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We investigate the nonlinear correction to two weakly linked Bose-Einstein condensates realized by two
square wells. In the framework of the two-mode approximation, a tunneling term x describing the nonlinear

tunneling between the nonlinear effective potential is introduced. When the nonlinear interaction is weak, our
mode reduces to the well-known boson Josephson-junction model [A. Smerzi et al., Phys. Rev. Lett. 79, 4950
(1997); S. Raghavan et al., Phys. Rev. A 59, 620 (1999)], while in the case of strong nonlinear interactions, our
model presents one crucial correction and gives a better description of the static and dynamical properties of

the system than that model.
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I. INTRODUCTION

Two weakly coupled Bose-Einstein condensates (BECs)
were previously suggested [1] as candidates for investigating
the macroscopic quantum tunneling phenomenon analogous
to the Josephson junction [2], an oscillatory exchange of at-
oms governed by the phase difference of the “macroscopic
wave function” between two BECs. Furthermore, some
novel and unexpected quantum dynamical phenomena [3-6]
are explored in this system due to the nonlinear interaction
between tunneling atoms. The tunneling dynamics of BECs
in a double-well potential can be understood as a nonrigid
pendulum, whose length depends on the momentum. The
dynamic equations are the analog of Josephson oscillations
for superconductors separated by a weak link [7] in the case
of small-amplitude oscillations or weak nonlinear interac-
tions, while in the limit of large-amplitude or strong inter-
atomic nonlinear interactions, over a critical value, the atoms
will stay in one of the wells while the phase keeps increas-
ing, which is called the macroscopic quantum self-trapped
(MQST) effect [4—6], resembling a pendulum with sufficient
energy to rotate.

Recently, this system was extensively studied and ex-
tended to other fields [8—19]: for instance, investigating the
static and coherent dynamic properties and the coherent con-
trol of it within and beyond the two-mode approximations
[8,9,16-18], the tunneling between the two avoided crossing
energy levels (nonlinear Landau-Zener tunneling) [10], the
quantum dynamics of BECs in multiwells and optical lattices
[14,15], and symmetric double-well potentials with time-
dependent barrier [3,12], even extending our understanding
of the effect of the environment and the quantum measure-
ment of its evolution [20]. And more recently, the MQST
effect was suggested to understand the localized phenomena
for BECs with lattices or lattices with impurities as a funda-
mental quantum mechanics [11,21]. The experimental
achievements on probing the evolution of the distribution
between two or more wells has also stimulated further re-
search into this simple system. Josephson oscillations were
first reported in one-dimensional (1D) Josephson arrays [22].
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Both the regimes of Josephson oscillations and the MQST
effect of Rb atoms are experimentally realized in a double-
well potentials [23]. The ac-dc Josephson effect has been
demonstrated in two weakly linked BECs [19]. On the other
hand, the static properties of BECs with double-well poten-
tials are elaborated with the help of exact and numerically
stationary solutions [16,17]. This presents one possibility to
reexamine the theory to deeply understand the dynamic
properties of this boson Josephson-junction model.

Within the regime of mean-filed theory (zero tempera-
ture), together with a two-mode approximation, the dynamics
of BECs with a double-well system reduces to a nonlinear
two-mode equations for the time-dependent amplitudes
A ,z(t)=\e’nm(t)eiall(’), where n;,(¢) and 6, (1) are the nor-
malized population and phases of the condensate in traps 1
and 2, respectively [3,4,9]. As shown in [9], the boson
Josephson-junction model (or nonlinear two-mode model)
[3,4] needs a correction in the case of a large number of
atoms; in the other words, the tunneling term should depend
on the nonlinear interaction. The “pretunneling” (or “nonlin-
ear tunneling”), introduced in [9], does explicitly involve an
atom-atom interaction, but produces a considerable contribu-
tion to the tunneling effect only near the limit of the inval-
idity of the two-mode approximation. In our paper, we will
work under the circumstance in which the two-mode ap-
proximation is safely satisfied and emphasize the other non-
linear tunneling term' y=/ D, (x)V,/(x)P,(x)dx [defined in
Eq. (6) in the following], which exhibits tunneling between
the nonlinear effective potential V,;/(x)= nCDiz(x) and can be
significant in the case of sufficiently large numbers of atoms
or strong s-wave scattering length. Since this term comes
from the nonlinear tunneling and makes a significant contri-
bution only when the nonlinear parameters are larger, we
refer to it as a nonlinear correction to the boson Josephson-
junction model.

This paper is organized as follows: After generally con-
sidering the two-mode approximation in the two weakly
linked BEC system, we first introduce the nonlinear tunnel-
ing in Sec. II. In Sec. III, we investigate the effect of this

"This term was also introduced as Ay in [9], but involves the other
system parameters, such as B and A. This makes it somewhat dif-
ficult to understand its role in both static and dynamics properties.
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nonlinear correction on the static properties, energy splitting,
and its effect on the dynamical properties, not only Joseph-
son oscillations, but also the MQST effect are presented in
Sec. IV. Finally, we summarize and discuss our work in Sec.
V.

II. GENERALIZED TWO-MODE APPROXIMATION

The generalized two-mode approximation is applied to
the two weakly linked BEC system. This generalization is
imposed by considering one higher-order term of the local-
ized wave function ®;,(x) (defined as X:,z) for a one-
dimensional double-well, which can be realized by optical or
micromagnetic techniques [21,23]. The dynamics of the
BEC:s trapped in two double wells at 7=0 is governed by the
Gross-Pitaevskii equation (GPE)

oWV (x,t P
e (— Vi) + 77|‘P(x,t)|2>‘1’(x,t), (1)
where we have rescaled the length and energy by the effec-
tive length of the two wells, L and #%/(2mL?), while 7 is
proportional to the total atomic number and the reduced one-
dimensional s-wave scattering length.

In the following, we focus our attention on the dynamical
oscillations of the last two energy states. This can be guar-
anteed by a high barrier, which makes the energy space be-
tween the first and second excited states much larger than the
energy splitting between the ground state and the first excited
state. Then we can write the variational wave function [4] as

W(x,1) = ¢ (D) (x) + () Dy(x), (2)

with ¢, y2(t)=\e"n]‘z(t)eiall(’) and a conservative constant total
number of atoms n,(t)+n,(t)=1. ®; »(x), describing the con-
densate in each trap, can be expressed in terms of stationary
symmetric and antisymmetric eigenstates of the GPE (1):

+
INEECLES L G
V2

The availability of this nonlinear two-mode approximation
can be checked by the conditions [®,(x)®,(x)dx=0 and
J|®,5(x)Pdx=1. The amplitudes for general occupations
ny »(t) and the phases 6, ,(r) obey the following the general-
ized nonlinear two-mode dynamical equations:

i%lﬂl(f) ={E}+n,U, + 2Re[ (1) () 1x 1}t (1)

= (K +noxi + nix) (1), (4)

i (%lﬂz(f) ={ES + nyUs + 2Re[ (1) () )} (1)

= (K +nx} +nax) i (1), (5)

where Re(-+) denotes the real part of (---). It is easy to see
that our Egs. (4) and (5) are same as the improved two-mode
(I2M) model in [9] except not including the two localized
wave function y,= 7/ CID%(x)CI)g(x)dx. This is because our fol-
lowing calculation is within the two-mode approximation.
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And furthermore, we kept the following terms:

E? = f q)i(x)(— iz + V(x))q)i(x)dx,
ox
&
K=- f <D1(x)<— P + V(x))(l)z(x)dx,
Xi =— nf CID%(x)CDZ(x)dx, X% =- nf (Dl(x)(D%(x)dx,

Ui= ﬂf |@;(0)|*dx. (6)

It is easy to see when the X},z is so small (compared with K)
that one can safely neglect it, Eqs. (4) and (5) reduce to the
nonlinear two-mode dynamical equations in [4,5]. This is
called the weakly atomic interaction case throughout this pa-
per. In fact, the same term x| was presented in Ref. [6]. But
those cases belong to the weak nonlinear interaction, so there
will be no more discussion of this term. We would like to say
that this term is the crucial result of this paper. It is interest-
ing to modify x;?* as [®;(x) nfl)%’z(x)(l)z(x)dx, which sug-
gests us to understand it as the tunneling between the effec-
tive potential 7®7 ,(x). Compared to K, which has a similar
form as the linear tunneling formula except the wave func-
tion (®,,), the eigenfunction of the GPE (or nonlinear
Schrédinger equation), we call X}’z the nonlinear tunneling
term.

The fractional population imbalance z(¢)=n;(t)—n,(r)
and relative phase ¢(t) = 6,(r)— 0,(¢) obey

2==2(K + x+ Sxz)\V1 — 2% sin(¢), (7)

¢=AE+ Az —-28x\1 -z cos(¢p)

z
\’TZZ[IC + x + Sxz]cos(g), (8)
where AE=EV-ES+(U;-U,)/2, A=(U;+Uy)/2, x
=(x}+x71)/2, and Sy=(x}-x})/2. The total conserved en-
ergy is

+2

AZ —
H=AEz+ TZ —2[K + x+ Sxz]N1 =z* cos(¢p),  (9)

and implies that the equations of motion (7) and (8) can be
written in the Hamiltonian form

o H

ap’ T oz’

with z and ¢ the canonically conjugate variables.

z=

III. ENERGY SPLITTING DUE TO THE NONLINEAR
INTERACTION

To understand the effect of the nonlinear tunneling (X{'z)
in Egs. (4) and (5) or y in Egs. (7) and (8) on the properties
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TABLE 1. The values of K, X{’Z, and y, for given 7.

n K X}’z X2

10 0.494044 0.0544708 0.0035229
20 0.492262 0.111326 0.00532183
30 0.489441 0.170379 0.0109569
35 0.487659 0.200695 0.0129352
40 0.485633 0.231526 0.0149725
45 0.483365 0.262870 0.0170735
50 0.480852 0.294722 0.0192429
60 0.475089 0.359955 0.0238032
70 0.468318 0.427239 0.0286850
80 0.460511 0.496601 0.0339178

of the system, we will consider one symmetrical external
potential—for example, the symmetrical double square well

w, |x|=a,
Vip(¥) =10, b<lx[<a (a=1/2, V;>0),
VO’ |'x| <b3

in which we can have exact analytical stationary solutions
for Eq. (1) [17]. With the help of these stationary solutions
[®; r(x)], we can understand the reason and necessity of our
generalized two-mode approximation: keep the higher-order
terms X{’2, but eliminate x,.

Due to the symmetrical properties of our external poten-
tial V,,,(x), we have ®;(x)=®,(x). Using the same proce-
dures as in [17], we can find W z(x) with a given nonlinear
interaction 7. And then from the definition (3), we obtain
®, ,(x) and calculate all of the tunneling terms /C, X{’z, and
x> presented in Table I. During the calculation, we have set
Vy=1000, 2b=0.1, and 2a=1, the same as in Ref. [17]. As
shown in Table I, the values of y, are always smaller (at least
107!) than K and )(1’2. Meanwhile, I decreases a small
amount with increasing the nonlinear interaction 7, but X}’z
increases and will have the same order with I around #»
~20. That is the reason that we keep )(1’2 in our approxima-
tion, especially when 7= 20, but ignore x,.

Considering the symmetrical properties, the equations of
motion (7) and (8) are rewritten as

2==2(K+ Y)V1=2*sin(¢), (10)
b=Az+2 ,%(mx)cos(@, (11)
VI-z

with the conserved energy

AZ? 2
H:T—Z(’C+X)V1_Z cos(¢). (12)

Comparing with the boson Josephson-junction (BJJ) model
in [4], the only difference is the nonlinear tunneling term,
X:)(i’z in this case.
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FIG. 1. (Color online) The red line is the energy splitting with
the nonlinear interaction; the dotted black line is the tunneling term
with the nonlinear interaction; the purple line with triangles is the
additional tunneling term with the nonlinear interaction. The open
squares represent the energy splitting including all of the tunneling
terms.

The energy splitting of the system can be obtained by
stationary solutions of Egs. (10) and (11). We can find two
kinds of stationary solutions [16,17]; one is the so-called
symmetry-preserving solutions

d.=2nm, z7,=0, (13)

¢,=2n+1)w, z,=0, (14)

and the other is the symmetry-breaking one

2
¢,=Q2n+1)m, z,==* \/1—%, (15)

provided |A|>2(K+ x). This relation tells us why this non-
linear term is important, even for predicting the critical non-
linear value (7~ 0.319 72) for the symmetry-breaking solu-
tions with £=0.494 675, x=0.001 701 9, and A=0.992 312
[17]. For the symmetry-preserving solutions, it is not diffi-
cult to have n;=n,=1/2 and the variational wave functions
are nothing but the ground state and the first excited state.
From the definition of the chemical potential, which is the
eigenvalue of the GPE (1),

s
m= f ‘I’(x)(— P Virap(X) + 9 W (0)[* | ¥ (x)dx, (16)
one can find the energy-splitting formula in terms of the two
mode approximation

Ap=pp=pe=2(K+2x). (17)

In Fig. 1, we plot K, 2, and the energy splitting (Aw) as a
function of the nonlinear interaction 7. Figure 1 shows that
KC slowly decreases with increasing the nonlinear interaction
parameters 7). This is the consequence of how the density
profile of @  depends on the nonlinear interaction, which is
a well-known property of the eigenstate of the GPE [17]: the
density profile concentrates into the well as the nonlinear
interaction increases. So when the nonlinear interaction is
larger, it is impossible to fit the energy splitting, which in-
creases with the nonlinear interaction parameter. As shown in
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Fig. 1, it is x which plays a more important role in the case
of the strong nonlinear interaction regime and makes the
two-mode approximation available. Of course, in the weak
nonlinear interaction regime (7<<16), one can safely neglect
the nonlinear tunneling term x and this is the case in [4].
Based on the above calculations, we have shown that this
nonlinear tunneling term Y contributes more to the static
properties of the system, so we will prove that it is important
in relative dynamics behaviors.

IV. OSCILLATION MODES AND MACROSCOPIC
QUANTUM SELF-TRAPPING

In this section, we will investigate the interwell atomic
tunneling dynamics of the system and see what the role is of
this nonlinear term y. For the noninteracting atom (7=0)
case, the same as in [4-6], Egs. (10) and (11) describe a
single-atom oscillation, but not a Josephson-effect oscilla-
tion, while for the interacting (7 # 0) atoms, we will see that
x plays a crucial role in the tunneling dynamics when the
nonlinear interaction is larger. Since the parameters /C, y,
and A depend on the nonlinear interaction, we have to plot
the evolution of the particle difference z with different initial
conditions at a given nonlinear interaction parameter 7, but
not A. The interwell atomic tunneling dynamics includes the
following oscillation modes [4-6], small-amplitude, large-
amplitude, and macroscopic self-trapped oscillations. The
last has a nonzero average population imbalance, while (z)
=0 for the others.

A. Oscillation modes

The oscillation modes are characterized by zero average
population imbalance, (z)=0. There are two kinds of oscilla-
tion modes: One is called small-amplitude oscillations and
the other is large-amplitude oscillations.

1. Small-amplitude oscillations

For small z, Egs. (10) and (11) can be linearized to the
very simple form

d=—2A(K + y)sin(¢p) — 2(K + x)*sin(2¢).  (18)

This inspires us to understand the dynamics analogy in
which a particle of spatial coordinate ¢ moves in the poten-
tial

V() == 2A(K + x)cos(p) — (K + x)’cos(2¢).  (19)

In Fig. 2 we see that V(¢) has two valleys around ¢=0 and
¢=1. So there two possible oscillation models with zero
time-average value of the phase ((¢)=0) and 7 time-average
value of the phase ({(¢)= ), while for ¢p=1r, the depth of this
valley decreases as 7—0.3. This implies that one cannot
have a small-amplitude oscillation with ()= for a large
nonlinear interaction (7> 0.3). After a linearized small z and
around ¢=0, 7, we obtain the dimensionless frequency of
the oscillation,

wo = VA(K + )% £ 2A(K + ), (20)

and the periods (in unscaled units 2mL>/#)
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FIG. 2. (Color online) ¢ potential V(¢)/(K+x)? plotted against
&/ for 7=0.1,0.2,0.3.
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(21)

where = corresponds to ¢=0, and 7. From Egs. (20) and
(21), we can see that the nonlinear term (y) modifies the
frequency and the periods of the small-amplitude harmonic
oscillation models. To see this clearly, we plot two figures for
(¢)=0 and 7 with a small value of the initial population
imbalance z(0)=0.01. In Fig. 3, we display the time evolu-
tion of the population imbalance z(r) for increasing nonlinear
parameters with {¢)=0. Specifically, the nonlinear parameter
(7) takes 5, 25, 50, and 80 for Figs. 3(a)-3(d), respectively.
As said before, the relative parameters X, x, and A [in Fig.
3(a), 0.494514, 0.0269215, and 15.3733; in Fig. 3(b),
0.490 977, 0.140 586, and 74.2135; in Fig. 3(c), 0.480 852,
0.294 722, and 143.345; and in Fig. 3(d), 0.460 511,
0.496 601, and 222.027] have been calculated with the exact
analytical solutions in [17]. The solid lines represent the re-
sult including the nonlinear term (y) and the dotted lines
without this term, which means the two-mode approximation
reduces to the one of [4]. Figure 3(a) shows that y plays a
small role and can be neglected in the weakly nonlinear in-
teraction regions, While y plays more important role with

0.010 ()4 0.010 (b)Y
0.005 1 0.005
< 0.000 0.000{ |
N 0.005 -0.005
-0.010 1 -0.010
00 05 10 15 20 25 30 00 05 10 15 20
0.010 ©| o010
0.0051 | 0.005
= 0.000 0.000] |-
N 0.005 -0.005] |’
-0.010{ V. -0.010{ V-
0.0 05 10 15 00 05 10 15

time time

FIG. 3. Population imbalance z(¢) as a function of dimensionless
time ¢ [in units of (2ML?)/#%], with initial conditions ¢(0)=0 and
z(0)=0.01, (a) »=5, (b) =25, (c) =50, and (d) =380 in a double
square well.
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FIG. 4. Population imbalance z(z) as a function of dimensionless
time 7 [in units of (2ML?)/#], with initial conditions ¢(0)=7 and
2(0)=0.01, (a) #=0.05, (b) #=0.1, (c) »=0.2, and (d) =03 in a
double square well.

increasing the nonlinear interaction parameters and makes
the periods of the oscillation become small, which is consis-
tent with the prediction of Eq. (21).

For m-phase modes ({¢)=m) the small-amplitude har-
monic oscillations are shown in Fig. 4. As in Fig. 3, the solid
lines represent the result including the nonlinear term (y) and
the dotted lines without this term. The four different nonlin-
ear interaction parameters are 0.05, 0.1, 0.2, and 0.3, and
the corresponding parameters are K=0.494 676, x
=0.000 265974, and A=0.155271 in Fig. 4(a); K
=0.494 675, x=0.000 532 009, and A=0.310 51 in Fig. 4(b);
K=0.494 676, x=0.001 064 3, and A=0.620 891 in Fig.
4(c); and K=0.494676, x=0.00159685, and A
=0.931 144 in Fig. 4(d). Figure 4 shows a small clear period
shift when increasing the nonlinear interaction. This means
that all of them belong to the weakly interaction regime, in
which the corresponding value of y is much smaller than .
We will see that a larger nonlinear interaction will break
down the small harmonic oscillation and make it into the
macroscopic self-trapping in next subsection.

2. Large-amplitude oscillations

In Fig. 5, we plot the anharmonic oscillations of the popu-
lation imbalance z(¢) with initial relative phase ¢(0)=0 and
z(0)=0.2. As in Fig. 3, we set the same nonlinear parameters
and the same sequence and therefore the same parameters for
KC, x, and A. Increasing the nonlinear parameter » for fixed
z(0) makes the period of the oscillation smaller and when the
nonlinear interaction is larger than some critical value, called
7., the oscillation around zero will break down. Once again,
in the weakly nonlinear interaction regime, the nonlinear
term x makes a small shift to the period of the oscillation,
while for the strong nonlinear interaction regime, a distin-
guishing difference was found. In addition to the period shift
in Figs. 5(b)-5(d), Fig. 5(c) shows that x contributes to the
critical value of the nonlinear interaction, over which the
self-trapping occurs. Once in the self-trapping regime [4,6],
the evolution of the phase difference ¢(z) will not oscillate,
but be a linear function of time ¢, called the running phase

PHYSICAL REVIEW A 78, 023613 (2008)
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FIG. 5. Population imbalance z(7) as a function of dimensionless
time 7 [in units of (2ML?)/#], with initial conditions ¢(0)=0 and
2(0)=0.2, (a) »=5, (b) =25, (¢) =50, and (d) =80 in a double
square well.

mode. The nonlinear tunneling term Y makes the slope of
this function different.

Under the initial condition of ¢(0)=7 and z(0)=0.91, the
population imbalance z(z) performs the anharmonic oscilla-
tion, shown in Figs. 6(a) and 6(b), with small nonlinear pa-
rameter 7=0.2 and 0.45. The corresponding parameters can
be found: K£=0.494 676, x=0.001 064 3, A=0.620 891, and
K=0.494 675 x=0.002396 17, and A=1.396 28, respec-
tively. The larger initial population imbalance guarantees its
oscillation evolution. The period shift in Fig. 6(b) arises from
the nonlinear tunneling term y. Figures 6(c) and 6(d) display
the macroscopic quantum self-trapping, and the condition for
it is expressed in the following subsection.

B. Macroscopic quantum self-trapping

One more interesting effect from the BJJ model is mac-
roscopic self-trapped oscillations, which have a nonzero av-
erage population imbalance [see Figs. 5(c), 5(d), 6(c), and

1.0 1.0
(@)
0.5 0.5
= 00 0.0
N
05 05
1.0 -1.0
0 4 8 12 16 20 0
0961 A A A 0.925
(c)
0.95
—~ 0.94 0.9201 )
ES)
N 0.93 0.915
0.92
0.91 v v 0.910 vy
00 03 06 09 12 15 00 01 02 03 04 05
time time

FIG. 6. Population imbalance z(¢) as a function of dimensionless
time ¢ [in units of (2ML?)/#], with initial conditions ¢(0)=1 and
z(0), (a) #=0.2, (b) =045, (c) =5, and (d) =25 in a double
square well.
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6(d)]. There are different ways in which this state can be
achieved; for example, given a value of the initial population
imbalance, if the nonlinear interaction exceeds a critical
value 7., the populations become macroscopically self-
trapped. All of them can be understood by the following
self-trapping conditions:

Hy = H(z(0), $(0))

Az(0)?

5 - 2(K + x)V1 = 2(0)? cos[ $(0)] > 2(K + x).

(22)

It is not difficult to check that Eq. (22) can be reduced to
Egs. (13), (4.8), respectively, in [4] in the weakly nonlinear
interaction regime (y<<XC). For a fixed value of the initial
population imbalance z(0) and initial phase difference ¢(0),
the critical value of the nonlinear interaction 7)., over which
the MQST effect sets in, can be found from the following
relation:

1+\1-2(0) cos[ (0)]
z(0)?

On the other hand, Eq. (23) also defines the critical value of
the initial population imbalance [z.(0)] with a fixed trap po-
tential, total number of condensates atoms, and initial value
of the phase difference ¢(0). For ¢(0)=0, it is

A=4(K+ x)

(23)

2 A + 0 - 40K+ 02, (24)

A
4K
ﬁ=v37§ﬁ. (25)

Once z(0)>z>", MQST conditions are satisfied for ¢(0)=0
or .

For the case of ¢(0)=0 and 7=80, we can find z,
=0.185. Considering the initial population z(0)=0.2, we have
the MQST effect as shown in Fig. 5(d). Equation (24) tells us
that the nonlinear tunneling term y modifies the critical value
of z,, and as can be seen in Fig. 5(c), under =50, the critical
value of z, is 0.163 without y, but 0.207 with y. To see this
clearly, we plot the relation of the critical population imbal-
ance z, with the nonlinear parameter 7 for ¢(0)=0 in Fig. 7.
The red line with squares is defined by Eq. (24) including the
nonlinear term y and the black line with triangles represents
the result without y, corresponding to the model of [4]. It is
seen clearly that in the regime of the weakly nonlinear inter-
action, the two results are exactly consistent, but in the
strong nonlinear interaction regime there are clearly differ-
ences. The horizon dotted line denotes the initial population
imbalance in Fig. 5, which shows the changing of the oscil-
lation to the MQST regime.

With the help of Eq. (25), we can understand the evolu-
tion of the population imbalance shown in Fig. 6. In the

Z

while for ¢(0)=r,
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FIG. 7. (Color online) Critical population imbalance z. as a

function of nonlinear parameter 7, with initial conditions ¢(0)=0 in
a double square well.

weak nonlinear interaction regime [Figs. 6(a) and 6(b)], the
critical value is z > 1, which means that we always can have
the oscillation modes. While for the strong nonlinear inter-
action, z_ decreases with increasing the nonlinear interaction
parameters. In Figs. 6(c) and 6(d), we have z7=0.368 and
7 =0.185, respectively. Since our initial population value is
z(0)=0.91, the evolution of z(z) belongs to the MQST effect.

V. CONCLUSION

We have introduced a nonlinear tunneling term that pro-
vides a crucial correction to the two weakly coupled BEC
system, especially the nonlinear correction to the BJJ model,
within the regime of the two-mode approximation. This is
the essential difference between our calculation and the 12M
model in [9]. Physically, this nonlinear correction term can
be understood as nonlinear tunneling through the nonlinear
effective potential (7|® ,|?), which is important in the case
of a strong nonlinear interaction (y=K), while for the
weakly nonlinear interaction regime (y<<K), this term can
be safely neglected and this nonlinear two-mode model re-
duces to the well-known BJJ model [4,6]. With one exactly
solvable system, BECs with two square wells, we have
shown that this nonlinear correction plays a more important
role in the energy splitting. This term also contributes more
to interwell atomic tunneling dynamics in the case of a
strong nonlinear interaction—for example, shifting the pe-
riod of the oscillation modes (both zero phase and 7 modes)
and the correction to the critical value of the initial popula-
tion imbalance and nonlinear interaction. All of our results
show that once the nonlinear interaction is strong, one should
include this nonlinear correction term in the nonlinear two-
mode model or BJJ model.

ACKNOWLEDGMENTS

W.L. is supported by the NSF of China (Grants No.
10444002 and No. 10674087), SRF for ROCS, SEM, SRF
for ROCS, Ministry of Personal of China, and SRF for
ROCS of Shanxi Province. We gratefully thank Shi-Gang
Chen, Su-Qing Duan, Li-Bin Fu, and Guang-Jiong Dong for
stimulating discussions.

023613-6



NONLINEAR CORRECTION TO THE BOSON JOSEPHSON-...

[1] J. Javanainen, Phys. Rev. Lett. 57, 3164 (1986).

[2] B. D. Josephson, Phys. Lett. 1, 251 (1962).

[3] G. J. Milburn, J. Corney, E. M. Wright, and D. F. Walls, Phys.
Rev. A 55, 4318 (1997).

[4] A. Smerzi, S. Fantoni, S. Giovanazzi, and S. R. Shenoy, Phys.
Rev. Lett. 79, 4950 (1997); S. Raghavan, A. Smerzi, S. Fan-
toni, and S. R. Shenoy, Phys. Rev. A 59, 620 (1999).

[5] S. R. Shenoy, Pramana, J. Phys. 58, 385 (2002); e-print
arXiv:cond-mat/0508581.

[6] S. Giovanazzi, A. Smerzi, and S. Fantoni, Phys. Rev. Lett. 84,
4521 (2000); A. Smerzi and A. Trombettoni, Phys. Rev. A 68,
023613 (2003).

[7] A. Barone and G. Paterno, Physics and Applications of the
Josephson Effect (Wiley, New York, 1982).

[8] Wei-Dong Li, Yunbo Zhang, and J.-Q. Liang, Phys. Rev. A 67,
065601 (2003); J. E. Williams, ibid. 64, 013610 (2001).

[9] D. Ananikian and T. Bergeman, Phys. Rev. A 73, 013604
(2006), and references therein.

[10] Jie Liu, Libun Fu, Bi-Yiao Ou, Shi-Gang Chen, Dae-Il Choi,
Biao Wu, and Qian Niu, Phys. Rev. A 66, 023404 (2002); J.
Liu, B. Wu, L. Fu, R. B. Diener, and Q. Niu, Phys. Rev. B 65,
224401 (2002).

[11] B. Wang, P. Fu, J. Liu, and B. Wu, Phys. Rev. A 74, 063610
(2006).

[12] M. Jaaskelainen and P. Meystre, Phys. Rev. A 71, 043603
(2005); C. Weiss and T. Jinasundera, ibid. 72, 053626 (2005).

[13] Jie Liu, Wenge Wang, Chuanwei Zhang, Qian Niu, and Bao-

PHYSICAL REVIEW A 78, 023613 (2008)

wen Li, Phys. Rev. A 72, 063623 (2005); Chuanwei Zhang, Jie
Liu, M. G. Raizen, and Q. Niu, Phys. Rev. Lett. 92 054101
(2004); Jie Liu, Chuanwei Zhang, Mark G. Raizen, and Qian
Niu, Phys. Rev. A 73, 013601 (2006).

[14] Di-Fa Ye, Li-Bin Fu, and Jie Liu, Phys. Rev. A 77, 013402
(2008); Guan-Fang Wang, Li-Bin Fu, and Jie Liu, ibid. 73,
013619 (2006)

[15] L. B. Fu and J. Liu, Phys. Rev. A 74, 063614 (2006).

[16] K. W. Mahmud, J. N. Kutz, and W. P. Reinhardt, Phys. Rev. A
66, 063607 (2002); R. D’Agosta and C. Presilla, ibid. 65,
043609 (2002).

[17] Wei-Dong Li, Phys. Rev. A 74, 063612 (2006).

[18] D. R. Dounas-Frazer, A. M. Hermundstad, and L. D. Carr,
Phys. Rev. Lett. 99, 200402 (2007).

[19] S. Levy, E. Lahoud, and J. Steinhauer, Nature (London) 449,
579 (2007).

[20] R. Gati, B. Hemmerling, J. Folling, M. Albiez, and M. K.
Oberthaler, Phys. Rev. Lett. 96, 130404 (2006); Wei-Dong Li
and J. Liu, Phys. Rev. A 74, 063613 (2006).

[21] Th. Anker, M. Albiez, R. Gati, S. Hunsmann, B. Eiermann, A.
Trombettoni, and M. K. Oberthaler, Phys. Rev. Lett. 94,
020403 (2005).

[22] E. S. Cataliotti, S. Burger, C. Fort, P. Maddaloni, F. Minardi,
A. Trombettoni, A. Smerzi, and M. Inguscio, Science 293, 843
(2001).

[23] M. Albiez, R. Gati, J. Folling, S. Hunsmann, M. Cristiani, and
M. K. Oberthaler, Phys. Rev. Lett. 95, 010402 (2005).

023613-7



