the precision of our com-
puters �because the matrices involved become ill conditioned
in the sense explained in Sec. III B� and from above by the
fact that our phase space has a natural uv cutoff given by the
inverse lattice spacing. In all cases the occupation of the
high-energy modes smaller than 1%. The coupling strength
was varied in the range −0.5�1 /kFa�0.2 �where kF
= �3�2n�1/3� and is limited on the negative �BCS� side by the
finite volume V �which may become comparable to the size
of the Cooper pairs deep in the BCS regime� and on the
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FIG. 10. Generic form of a correlation function G�r /�corr� as a
function of the radial coordinate r in units of the correlation length
�corr.
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positive �BEC� side by the finite lattice spacing l �whose size
eventually becomes inadequate to describe localized dimers
of size a=O�l�, deep in the BEC regime, and which mani-
fests itself as poor convergence of observables�. The number
of uncorrelated Monte Carlo samples varies from 7500 at the
lowest temperatures to 2500 at the highest. The Monte Carlo
autocorrelation time was �200 samples �estimated by study-
ing the autocorrelation of the energy�, implying a statistical
error of less than 2%.

Repeating the analysis of Sec. IV D one arrives at the
estimates for Tc shown in Table I. Notice, however, that,
given the rather small lattice sizes used �the limitation being
given by the required computer power and time, and ulti-
mately by its scaling with the size of the lattice�, an extrapo-
lation to L→	 is difficult. Still, the study of the crossing
temperatures Tij provides us at least with upper bounds on
Tc, which is what we show in Table I. Unfortunately, it was
not possible for us to explore temperatures below 0.1�F, and
therefore we were unable to find Tc on the BCS side beyond
�kFa�−1=−0.3. The fact that our upper bound on Tc at unitar-
ity agrees with extrapolations to L→	 performed by other
groups �7� indicates that these bounds are not far from the
actual result. In Ref. �8� the authors performed a finite-size-
scale analysis of our initial data �6� and found a value of Tc
in agreement with their result. In Fig. 11 we show an ex-
ample of the finite-size-scaling analysis at 1 /kFa=−0.1 per-
formed as explained in Sec. IV D. The last two columns of
Table I show the chemical potential and the energy at the
value of the bound on the critical temperature. In particular,
the values at unitarity—namely, �kFa�−1=0, �c /�F=0.43�1�,
and Ec /EF=0.45�1�—should be compared with the results of
Ref. �7�: �c /�F=0.493�14� and Ec /EF=0.52�1�, both of
which are higher than our estimates. It should also be pointed
out that the latter values, shown in Fig. 15, below, slightly
violate the bounds imposed by thermodynamic stability �see
the Appendix�, which is not the case for our data.

Recently the Amherst-ETH group has posted values Tc for
a couple of values of the coupling constant 1 /kFa�0 with
some of the details of the calculations; see Ref. �22� and Fig.
12.

The strong dependence observed by these authors earlier
on the filling factor �see discussion around Fig. 3 was pre-

sumably due to the use of an inaccurate representation of the
kinetic energy, which becomes accurate only at very low
filling factors �when kF�1 / l�; see, however, our discussion
on density dependence in Sec. III D. The values of the criti-
cal temperature estimated in this work and in Ref. �22� agree
within the error bars at unitarity and at 1 /kFa�0.2. The
value Tc /�F=0.252�15� at 1 /kFa=0.474�8� �22� does not
seem to follow the systematics suggested by the rest of the
results for 1 /kFa�0.22, the critical temperature for the hard
and soft bosons �39� and the limiting BCS and BEC behav-
ior. If one ignores the value Tc /�F=0.252�15� at 1 /kFa
=0.474�8� �22�, the data presented in Fig. 12 would thus
suggest that for the value of the coupling constant 1 /kFa
�0.8 the critical temperature attains a maximum of Tc /�F
�0.23�2�.

The results for the energy E per particle �in units of the
free-gas ground-state energy EF=3 /5�FN, where N is the
total number of particles� are shown in Fig. 13, along with
the chemical potential � �in units of the free-gas Fermi en-
ergy �F�. For every value of 1 /kFa that we studied, our data
present two salient features: below a certain temperature T0,
� /�F is approximately constant �a feature of free Bose gases
in the condensed phase�; above that temperature, � /�F de-
creases steadily, while E /EF becomes the energy of a free
Fermi gas, offset by a constant energy �whose specific value
depends on 1 /kFa�. In Table I we summarize our results at
T0. The errors represent uncertainties in the point of depar-
ture of E /EF from the �offset� free Fermi gas and the depar-
ture of � /�F from its �approximately� constant low-
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T
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FIG. 11. �Color online� Condensate fraction ��T� scaled with
the lattice size L, black squares for 63, red stars for 83, and blue
circles for 103 �highest on the left� lattices, respectively, for the case
1 /kFa=−0.1. The error bars correspond to the statistical errors.
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FIG. 12. �Color online� The solid �purple� curve and diamonds
represent the temperature T0 at which the energetic behavior of the
system shows a transition from Bose-like to Fermi-like behavior.
The solid �green� curve in the lower-left corner is Tc estimated
within the BCS theory with the Gorkov-Melik-Barkhudarov correc-
tion �28�. The solid �green� curve on the right is the Tc�0.218�F

for a noninteracting Bose gas. The �red� up-triangles and the down-
triangles joined by a dotted line, respectively, are the Tc for the
hard-core and soft-core bosons calculated in Ref. �39�. The three
�blue� dots with error bars joined by a dashed line are the results of
Ref. �22�, while the six �blue� squares joined by a solid line are our
new estimates for Tc presented in this work.
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temperature value. In the same table we also show our
extrapolated values for the ground-state energies. At low
enough temperature both E /EF and � /�F become approxi-
mately constant. From this observation it can be inferred that
the thermal fluctuations are small enough that those constant
values should not differ greatly from their ground-state val-
ues. For reference we also include our data for the system at
unitarity. The fact that the latter data fall in the right place
shows that our calculations are quite close to the dilute limit.
In this respect one should also note that the T=0 fixed-node
Monte Carlo calculations show a similar agreement, even
though in one case nr0

3�10−3 �2�, while in the other nr0
3

�10−7 �4�, where r0 is the effective range of the interaction
used. Notice that our estimated value for � at unitarity is
lower than the variational estimates reported in Refs.
�2–4,14� and in apparent agreement within error bars with
the unpublished results of Ref. �29�.

In the top panel of Fig. 14 we show E /EF extrapolated to
T=0, as a function of 1 /kFa, together with the ground-state
energy as determined in Refs. �3,5,14�. Since our calcula-
tions are in principle exact, it is not surprising that our ex-
trapolations yield results that are consistently lower than
those in Refs. �3,5,14�, since those calculations are based on
the fixed-node approximation, which are thus variational and
provide an estimate for the ground-state energy from above.

In the bottom panel of Fig. 14 we present the results for
the pairing gap at the lowest temperatures. This quantity was
determined via a calculation of a response function  �see
Ref. �40�� as a function of momentum p:

 �p� = − �
0

�

d� G��p,�� , �5.1�

where

(b)

(a)

FIG. 13. �Color online� Energy �top panel� and chemical poten-
tial �bottom panel� as functions of T /�F and 1 /kFa. The dashed line
shows the location of Tc and the solid line represents T0, both as
functions of 1 /kFa, from Table I.
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FIG. 14. �Color online� Ground-state energy �top panel, in units
of the free-gas ground-state energy 3

5�FN�, obtained by extrapolat-
ing our finite-temperature results to T=0, is shown in red circles
with error bars �representing the uncertainty in the extrapolation�.
The data of Ref. �3� appear as blue circles, Ref. �14� as the black
dash-dotted line, and Ref. �4� as in green squares. The bottom panel
shows the gap at the lowest temperatures, from our work in Ref.
�40�, as red circles. Blue circles with error bars show the data of
Ref. �3�, the black dash-dotted line shows the data of Ref. �14�, and
the green triangle represents the data of Ref. �13�.
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G��p,�� =
Tr�e−��−���H−�N��↑�p�e−��H−�N��↑

†�p��
Z��,�,V�

�5.2�

is the temperature Green function. This response function
has been shown by us in Ref. �40� to be accurately param-
etrized by the independent quasiparticle form given by

 �p� =
1

E�p�
e�E�p� − 1

e�E�p� + 1
, �5.3�

with

E�p� =���p2

2m
+ U − �	2

+ �2. �5.4�

In this expression, �=m /m*, where m* is an effective mass,
U is the mean-field potential, � represents the pairing gap,
and � is the chemical potential. All of these quantities are
functions of temperature �see Ref. �40� for further details�.
The data for � shown in the right panel of Fig. 14 correspond
to the lowest temperatures we have simulated �namely, T
�0.1�F�. Our results for � agree qualitatively with the data
by other groups �3,13,14�. Away from unitarity, however, our
data fall systematically below the data by other groups.

VI. SUMMARY AND CONCLUSIONS

In this paper we have described the technical details in-
volved in the nonperturbative calculation of thermal averages
of systems of interacting fermions at finite temperature. We
have performed calculations of the thermal properties of a
system of spin-1 /2 fermions at and away from the unitary
point. The particles were placed on a 3D spatial lattice, in a
path-integral formulation of the interacting many-body prob-
lem.

By studying the finite-size scaling of the condensate frac-
tion we have established upper bounds on the critical tem-
perature Tc of the superfluid-normal phase transition, for
couplings around the unitary point in the region −0.5
� �kFa�−1�0.2. At unitarity we find Tc�0.15�1�, which is in
agreement with Ref. �7�. In contrast, at the transition the
energy Ec and the chemical potential �c that we find are
lower than those of Ref. �7� by about 15%. Furthermore, we
find that Ec and �c of Ref. �7� slightly violate the bounds
imposed by thermodynamic stability, which are satisfied by
our data, as shown in Fig. 15.

For all the couplings we studied, in particular at unitarity,
our results for the universal function � and the chemical po-
tential are consistent with normal Fermi gas behavior above
a characteristic temperature T0�Tc that depends on the cou-
pling. T0 is obtained by studying the deviations of the caloric
curve from that of a free Fermi gas. Furthermore, the chemi-
cal potential is approximately constant below T0. The exis-
tence of such a characteristic temperature that is different
from the critical temperature is analogous to the case of wa-
ter, where density reaches a maximum at a temperature T
�4 °C, which is above the T=0 °C liquid-solid phase tran-
sition.

At unitarity we find T0=0.23�2�, which is in agreement
with the experimental results of Ref. �34�, where measure-

ments of the caloric curve and energy versus entropy curve
of a unitary Fermi gas were reported. For Tc�T�T0 there is
a noticeable departure from normal Fermi gas behavior, pos-
sibly due to pairing effects.

Extrapolations of our data for the energy to T=0 are sys-
tematically below the results by other groups. This is not
surprising because GFMC and DMC methods provide an
upper bound to the energy.

We also compare our low temperature results for the gap
�determined through the calculation of a response function,
as explained in Ref. �40�� with ground-state calculations and
find reasonably good agreement close to the unitary point
and somewhat lower values on the BCS side of the reso-
nance.
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APPENDIX: THERMODYNAMIC RELATIONS AT
UNITARITY

In this section we complete our discussion of thermody-
namics at unitarity by deriving a number of identities and
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FIG. 15. �Color online� MC data from this work �blue circles�
and Ref. �7� �six black points�. The four straight lines starting at the
origin are the T→0 limits of hT�z→	�=22/5z /�s

3/5, where �s

=0.42�2� �4,13�, �s=0.59 for BCS or mean-field approximation and
�=1 for the free Fermi gas model, respectively. The two solid lines
�red �lower� and green �higher�� correspond to hT�z� calculated in
the free Fermi gas and the BCS on mean-field approximation hT�z�,
respectively.
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expressing the various thermodynamic functions in useful
forms.

We start with the grand-canonical ensemble, where the
thermodynamics is derived from the thermodynamic poten-
tial !�T ,� ,V�=−PV. At unitarity, where both � and T are
conventionally measured in units of the free-gas Fermi en-
ergy �F, we can write ! in terms of a function hT�z�, where
z=� /T, as in Ref. �35�:

!�T,�,V� = !�z,V� = − P�z�V = −
2

5
��ThT�z��5/2V ,

�A1�

where �= 1
6�2 � 2m

�2 �3/2. This form is useful because thermody-
namic stability implies three conditions on hT: hT�0, hT�
�0, and hT��0. The form of this function is shown in Fig.
15 along with data of Ref. �7�.

The particle number density and the entropy per particle
can then be derived as follows:

n =
N

V
= −

1

V

�!

��
=

5

2

P

T

hT��z�
hT�z�

, �A2�

S

N
= −

1

N

�!

�T
=

5

2

P

nT

1 − z

hT��z�
hT�z�� = 
hT�z�

hT��z�
− z� . �A3�

Using the thermodynamic identity E=TS− PV+�N, in-
serting the expressions above, we find

E =
5

2
PV
1 − z

hT��z�
hT�z�� − PV + z

5

2
PV

hT��z�
hT�z�

=
5

2
PV − PV =

3

2
PV . �A4�

Using this relation together with the constant volume identity
�E /�T=T�S /�T, one can derive relation �3.9�.
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