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A generalized description of Talbot-Lau interference with matter waves is presented, which accounts for
arbitrary grating interactions and realistic beam characteristics. The dispersion interaction between the beam
particles and the optical elements strongly influences the interference pattern in this near-field effect, and it is
known to dominate the fringe visibility if increasingly massive and complex particles are used. We provide a
general description of the grating interaction process by combining semiclassical scattering theory with a phase
space formulation. It serves to systematically improve the eikonal approximation used so far, and to assess its

regime of validity.
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I. INTRODUCTION

The ability of material particles to show wavelike inter-
ference is one of the central predictions of quantum mechan-
ics. While the early experimental tests worked with elemen-
tary particles [1,2], interferometry of atoms is by now a
matured field of physics [3-5]. It is in particular the ability to
cool and to control atoms using laser techniques that has
propelled atom interferometry into a versatile tool for preci-
sion measurements, e.g., [6-9].

As far as more complex and more massive objects are
concerned, we are currently witnessing this transition from
the proof-of-principle demonstration of their wave nature to
the use of interferometry for quantitative measurements.
Specifically, the static [10] and the dynamic [11] bulk polar-
izability of fullerene molecules was measured recently with a
molecule interferometer. Also the controlled observation of
decoherence, due to collisions with gas particles [12] or due
to the emission of thermal radiation [13], has been used to
characterize the interaction strength (or cross section) of
fullerenes with external degrees of freedom. Another moti-
vation for studying interference with large molecules is to
test quantum mechanics in unprecedented regimes by estab-
lishing the wave nature of ever more massive objects [14].

The above-mentioned interference experiments with large
molecules are based on the near-field Talbot-Lau effect,
where three gratings are used which serve, in turn, to pro-
duce coherence in the beam, to bring it to interference, and to
resolve the fringe pattern. This is an established technique in
atom and electron interferometry [15-19], and it is the
method of choice for massive and bulky molecules (such as
fullerenes [20], mesotetraphenylprorphyrins [21], or func-
tionalized azobenzenes [22]). The main reason is that a
Talbot-Lau interferometer (TLI) tolerates beams which are
relatively weakly collimated, thus alleviating the increasing
difficulty in producing brilliant beams if the particles get
more complex. Another important advantage compared to
far-field setups, which is essential if one wants to increase
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the particle mass by several orders of magnitude, is the fa-
vorable scaling behavior of Talbot-Lau interferometers with
respect to the de Broglie wavelength [3].

As a specific feature of Talbot-Lau interferometers, the
forces between the particles in the beam and the diffraction
grating influence the interference pattern much stronger than
in a far field setup. This is due to the fact that the different
diffraction orders do not get spatially separated in a TLI.
Rather, all the orders interfere among each other, producing a
resonant recurrence of the pattern whenever the so-called
Talbot condition is met. As a consequence, even tiny distor-
tions of the matter wave may lead to significant changes of
the fringe visibility—requiring, for example, the modifica-
tion of the van der Waals force due to retardation effects [23]
to be taken into account when describing the diffraction of
fullerenes at gold gratings.

This effect of the dispersion force between the particle
and the grating wall gets more important as the mass and
structure of the molecule grows. In particular, it sets increas-
ingly strict requirements on the monochromaticity, i.e., the
velocity spread permissible in the molecular beam. A very
recent development, undertaken to reduce this influence, is
the Kapitza-Dirac Talbot-Lau interferometer (KDTLI),
where the second material grating is replaced by the pure
phase grating produced by a standing light field [22].

The available theoretical descriptions of molecular
Talbot-Lau interference account for the grating forces in
terms of a simple eikonal phase shift [24-26] (an expression
originally derived by nuclear physicists as an asymptotic
high-energy approximation to the Lippmann-Schwinger
equation in scattering theory [27,28]). This approximation
ceases to be valid with a growing influence of the particle-
grating interaction, and, due to its nonperturbative nature, its
range of validity is not easy to assess. Therefore, given the
quest for testing quantum mechanics with ever larger par-
ticles and given the increased precision required in metro-
logical applications, there is a clear need to extend the theo-
retical description of near-field matter-wave interference
beyond the eikonal approximation.

The main purpose of this paper is therefore to develop a
generalized formulation of the coherent Talbot-Lau effect.
By combining a scattering theory formulation with semiclas-
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sical approximations we incorporate the effect of the grating
interaction systematically beyond the eikonal approximation.
As a prerequisite for its implementation, the established
theory of near-field interference first needs to be extended to
account for the effects of finite angular dispersion in the
molecular beam. We show how this can be done transpar-
ently by using the phase space formulation of quantum me-
chanics. As a by-product, this formulation permits us to
quantify the adjustment precision required in realistic experi-
ments.

The structure of this paper is as follows. In Sec. II we
develop a generalized theory of Talbot-Lau interference,
which is formulated independently of the particular choice of
how to incorporate the grating interaction. We also establish
the relation to the previous treatments by applying the eiko-
nal approximation. In Sec. III, we review relevant realistic
descriptions of the grating interaction, and numerically illus-
trate their effect in the eikonal approximation. Section IV is
devoted to the development of a semiclassical formalism to
go beyond the elementary eikonal approximation. Its predic-
tions are numerically evaluated and compared in Sec. V, us-
ing the experimental parameters of the molecular interfer-
ence experiments carried out in Vienna [20,22]. Finally, we
present our conclusions in Sec. VI.

II. PHASE SPACE DESCRIPTION OF THE
TALBOT-LAU EFFECT

The effect of Talbot-Lau interference can be described in
a particularly transparent and accessible fashion by using the
phase space representation of quantum mechanics [29-32].
This is demonstrated in [26], where both the coherent effect
and the consequences of environmental interactions are for-
mulated in terms of the Wigner function of the matter-wave
beam. As also shown there, the analogy of the Wigner func-
tion with the classical phase space distribution allows one to
evaluate the predictions of classical and quantum mechanics
in the same framework, a necessary step if one wants to
distinguish unambiguously quantum interference from a pos-
sible classical shadow effect.

However, the treatment in [26] is based on a number of
idealizations, which must be reconsidered in view of a more
refined description of the particle-grating interaction. The
least problematic approximation is to disregard the motion in
the direction parallel to the grating slits, which is permissible
due to the translational symmetry of the setup in this direc-
tion. It follows that a two-dimensional description involving
the longitudinal motion (denoted by z) and the transverse
motion (denoted by x) of the beam is required in principle. In
front of the interferometer these two degrees of freedom are
well approximated by a separable state involving transverse
momenta |p| <p.. If the grating interaction is treated in ei-
konal approximation, as done in [26], this implies that the
transverse and the longitudinal motion remain separable
throughout. One can then resort to an effectively one-
dimensional description, characterized by a fixed longitudi-
nal momentum p,=h/\. The z coordinate then represents a
time t=mz/p, and the longitudinal propagation of the beam
along z effectively evolves the one-dimensional transverse
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beam state during the time ¢. The finite distribution u(p,) of
the longitudinal momenta is then accounted for only in the
end by averaging the results obtained with sharp values of p..

A priori, such a treatment is no longer valid for a general
grating interaction where different longitudinal momentum
components of the beam get correlated. We will accordingly
use a two-dimensional scattering formulation to describe the
grating interaction in Sec. IV. However, we will see that for
the parameters of typical experiments the main effect of tak-
ing the grating interaction beyond the eikonal approximation
is on the transverse degrees of freedom. Since the effect on
the longitudinal motion is much weaker we will retain the
effectively one-dimensional description outlined above, post-
poning the physical discussion why this is permissible to
Sec. IV.

Another idealization found in the basic treatments of the
Talbot-Lau effect is to assume the transverse motion in front
of the interferometer to be in a completely incoherent state.
This would correspond to a constant distribution of the trans-
verse momenta p, and for general grating transformations,
which depend on p, it is no longer a valid approximation. We
will therefore present a formulation that takes into account a
realistic beam profile and that allows for a general state
transformation at the diffraction grating. Going beyond the
idealization of a perfectly incoherent state will also permit us
to assess the adjustment precisions required in an experimen-
tal implementation.

A. Wigner function and its transformations

We start by briefly outlining how to describe matter-wave
interference by means of the phase space representation of
quantum mechanics [26,33]. As discussed above, one may
restrict the dynamics to the transverse beam state, which is
most generally specified by its density matrix p. This state is
equivalently described by the Wigner function

w(x,p) = ﬁ f dsePM{(x - (572)|plx + (572)), (1)

which is a function of the transverse phase space coordinates
(x,p). Like p it depends parametrically on the longitudinal
momentum p,. Since we assume the beam to be collimated
w(x,p) is nonzero only for |p| <p..

The great advantage of the phase space formulation is that
it permits a straightforward, yet realistic, description of the
beam and its propagation through the interferometer. Most
importantly, the free time evolution of a state during the time
t is given by the same shearing transformation as in the case
of the classical phase space density,

t
Wt(x’p) = WO(x - _p’p> ’ (2)
m
with m the particle mass. On the other hand, a quantum state

transformation of the form p’=UpU", such as the effect of
passing a grating, reads in phase space as

W/(X,P)=fjdxodPoK(X,P;XosPO)W(xo’Po)~ (3)

Here the integral kernel is given by the propagator
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1 .
K(x,p;xo,po) = Py j j dsdsgye PP (x — (5/2)[U|xg + (50/2))x + (s/2)|U|xg — (50/2))*. (4)

Specifically, an ideal grating is characterized by a grating transmission function #(x), with |f(x)| <1, describing the multipli-
cative modification of an incoming plane wave. [The factor #(x) is nonzero only within the slit openings of the grating and it
may there imprint a complex phase to account for the interaction potential between the grating walls and the beam particle, see
Sec. IIL.] For such gratings the transformation reads (x|U|xy)=#(x)&(x—x,), so that the grating propagator reduces to a

convolution kernel

1 )
K(x,p3x0,po) = 8x = xo) T — f a’se’(”‘po)”ﬁt<x - §>I*<x + £>, (5)

which is local in position [26]. This choice of K will be
required below to reduce the generalized formulation of
Talbot-Lau interference to the eikonal approximation.

The convolution kernel provides a descriptive picture of
the diffraction process. Suppose the incoming beam is per-
fectly coherent, i.e., a plane wave characterized by the lon-
gitudinal momentum p, and transverse momentum p, coIre-
sponding to the (unnormalized) transverse Wigner function
wo(x,p)=8(p—py). The diffracted transverse state is then
given by

1 . K K
- i(p-po)siti| o _ 2 | 2
wi(x,p) 3 fdse t(x 2>t <x+2). (6)

In case of a periodic grating with period d, the transmission
function can be decomposed into a Fourier series,

)= X b, exp<2mjfl>, (7)
j:—oo
so that, after a free propagation over the longitudinal dis-

tance L, the transverse spatial density of the beam state is
given by the marginal distribution

wz(x)=fdpw1(x—£L,p>= > Bm<m£>exp<2mm£>.
P: L

M=—co T d
(8)
Here, we introduced the basic Talbot-Lau coefficients,
B, (&)= 2 bb, explimém~2))], )

Jj=—°

and the characteristic length scale Ly=d?/\ is called the Tal-
bot length.

Compare (9) to the Fourier coefficients of the transmis-
sion probability |¢(x)|?, which are given by the convolution
A,=2 jbjb%_ . Equation (8) thus implies that the density dis-

J—m
tribution takes the form of the grating transmission profile
whenever the distance L is an integer multiple of the Talbot
length, L=kLr,

2

2

wi(x) = (10)

[xe15)
Hx+k=
2

This is the elementary Talbot effect [34], and it is the back-
bone of the Talbot-Lau interferometer, which however does
not require a coherent illumination.

B. General Talbot-Lau effect

The general setup of a Talbot-Lau interferometer is de-
scribed in Fig. 1, along with the most relevant parameters.
An incoherent particle beam represented by the shaded area
passes a preliminary collimation slit on the left-hand side of
the figure and enters the Talbot-Lau interferometer through
the first grating. The angular distribution of those particles in
the beam which are finally detected is characterized by the
spread «, determined by the collimation slit and the finite
area of the detector.

|
4 feid | IIdS W
a=max(p/p.) I d I 7 I
|
u

FIG. 1. Schematic of a Talbot-Lau interferometer with the rel-
evant setup parameters for a material diffraction grating. The beam
emanating from the left-hand side is constrained by collimation slits
to an angular spread « before it enters the interferometer. The first
grating of period d; and size G>d; modulates the beam so that
spatial coherence is created at the position of the second grating
(z=0) where the diffraction takes place. This leads to an interfer-
ence pattern in the transverse beam density, ideally located at the
position of the third grating. The latter can be shifted in the trans-
verse direction by a variable distance xg. It thus modulates the flux
provided its longitudinal position 7L and its period d; match the
interference pattern. A detector of size W further downstream mea-
sures the total incoming beam intensity as a function of xg. The
central grating may be replaced by the phase grating created by a
standing light field.
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The first grating can be understood as an array of colli-
mation slits of period d; preparing, after a distance L, the
transverse coherence required for diffraction at the second
grating. In this region, the distortion of a matter-wave front
due to the grating interaction may significantly affect the
interference pattern, so that the grating thickness b enters the
calculation. (It is replaced by the laser waist w, in case of a
light grating.)

The different diffraction orders still overlap further down-
stream if the distance is on the order of the Talbot length
Ly=d?/\, and they may thus interfere among each other pro-
ducing a near-field fringe pattern. This can be explained
qualitatively from the elementary Talbot effect (10) by con-
sidering each of the slits in the first grating as independent
point sources. The Talbot patterns due to the individual slits
will add up constructively for appropriate choices of the grat-
ing periods d;, d and of the distance factor 7, so that a
distinct density pattern is created. It is verified without the
need for a spatially resolving detector by superposing a third
grating whose period d; equals that of the density pattern,
and by measuring the total flux through it as a function of its
transverse position xg.

We will now present a quantitative formulation of the
successive propagation of the beam through the interferom-
eter. As discussed above, one can take the longitudinal mo-
tion of the beam particles to remain unaffected by the grat-
ings. We may therefore assume the longitudinal momentum
to have a definite value p, for the time being, so that the
longitudinal position z plays the role of a time coordinate ¢
=mz/p, for the transverse motion.

1. Sequential calculation

The transverse state of the beam entering the interferom-
eter is far from pure. It is confined in position by the orifice
of the first grating, whose size G typically covers thousands
of grating slits. The momenta p are characterized by the an-
gular distribution D(p/p.) whose characteristic spread is de-
noted as a.

In a typical experimental situation, « rarely exceeds
1 mrad corresponding to a fairly well-collimated beam.
However, this still covers a range of transverse momenta that
is by orders of magnitude larger than the grating momentum
h/d, which separates the different diffraction orders. This
explains why diffraction does not need to be taken into ac-
count at the first grating. The transverse Wigner function
merely gets modulated by the grating profile, so that behind
the first grating it reads

1
wi(x,p) = E"'(x)'zD(f) (11)

Here #,(x) is the transmission function which is confined to
the grating orifice, in principle. However, since the size G is
typically larger than the sensitive region W of the final de-
tector one may equally take it to be an unconstricted periodic
function.

The free propagation of the beam over the longitudinal
distance L yields w,(x,p)=w(x—Lp/p,,p). The effect of
passing the second grating is in general described by an op-
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erator U to be specified below. The corresponding phase
space transformation is given by (4) so that, after a second
free propagation over the distance 7L, the transverse beam
state in front of the third grating reads

1 J4
W3()C,p) = f J dxodp0D<—O)|tl(x0)|2
Gp, P:
><K<x— fﬂL,p;x0+?L,p0). (12)

The corresponding spatial density distribution, given by
ws(x)=[fdpws(x,p), is now modulated by the third grating as
a function of the grating shift xg. The detection signal is thus
obtained as

wi2 w0
X
S(xg) = f dxws(x)|t5(x = xg)|* = > s, exp(27'rin—5> ,
-W2 n=—o0 ds

(13)

where |#;(x)|? is the spatial transmission probability of the
grating and W is the size of the detector. The latter typically
covers hundreds of grating periods so that one may disregard
the finiteness of W when evaluating the basic interference
effect. However, as shown below, it does play a role when
the experimental adjustment precision needs to be evaluated.

The resulting interference pattern is most easily character-
ized by the contrast of the modulation signal, conventionally
defined as the ratio between the amplitude of the signal
variation and its mean value. However, since the experimen-
tal signal is usually very close to a sinusoidal curve, it is in
practice more convenient and more robust to use the sinu-
soidal visibility defined in terms of the first to the zeroth
Fourier expansion coefficient of the ds-periodic signal [25],

2,
So

V= . (14)

It can be easily obtained from noisy experimental data by
fitting a sine curve and it coincides with the conventional
definition in case of a sinusoidal signal.

2. Decomposing the grating propagator

We proceed to evaluate the interference pattern (12) by
noting a general property of the grating transformation U.
The periodicity of the grating implies that the position rep-
resentation {x|U|x,) is d periodic with respect to the center
position (x+x,)/2. This admits the series expansion

o0

(xUlxgy = >, exp(iﬂ'nx

n=-

+ Xy

)Un(x -xp),  (15)

where the transformation within a single slit is now charac-
terized by the corresponding Fourier coefficients

dl2 —
U,(x) = 7 dx exp(— 277in2)<)?+ (x2)|U|x - (x72)).

—dr
(16)

023612-4



THEORY OF NEAR-FIELD MATTER-WAVE INTERFERENCE ...

It is now convenient to specify these transformation func-
tions in terms of their shifted Fourier transformation, which
serves to generalize the grating coefficients introduced for
the eikonal case in (7),

b,(p) = f dx exp[— é(p + ?n)x}un(x). (17)

- AW wh
B, (&pv)= 2 b_,-(p + v—)b ,_,,,(p - v7>eXp[i mé(m—2j)],

d

j=—°
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Indeed, for position-diagonal operators U, these functions
drop their momentum dependence and reduce to the coeffi-
cients in (7).

The generalized grating coefficients (17) can now be used
to construct the generalized Talbot-Lau coefficients, which
are the central quantities for describing the interference
effect,

(18)

We note that at integer values of the argument ¢ the phase factor in (18) reduces to a constant sign, while p has the meaning
of an incident momentum and v has that of a scale factor, as will be seen below.
By using the generalized Talbot-Lau coefficients the density distribution at the third grating takes the explicit form

w3(x)=é > Anexp{2ﬂ'i<m+ni)f] d—pexp[—Zﬂ'iﬁ(nm+(7/+l)ni”D(ﬂ)Bm(n(m+ni)£;p,ni).

dl d P

m,n=—0o

This expression for the interference pattern is now further
simplified by identifying the Talbot-Lau resonance condition.

3. Resonance condition

Only a part of the double summation in (19) contributes
appreciably to the interference pattern. This follows from the
fact that the ratio L/d of grating distance to grating period is
a large number, typically on the order of 10°. As a result, the
momentum dependence of the phase factor in (19) occurs on
a very different scale compared to the variation of the mo-
mentum distribution D(p/p.) and of the Talbot-Lau coeffi-
cients B,,(&;p,v). In fact, in the idealized case of both a
completely incoherent illumination and an eikonal interac-
tion the latter two functions are independent of p, so that the
momentum integral is finite only if the phase vanishes iden-
tically, i.e., for

77m+(7]+1)in:0. (20)

d
It would imply that an interference pattern is observed only
if (p+1)d/(nd,) is a rational number.

This strong resonance condition gets relaxed if we ac-
count for the weak momentum dependence of the remaining
integrand in (19). We assume that those index pairs (m,n) of
the double sum contribute appreciably where the phase
variation in the momentum integration does not exceed about
. Since the value of |p|/p. is bounded by the angular spread
a this leads to the relaxed condition

1d
g __’
2a L

n+ld r

21)

n d; s
Here r and s are natural numbers without common divisor.
They indicate the type of resonance and specify the set of

pd

d dy/ Ly d

(19)

P

index pairs (m,n) € {(r€,s€): € € 7} contributing to the sum.
If « is about 1 mrad and L/d=10’ the right-hand side of
(21) is on the order of 1072, and in practice only a single
resonance dominates for each set of parameters d, d;, 7. The
expression for the interference pattern thus simplifies to

1 < ¢ d
W3(X)=E > A; exp<277id—x) f p—pD<£>

{=—00 3 24
d L d
X B\ s€——;p,—s€—|. (22)
d\ Ly d
Here, the period of the interference pattern is given by
dy= (1 i>_1 (23)
T\d a,)

Note that a large interference contrast is obtained for the
low-order resonances (with small values of the integers r and
s) because the Fourier and Talbot-Lau coefficients A,,,B,,
generically decrease with their order m.

The standard choice in experiments is to take equal grat-
ings, d=d;, in an equidistant configuration, n=1. This cor-
responds to the r:s=2:1 resonance. One may obtain even
larger contrasts with =1 by using the basic r:s=1:1 reso-
nance, at the expense of dealing with different gratings,
d;=2d.

023612-5



STEFAN NIMMRICHTER AND KLAUS HORNBERGER

Also magnifying or demagnifying interferometers can be
realized [25]. Consider, for example, the case where the first
two gratings are equal, d=d,. The period of the interference
signal is then given by d3=d/(r-s) and cannot thus be
greater than d. The condition r/s=(7n+1)/ 7 with >0 im-
plies that r must be strictly greater than s. If one wishes to
decrease ds, one must choose r—s=2 which requires 7<<1,
i.e., a compressed setup. However, the values of r and s grow
with decreasing ds so that the visibility of the resulting in-
terference pattern decreases significantly. A magnifying inter-
ferometer, on the other hand, can only be realized with dif-
ferent gratings d # d;.

If the aim is to create a high contrast interference pattern
with a specific period d; a low-order resonance should be
taken, such as r:s=2:1 or r:s=1:1. The experimental setup
parameters (7,d,d;) must then satisfy the equations

(n+1)d=rd;, (24)

ﬂdl =Sd3 (25)

with desired resonance parameters (r,s,ds). The solution is
not unique, in general, so that one has a certain freedom to
account for experimental limitations.

C. Talbot-Lau effect in eikonal approximation

The expression for the interference pattern can be further
simplified if the grating interaction is treated in eikonal ap-
proximation. The grating coefficients (17) turn then into the
momentum-independent Fourier coefficients b; of the trans-
mission function (7). Similarly, the generalized Talbot-Lau
coefficients (18) then reduce to the basic coefficients given in
Eq. (9) so that the prediction for the density pattern (19)
simplifies to the series

w3(x):é > AeBm( (m+€dd)L)

€,m=— LT
~( 2L d
XD(%(nm+(77+l)€d—l>)
d
Xexp[Zm’(m+€—)£] (26)
d,/)d

It involves the Fourier transformation of the angular distri-

bution,
— d .
D(w) = f —pD<£>e"“"’/”f. (27)
p. \p.

In the case of a very broad momentum distribution this char-

acteristic function D can be replaced by a Kronecker-6 func-
tion, which yields the basic result [25,26]

L
E AMBM(M il )exp(Zm’t’d%). (28)

{)__m

wi(x) =

The comparison with Eq. (8) shows clearly that Talbot-Lau
interference is based on the Talbot effect, both described by
the Talbot-Lau coefficients defined in (9).
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It should be emphasized, though, that in order to establish
that an observed fringe pattern is really due to a quantum
effect one must compare the quantum prediction with the
result of the corresponding classical calculation. This is nec-
essary since a classical moiré-type shadow pattern might
give rise to a similar observation, even tough the classical
contrast is typically much smaller. It is shown in the Appen-
dix how the classical treatment can be formulated in the
same framework as the quantum case using a phase-space
description.

Finally, since Eq. (28) assumes the resonance condition to
be exactly met, it cannot be used to assess the adjustment
precision required in the experiment. As shown in the next
section, one can evaluate the necessary precision in the eiko-
nal approximation by explicitly taking into account the finite
transverse momentum spread and the finite size of the signal
detector.

D. Adjustment requirements

In order to allow for deviations from the exact resonance
condition we use Eq. (26) when evaluating the expression for
the detection signal. According to Eq. (13) the detection sig-
nal S(x,) is then characterized by the Fourier coefficients

W s d\L
Sn= A, 2 AfB,,,< <m+€d) )

{,m=—x LT
- 1
><D(27TL<17m+ /A f))
d d,
) m { n
><smc[77W<—+———>]. (29)
d d, d

Here, the A, are the Fourier expansion coefficients of the
third grating profile |#;(x)|*> with the period d;. Consider now
small deviations (SL, 87, &d, , &d, &d;) from the setup param-
eters (L, 7.,d,,d,d;) satisfying a particular Talbot-Lau reso-
nance condition r:s. The distances L;=L and L,=7L can
thus vary independently. Instead of approximating the char-

acteristic function D by a Kronecker-6, we account for the
small deviations by the refined approximation D(w+¢)

~ 5(”!05(8). It holds as long as the main argument w is either
zero or much greater in modulus than the width 1/, and as
long as e<1/a.

One can thus split the argument of D in (29) into the ideal
resonance part w and in the part & containing the parameter
deviations. The same procedure may be done with the sinc
term, which is sharply peaked if the detector size W exceeds
the period d by orders of magnitude. If the small parameter
deviations are taken into account to first order one obtains
the same resonance relation for the summation indices in
(29) as in the ideal case, while the nth Fourier expansion
coefficient of the signal (with respect to the period d;) is
multiplied by the reduction factor
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~(2msnL| 6L 67 o6d od,
R,=D ———+(p+ | —=-—
dl L n d d]

, Wan[&ll &d 1(5013 M)}
Xsimey ——— | —— ——+—| ——— .
dl dl d n d3 d

(30)

The absolute value of this factor is less than 1 for n# 0 so
that the contrast of the detection signal is effectively reduced
by the deviations. In particular, the sinusoidal visibility (14)
of the signal is reduced by the factor R,. Typical experiments
[20-22,25] are characterized by W/d=~10% L/d=~10°, and
a=~1073 so that already relative parameter deviations on the
order of 0.1% strongly affect the interference contrast.

To obtain a simple and conservative estimate we treat all
imprecisions as independent, specializing to the standard
case r:s=2:1, where the grating distances and grating peri-
ods are equal. Bounds for the adjustment precisions are then
obtained from Eq. (30) by requiring the arguments to be
smaller than the widths of the momentum distribution and of
the sinc function, respectively,
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This quantifies to what degree a better collimation of the
beam and a smaller detector size relax the required adjust-
ment precision, albeit at the expense of a loss of signal.

III. EFFECT OF THE INTERACTION POTENTIAL

The preceding section showed how the general coherent
state transformation effected by a diffraction grating enters
the Talbot-Lau calculation via the generalized grating coeffi-
cients (17). In general, this transformation is determined by
the potential V(x,z) due to the long-range dispersion forces
acting on the beam particles while they pass the grating
structure.

Before we present a general way to account for the pres-
ence of this potential in Sec. IV it is helpful to discuss the
most important grating-particle interactions in a simpler
form, by using the eikonal approximation. It treats the grat-
ing as the combination of an absorption mask and a phase
modification, and it can be characterized by a grating trans-
mission function

tx) = |f(X)|eXP<— =z f sz(x,z)), (33)

hp.
whose amplitude |#(...)|—{0,1} describes the grating struc-
ture. Interaction-free gratings are modeled by a grating trans-
mission function without phase, #(x)=|¢(x)|, while pure phase
gratings, such as the standing laser field, wave are character-
ized by |t(x)|=1. The corresponding eikonal interference
pattern is then obtained immediately as described in Sec.
Inc.
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We proceed with a short overview of the typical grating
potentials, discussing how they affect the interference con-
trast in the eikonal approximation. By convention, the dif-
fraction grating is located at the longitudinal position z=0, as
indicated in Fig. 1.

A. Material gratings

A neutral particle located within the slit of a material grat-
ing experiences a potential determined mainly by the attrac-
tive dispersion forces due to the grating walls. Other forces,
such as the exchange interaction or the electrostatic attraction
due to a permanent dipole, are much less important for inter-
ferometry because they either occur only at very close dis-
tances or because they are diminished by rotational averag-
ing. In any case, for all positions within a slit the walls are
well approximated by an infinite surface in the yz plane
[35,36]. The grating potential is thus set to be solely x de-
pendent and acting only within the time of passage ¢
=mb/ p, throughout the grating of thickness b, while it is set
to be zero outside.

In general, the dispersion force between a polarizable par-
ticle and a material plane is described by the expression of
Casimir and Polder [23] and its generalizations, e.g., [37,38].
In the close distance limit it reduces to the van der Waals
potential V(x)=—C;/x>, with x the distance to the surface,
and at large distances, where retardation plays a role, one has
the asymptotic form V(x)=-C,/x*. The interaction constants
C5,C4>0 are determined by the frequency dependent polar-
izability of the particle (as well as the dielectric function of
the grating material), and the regime of validity of the limit-
ing forms is delimited by the wavelengths corresponding to
the strong electronic transitions [36,39,40].

In any case, the dispersion force diverges on the grating
walls, rendering the eikonal approximation invalid in close
vicinity to the walls. Since the contributions of these regions
do not alter the interference contrast appreciably, but lead to
numerical noise, we will discuss a reasonable criterion to
blind out the beam close to the grating walls in Sec. IV.

Figure 2 shows the interference visibility (14) for a typi-
cal Talbot-Lau experiment with C;, fullerene molecules of
mass m=_840 amu [20], plotted versus their de Broglie wave-
length. All gratings are assumed to be separated by the dis-
tance L=22 cm and to be made of gold with a period of d
=991 nm, a slit width of 476 nm, and a thickness of b
=500 nm. One can see two peaks corresponding to the first
and second Talbot order, at A\=4.5 pm and at A=9.0 pm, re-
spectively. The solid line represents the eikonal approxima-
tion with a retarded asymptotic potential (C,=3hcay/8m
with the static polarizability a,=96.7 A3 obtained via the
Clausius-Mossotti relation [41]), while the dashed and the
dotted lines correspond to the van der Waals potential (Cj;
=10 meV nm?) and to the absence of an intraslit potential,
respectively. One observes that the presence of the dispersion
forces changes the interference characteristics significantly.
The asymmetry in the double-peak structure compared to the
interaction-free case is due to the fact that the particles with
a larger velocity, i.e., with a smaller wavelength \, receive a
smaller eikonal phase than the slower particles. Moreover,
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FIG. 2. Talbot-Lau visibilities (14) for the equidistant setup with
three material gratings [20] as a function of the de Broglie wave-
length of the interfering C;, fullerenes. At the second grating we
assume no dispersive interaction (dotted line), a van der Waals in-
teraction (dashed line), and a retarded van der Waals interaction
(solid line). The dashed-dotted line represents the classical calcula-
tion with a retarded interaction. It depends on the fictitious “wave-
length” N=h/(mv,) via the velocity v, because the interaction time
is velocity dependent.

note that the effect of retardation has a small but visible
influence on the fringe contrast.

The dashed-dotted line in Fig. 2 represents the moiré-type
effect as expected from classical mechanics. It was calcu-
lated in a phase space formulation as described in the Ap-
pendix, using the classical correspondence of the eikonal ap-
proximation with the C,-potential. As one expects, the
dependence of the classical result on the fictitious “wave-
length” N=h/(mv,), which is due to the velocity dependence
of the classical deflection, differs strongly from the quantum
results.

We emphasize that all numerical results presented in this
paper are obtained for a fixed longitudinal velocity v,
=h/(Am) of the particles. A comparison with the experiment
still requires the results to be averaged with respect to the
velocity distribution in the beam. This may pose a severe
restriction when using particles with larger polarizability be-
cause the increased dispersive interaction decreases the
width of the double-peaks seen in Fig. 2 significantly [22].
One way to avoid this is to replace the material diffraction
grating by a standing laser wave.

B. Laser gratings

Recently, a Kapitza-Dirac-Talbot-Lau interferometer
(KDTLI) was demonstrated, where the central grating is
formed by a standing light wave [22]. In the eikonal approxi-
mation the phase of an incoming plane wave is modulated

PHYSICAL REVIEW A 78, 023612 (2008)

according to the potential created by the off-resonant inter-
action with the standing laser beam. It is determined by the
energy of the induced electric dipole in the oscillating field,
and is therefore proportional to the laser power P; and to the
dynamic polarizability «, of the beam particles at the laser
frequency,

4PLafw

TEWCW W,

V(x,z)=- sin2< 772)(3_212/”’5. (34)

Here, wy, and w, are the waists of the Gaussian mode, and w,
is chosen large compared to the detector size in order to
guarantee a regular grating structure. We therefore disregard
the y dependence by setting y=0. Moreover, for sufficiently
small w, an effective one-dimensional treatment of the po-
tential is permissible, where one replaces the z dependence
by a parametric time dependence z=p,t/m, as discussed be-
low in Sec. IV C.

The z integration in (33) renders the eikonal phase inde-
pendent of w_, which already indicates that the elementary
eikonal approximation will cease to be valid if the laser waist
is increased. Nonetheless, it yields an interference contrast
that fits well to the measured data of the recent fullerene
experiments [22]. Moreover, it admits a simple, closed ex-
pression for the Talbot-Lau coefficients (9),

4MPLam

—
\2mheegw,p,

Bm(g):‘lm<_ sin 775), (35)

where M is the mass of the beam particles and J,, stands for
the mth-order Bessel function of the first kind [42].

The solid line in Fig. 3 shows the visibility (14) for the
Viennese KDTLI with fullerenes [22] as obtained from (35).
In contrast to Fig. 2, the visibility drops to zero whenever the
wavelength corresponds to an integer multiple of the Talbot
condition. This is explained by the fact that in the elementary
Talbot effect (10) a pure phase grating with no absorptive
walls leads to a constant density at multiples of the Talbot
length. At the same time, there are broad regions of high
contrast. They render the KDTLI setup superior to a material
grating interferometer for particles with a high polarizability
and a substantial velocity spread. Moreover, the interaction
strength and the grating period can be tuned in a KDTLI
rendering the laser grating the preferable choice to explore
the validity regime of the eikonal approximation, as done in
Sec V.

The dashed line in Fig. 3 represents the classical version
of the eikonal calculation as described in the Appendix. Note
that it differs significantly from the quantum result in the
experimentally relevant wavelength regime, while the curves
become indistinguishable for A — 0. Finally, it should be em-
phasized that a realistic description of the laser grating must
also account for the possibility of photon absorption. The
effect of the resulting transverse momentum kicks can be
incorporated into the eikonal approximation by replacing the
grating transformation kernel by a probabilistic sum of such
kernels [22].
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FIG. 3. Fringe visibilities (14) for a Kapitza-Dirac-Talbot-Lau
interferometer [22] in the eikonal approximation. The solid line
gives the quantum result for C fullerenes, while the dashed line
represents the corresponding classical calculation (neglecting pho-
ton absorption). Here we assume a laser power of P;=6 W, a ver-
tical waist of w,=900 um, a grating distance of L=105 mm, a grat-
ing period of d=266nm, and a dynamic polarizability «,
=118 A3 corresponding to a laser wavelength of 532 nm.

IV. SEMICLASSICAL APPROACH TO THE GRATING
INTERACTION

The de Broglie wavelength is by far the smallest length
scale in the matter-wave interference experiments considered
in this paper. It seems therefore natural to use a semiclassical
approach for calculating the grating transformation used in
(16). We will show how the elementary eikonal approxima-
tion (33) can be derived from the appropriate semiclassical
formulation if a high-energy limit is taken. Moreover, one
can obtain a refined eikonal approximation, where an incom-
ing plane wave is still merely multiplied by a factor. Since
this factor depends on the transverse momentum of the in-
coming wave it renders the numerical implementation more
elaborate.

However, the main result of this section is the expressions
(66)—(68) for the scattering factor which approximates the
scattering transformation of a transverse plane wave in the
semiclassical high-energy regime. As such it permits us to
evaluate the generalized grating coefficients (17) straightfor-
wardly, see Eq. (39). As shown in Sec. V, this result outper-
forms the eikonal approximation and it may serve to charac-
terize its regime of validity. The derivation is based on the
semiclassical approximation of the two-dimensional time
evolution operator U, determined by the grating interaction
potential V(r)=V(x,z).

A. Scattering factor

We proceed to incorporate the grating interaction by
means of the formalism of scattering theory [43]. Its basic
tool is the scattering operator defined as

PHYSICAL REVIEW A 78, 023612 (2008)

S=1im UU, U9, (36)

1—00
with U§0)=exp(—ip2t/ 2mh) the free time evolution operator
for the motion in the xz plane and U, the complete time
evolution operator, which includes the grating potential V(r).
It is pertinent to use S instead of U, since the scattering
operator transforms the state instantaneously leaving the
asymptotic dynamics to be described by the free time evolu-
tion. Since the latter is easily incorporated using Wigner
functions this fits to the phase space description of Sec. II B,
where the initial beam state entering a Talbot-Lau interfer-
ometer is propagated freely to the second grating before the
scattering transformation is applied. In the expression (4) for
the grating propagator, which serves to calculate the interfer-
ence pattern (22), one may thus use the S-matrix (36) in
place of the general unitary operator U.

In the basis of the improper plane wave states {r|p)
=(2mh)~" exp(ir-p/#) the scattering operator (36) is conve-
niently described by the scattering factor

_(rISlp)
R

Notice that S acts in the Hilbert space defined on the two-
dimensional plane r=(x,z). However, as will be justified be-
low, the longitudinal motion may be separated and treated
classically so that the transformation is confined to the trans-
verse dimension, while the z coordinate turns into an effec-
tive time coordinate for a given longitudinal momentum p,.
This brings about the reduced scattering factor

O(r.p) (37)

d)(x,p) = (D(xex’pex +pe ‘)s (38)

which depends parametrically on p, and which is evaluated
at the position z=0 of the center of the diffraction grating.

The reduced scattering factor ¢(x,p) describes the phase
and amplitude modification of a transverse plane wave with
momentum p due to the grating interaction. It enters the
Talbot-Lau calculation via the Fourier coefficients (16) after
an expansion in the plane wave basis. It follows that the
generalized grating coefficients (17) are directly related to
¢(x,p) by a Fourier transformation,

dan
b,(p) = —f dxe ™4 p(x p). (39)
dJ_g»

The calculation of the Talbot-Lau interference thus reduces
to evaluating the scattering factor (38).

B. Semiclassical calculation

We proceed to calculate the scattering factor (38) by
means of the semiclassical asymptotic approximation. It as-
sumes the action of those trajectories through the interaction
region, which contribute to the path integral for its position
representation, to be much larger than 7, and the particle
wavelength to be much smaller than the scale where the in-
teraction potential changes appreciably, |[\VV|<V. These
conditions are well satisfied in the typical experimental situ-
ation if we disregard the regions very close to the gratings
where the potential exceeds the kinetic energy. We may thus
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approximate the time evolution operator in the position rep-
resentation by the semiclassical van Vleck—Gutzwiller propa-

gator [44],
1 \/ (ﬁzSt(r,ro)> 7
(r|U,Jro) = Py ‘ det —&r&ro

ol E500)
(40)

Here, S, is the action of the classical trajectory traveling dur-
ing time 7 from the position r, to r. In general, there might be
more than one such trajectory, which would require taking
special care of almost coalescing trajectories and of the as-
sociated Morse index. However, in the interferometric setup
we are in the high-energy regime, where the interaction po-
tential is much weaker than the energy of the incoming par-

acterized by a single, slightly deflected classical trajectory
passing the interaction region.

PHYSICAL REVIEW A 78, 023612 (2008)

It is now convenient to specify this trajectory in terms of
the deviation from the undeflected straight line, as specified
by the initial position r, and momentum p,. The momentum
change after time 7 is given by

Ap/(ro.po) = fot drVV(r,(ro.po)), (41)

so that the deflected trajectory reads as
r(ro.po) =ro+ n%l’o + f(: %APT(rO’pO)’ (42)
p(ro.po) =po+ Ap,(ro.p). (43)

In the van Vleck—Gutzwiller propagator (40) the contributing
trajectory is specified by the boundary values r, and r. For
the following calculation it is important to rewrite it as an
initial value problem, specified by the initial phase space
point (ry,po) of the trajectory [45]:

1 dr,(ro.po)
<"|Ut|"o>—2 7 dzpo\/‘det(%

) ‘ or - r,(ro,Po))eXp< isz("o’l’o)) : (44)

fi

Plugging this into the expression (36) for the two-dimensional scattering operator yields a semiclassical approximation for the

scattering factor (37),

drod’py \/ oyl o,po>) ( i )
r,p)=lim — -0 , . 45
(r.p)= Tlfolo T f f (271%)2 €xXp 7 27(ro.po) (45)
The phase of the integrand is given by the action-valued function
m 2 )4
O21(ro.po) = Sarlro.po) = 5 (r =rog(ro.po)) =p - \r-ro— T}, (46)
2T 2m
|
while the amplitude is determined by the stability determi- as, r ar, T
nant of the associated trajectory. P =l o b (49)
Polr, Polr,

The semiclassical van Vleck—-Gutzwiller propagator (40)
used here is a stationary phase approximation of the time
evolution operator in the path integral formulation [44]. To
remain at a consistent level of approximation it is therefore
necessary to evaluate the phase space integral in (45) in the
stationary phase approximation as well [46]. The stationary
point of the phase ©,; is determined by the condition

90,7
b

( 90,7
Py 8pO

dar

) =0. (47)

Noting the initial value derivatives of the classical action

as,| \T ar,
P —po+| &
. aro

T
) P (48)

and using the fact that the matrix dr,;/dp, is invertible for
our trajectories, the stationary phase condition leads to the
equations

T
r=ry(ro.po) - ZI’zT("o,Po), (50)

P =po- (51)

They serve to determine the initial position ry(r,p) of the
trajectory implicitly. Using the general formula for a four-
dimensional integral, e.g., [Eq. (A.30) in [47]], the two-
dimensional scattering factor (45) then takes the form
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FIG. 4. Sketch of the stationary phase conditions for the semi-
classical scattering factor ®(r,p) defined in (52). While the mo-
mentum p fixes the asymptotic initial momentum p,, of the classical
trajectory, the initial position r( is determined implicitly by the
spatial point r. The latter defines the asymptotic final position 7, of
the trajectory by means of a free evolution determined by the
asymptotic final momentum p,7. For interaction potentials that ad-
mit a scattering theory description this construction guarantees that
the action (46) and the stability amplitude (53) converge as T— .
The range of the scattering potential is indicated by the shaded area.

d(r,p) = }mﬂc Azr("o(",P),P)CXP<é®2T("0("7P)7P))-

(52)
The amplitude modification
ryr(ro.po) mﬁ?]’zr("ml’o)) 2
A>i(ro,po) = | det -—
21(ro.po) ‘ ( org T o
(53)

is obtained, in a tedious but straightforward calculation, by
using the Poisson relation between the conjugate variables r,
and p, of the trajectory [48] when evaluating the product of
two determinants. The matrix of derivatives in (53) can be
computed by taking the initial value derivative of the equa-
tion of motion for the trajectory and solving the resulting
ordinary differential equation.

Figure 4 shows how the stationary point can be under-
stood from the point of view of a classical scattering trajec-
tory. Given the phase space coordinates r,p determining the
matrix element of the scattered plane wave, the momentum p
fixes the initial momentum of the classical trajectory passing
through the interaction region. The position r determines the
final position r,; of the deflected trajectory, which is ob-
tained after a free motion during time 7 in a direction given
by the final momentum p,; of the trajectory. This free evo-
lution ensures that the associated action (46) and stability
amplitude (53) is independent of 7T in the limit 7— o°. Note
that Fig. 4 overemphasizes the effect of the potential, since in
all interferometrically relevant situations the deflection of the
classical trajectories will be only a small correction to the
free rectilinear path.

The limit in the semiclassical result (52) is obtained al-
ready at a finite time 7 if the interaction potential may be
considered to have a finite range. The relevant scale is the
grating passage time, given by t=mb/p, for material gratings

PHYSICAL REVIEW A 78, 023612 (2008)

and r=mw,/p, for laser gratings, respectively. This follows
from the fact that outside of the grating potential the classical
trajectories remain rectilinear, so that neither the stationary
phase condition (50) nor the stationary phase ®,; and am-
plitude A,7 are affected by a further increase in 7.

C. Iterative solution in the momentum deflection

We will now give explicit approximate solutions for the
semiclassical scattering factor (52) which are valid in the
high-energy limit, i.e., whenever the longitudinal kinetic en-
ergy pf/ 2m of the incoming particles is large compared to
the interaction potential |V(r)|. In general, one must solve
Eq. (50) for the initial value r,. Rewriting it in terms of the
expressions (42) and (43) for the positions and momenta of
the trajectory, one obtains an implicit equation for ry(r,p)
which may be solved iteratively,

T T
ro(r.p) =r ——p + —Apy(ry(r.p).p)
m m

2T
d
- f Ap o0 ). (54)

0

1. Glauber eikonal approximation

In the semiclassical short interaction time and high-energy
limit, which applies to typical interference experiments, the
transverse momentum deflection Ap,; is so weak that its
contribution can be neglected. This corresponds to the
zeroth-order solution of Eq. (54),

rg))(r,p) =r-— Zp. (55)
m

In order to keep the approximation consistent one must ne-
glect the deflection in the expressions for the phase modifi-
cation (46) and for the amplitude modification (53) as well,
by setting the classical trajectory to be the free rectilinear
path. Consequently, there is no amplitude modification and
the scattering factor (52) reads as

O(rp) = exp{— ;_if“ dtV(r + In—Zt)] .

This is the Glauber eikonal approximation obtained by
Glauber from the Lippmann-Schwinger equation in a quite
different argument [28]. The reduced scattering factor (38)
for the transverse dimension then reads as

d(x,p) = exp|:— %f sz(x + fz,z)] . (57)

The elementary eikonal approximation (33) follows from this
expression in the limit of vanishing transverse momentum,
p—0. It applies in the case of a well-collimated beam and a
small grating thickness b, i.e., |pb/p,|<d.

(56)

2. Deflection approximation

The Glauber eikonal approximation ceases to be valid as
the interaction strength or interaction time increases, and one
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must go to the first order in the momentum deflection Ap, when evaluating the stationary initial value (54),

T T T T qr T
r(r,p)=r- p+ ;Mm(r - ;p,p) - f ;Apt(r - ;p,p> : (58)
0

The higher-order terms, which are neglected here, involve derivatives of the momentum deflection Ap,;.
The time-evolved trajectory starting from this initial value is approximated, again to first order in Ap,, by

T T T T qr T
r(ry(r.p).p) = rt(r - n—ip,p> + n_/lAPZT(r - n—ip,p> — f ;Apr(r - n—qp,p>. (59)
0

This trajectory must be used when calculating the action (46) in order to ensure that all expressions are evaluated to the same
order in the deflection Ap,. Since this holds also for the time integral [dtV(r(ry,p)), a first-order Taylor expansion of the
potential is required. In total this yields

2T 2T 2T
T 1 T T dt T
Oyr(r.p) = - f dtV<r,<r - —p,p)) + o f thP?(r - —p,p> - Apzr(r - —p,p> J —Apt<r - —p,p>
0 m 2mJ, m m 0o m m

T T
+ o Ap%T(r - —p,p). (60)
m m

On the other hand, when evaluating the amplitude (53) the zeroth-order solution of the initial value (55) must be used instead
of (58) because the classical equation of motion for the matrix of initial value derivatives (dr,/ dry,dp,/ dry) is governed by the
derivative of the interaction force rather than by the force itself. Accounting for the modification (58) in calculating the
stability determinant would therefore amount to a higher-order correction in the momentum deflection. It follows that the

amplitude factor is consistently approximated by

-1/2

Ap(r.p) =

0

3. Separation of the longitudinal motion

Based on the deflection approximation of the stationary
scattering factor we may now derive a reduced scattering
factor (38) that can be incorporated into the one-dimensional
Talbot-Lau calculation and that significantly extends the va-
lidity regime of the eikonal approximation. It is necessary for
this purpose that the longitudinal motion remains unaltered.
To a very good approximation this is indeed the case for the
small trajectory deflections required above in the deflection
approximation. This is due to the energy conservation during
the scattering process, ensuring (p+Ap,7;)>=p> where p
=(p,p.) is the incoming momentum and Ap,; is the total
deflection (41). It follows that a small transverse deflection
Ap,7<p, yields in a well-collimated beam, |p|<p., a total
longitudinal deflection Ap_,r=p/p ,Ap,y which is much
smaller than Ap,;. The longitudinal part of the classical tra-
jectory (59) may thus be treated as a free motion with con-
stant momentum p.,

P; )4
2(rrp).p) =2+ =(t=T) + O(Apzr—)- (62)
m P:

This reduces all of the vectorial quantities in the semiclassi-
cal phase and amplitude modification to the transverse scalar
quantities.

In addition, one can now remove the longitudinal motion
altogether from the scattering description by switching into a

det( dryr(r=pTimp) T dpayr(r—pTim.p)

(61)

m 071‘0 )

comoving frame with velocity v,=p./m. It is convenient to
redefine the transverse components of the classical transverse
trajectory so that they start at -7,

t
Aﬁt(x»P) == f dTaxV<fT(x’p)’&T) s (63)
-T m
t
d
ft(x’p) =x+ Bt - f _TAP_T x$p)’ (64)
m _rm
pdx.p)=p+Ap,(x.p). (65)

These are the scalar analogues of (41)—(43) but for the shift
in the time coordinate by -7, which accounts for the
asymptotic initial condition of the free longitudinal trajectory
(62).

We can now state the result for the reduced scattering
factor ¢p(x,p)=P(xe,,pe +p.e.) to first order in the momen-
tum deflection,

$x.p) =a<x,p>exp<£a<x,p>). (66)

The amplitude is given by
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12
. (67)

) _ T _
a(x,p) = }lm a,%r(x,p) — %ﬁxpr(w)

while the phase can be simplified as

T
0(x,p) =— lim f a’t{V(f,(x,p),&t)
T m

T—»

t
- —ﬁxV<f,(x,p),&t>f
m m /),

T

dT&xV<fT(x,p) , % T) ] .
(68)

Here x,(x,p) is the classical one-dimensional trajectory of a
particle starting, at t=—7, with momentum p at the position
x—pT/m. It evolves in the effectively time-dependent poten-
tial U,(x)=V(x,tp./m). The associated momentum is p,(x,p).
It is easy to see that the limits in (67) and (68) exist for
sufficiently short-ranged potentials. In particular, if the scat-
tering potential has a finite extension the limit is reached
already at finite times 7, once the longitudinal distance 27v,
is larger than the size of the interaction region.

The reduced scattering factor (66) constitutes a significant
improvement over the eikonal approximation used so far, as
will be demonstrated in the next section. Compared to the
elementary eikonal approximation (33) and to the Glauber
eikonal result (57), this expression not only provides the con-
sistent incorporation of the deflection into the phase, but it
also introduces an amplitude modification of the scattered
wave.

V. NUMERICAL ANALYSIS

We proceed to analyze the numerical performance of the
semiclassical scattering factor (66) as compared to the
Glauber eikonal approximation (57) and to the elementary
eikonal approximation used so far in evaluations of the
Talbot-Lau effect. We will see that the elementary eikonal
approximation was appropriate in the molecular matter-wave
experiments performed to date [20,22]. At the same time,
both the Glauber and the semiclassical approximation sig-
nificantly improve the treatment of laser gratings if the par-
ticles have larger polarizabilities or smaller velocities (as re-
quired if their mass is increased).

According to the general theory from Sec. II B the inter-
ference pattern (22) is determined by the generalized,
momentum-dependent grating coefficients (39) via the scat-
tering factor (38). In order to assess the validity of the dif-
ferent approximations it is therefore pertinent to evaluate the
scattering factors directly and compare them to a numerical
implementation of the exact propagation of a plane wave
through the grating interaction region.

A. Scattering factor

The exact transverse scattering factor (38) for the grating
can be obtained by a numerical evaluation of the limit
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FIG. 5. Phase difference of the semiclassical (solid line) and the
eikonal approximation (dotted line) to the exact result, plotted ver-
sus the distance to one grating slit wall. We use grating and particle
parameters as in Fig. 2 (corresponding to the fullerene experiment

[20]).

(U QUL UG p)

) (69)

¢(x,p) = lim

T—x

In practice, this is done by computing the propagator matrix

elements by means of a split operator technique [49,50],

making sure that the propagation time 7 is sufficiently large

(much larger than the grating passage time) so that the result

is converged. In the following examples we use periodic

boundary conditions for the position coordinate x and a fixed

transverse momentum p not larger than the typical beam
spread 10~3p..

1. Material grating

We first take the grating to be of material type with a
retarded Casimir-Polder interaction potential. Figure 5 shows
the phase differences between the approximate scattering
factors and the exact scattering factor as a function of the
distance to the wall. The calculations were done for a de
Broglie wavelength of A=4 pm. Moreover, we choose an
orthogonally incident plane wave, p=0, so that the elemen-
tary and the Glauber eikonal approximations coincide. They
are given by the dotted line, while the solid curve corre-
sponds to the semiclassical approximation (66).

As one observes in Fig. 5, the divergence of the wall
potentials invalidates the approximations for the scattering
factor close to the walls. However, the contributions from
this small vicinity of the slit walls do not affect the interfer-
ence visibility appreciably, since it corresponds only to a
small fraction of the semiclassical trajectories. This suggests
that a reasonable cutoff criterion is given by the critical dis-
tance x, to the wall, where a classical beam particle would
hit the wall within the grating passage time t=b/v,. Disre-
garding the initial transverse momentum p and the potential
of the opposite wall, the time for a particle starting at the
distance x, to hit the wall is given by

m [0 1
T = - dx’,= .
2J)y  N-V(x)

For a wall potential V(x)=—C,x™* this leads to the critical
distance

(70)
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( 18mC4b2) 6

71
2 (71)

X, =

The parameters used for Fig. 5 yield x.=21 nm, and this
value indeed corresponds to the position where the semiclas-
sical and the exact phase deviate by about 27r. The fact that
the eikonal approximation is virtually identical to the exact
phase factor for most of the slit width explains why the ei-
konal approximation is well justified with thin material grat-
ings. In fact, our numerical results indicate that in this case
the eikonal approximation remains valid even for particles
with a stronger particle-wall interaction, breaking down only
in a regime where the interference visibility is already
strongly diminished by the interaction effect. We therefore
focus on the KDTLI setup in the following.

As a final point, we note that the opening width of the
slits is effectively reduced by 2 times the critical distance x,.
For large and slow particles it may be necessary to take this
into account even at the first and at the third grating, since
the fringe visibility depends quite sensitively on the corre-
sponding effective open fractions.

2. Laser grating

Replacing the diffraction grating by a standing laser wave
leads to the smooth and bounded interaction potential (34).
For the numerical evaluation of the scattering factor, shown
in Fig. 6, we choose the same parameters as for Fig. 3
(motivated by the experiment [22]) and choose A=3 pm. The
longitudinal laser waist w,=20 wum is much larger than the
grating period d=266 nm. It follows that nonzero transverse
momenta p # 0 now must be considered separately since the
free transverse motion over the distance w_p/p, must not be
neglected.

Figure 6 shows how the phases of the approximate scat-
tering factors deviate from the exact phase. Panel (a) corre-
sponds to a perpendicular incidence of the incoming plane
wave, p=0, while (b) is evaluated for p=10~>p_, as found in
a beam spread of 1 mrad. The Glauber and the elementary
eikonal approximation coincide in the case (a) of perpen-
dicular incidence, and they deviate from the exact phase by
about 1 mrad. The error of the semiclassical phase is smaller
by three orders of magnitude, and it is not resolved in the
plot. On the other hand, in the case (b) of a nonzero trans-
verse momentum the elementary eikonal approximation de-
viates substantially from the exact result, while the error for
the Glauber approximation remains on the order of 107> and
the semiclassical one on the order of 107 (not resolved in
the plot).

As for the corresponding amplitude of the incident plane
waves, the exact calculation yields deviations from the inci-
dent amplitude 1 on the order of 107° in case (a) and devia-
tions on the order of 107 in case (b), respectively (not
shown). While the eikonal approximations cannot account
for this effect, the semiclassical amplitude (67) reproduces
the exact result with an error of less than 1078, and 107,
respectively.

The semiclassical expression of the scattering factor is
thus demonstrated to be superior by orders of magnitude
compared to the eikonal approximations. While the Glauber
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FIG. 6. Phase difference with respect to the exact scattering
factor over one period d=266 nm of the laser grating (parameters as
in Fig. 3, with A\=3 pm, corresponding to the experiment [22]).
Panel (a) shows the results for an incoming plane wave with van-
ishing transverse momentum, p=0, while (b) corresponds to p
=10"2p,. The solid line gives the error of the semiclassical approxi-
mation, which is not resolved on the scale given by the errors of the
Glauber approximation (dashed line) and the elementary eikonal
approximation (dotted line). The latter are indistinguishable in (a);
notice the different scales of the y axes.

eikonal approximation already improves the elementary ei-
konal approximation significantly, it still does not take the
amplitude modification into account. However, the overall
corrections to the eikonal approximations are so small in the
present parameter regime that the Talbot-Lau interference
contrast is hardly affected, as demonstrated below. The el-
ementary eikonal approximation thus remains valid for the
considered experiment [22].

The situation changes distinctively if the de Broglie wave-
length is increased by a factor of 10, to A=30 pm. The re-
sulting phase difference and amplitude plots are shown in
Fig. 7 for the case of a transverse momentum p=10"3p..
Now both the Glauber and the elementary eikonal phase
strongly differ from the exact result, as demonstrated by the
dashed and the dotted curves in Fig. 7(a). At the same time,
the semiclassical result (solid line) deviates by less than
100 mrad from the exact phase, and also the corresponding
amplitude, seen in Fig. 7(b), faithfully approximates the ex-
act one.

The semiclassical expression (66) starts to fail only if we
decrease the beam velocity to such an extent that the trajec-
tories get strongly deflected during the increased passage
time. This is expected since the derivation assumes the cor-
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FIG. 7. (a) Phase differences with respect to the exact calcula-
tion as in Fig. 6, but for an increased de Broglie wavelength A
=30 pm and p=10~3p.. The elementary eikonal approximation
(dotted line) and the Glauber eikonal approximation (dashed line)
now differ markedly from the exact phase result, while the semi-
classical approximation (solid line) deviates by less that 100 mrad.
(b) Corresponding amplitude modification as obtained from the
semiclassical approximation (solid line) and the exact calculation
(dashed line).

rections due to deflection to be small. Equation (66) thus
extends the eikonal approximation to the smaller beam ve-
locities required for more massive particles, but it does not
cover the whole semiclassical wavelength regime.

B. Talbot-Lau visibility

We can now discuss how the improved treatment of the
grating interaction effect affects the Talbot-Lau interference
visibility. We focus again on the laser grating setup demon-
strated in [22]. In Figs. 8—10 the eikonal results are obtained
by calculating the visibility (14) by means of the Talbot-Lau
coefficients (35). The semiclassical calculation implements
the generalized formula for the interference pattern (22),
where the semiclassical scattering factor (66) enters by
means of the generalized grating coefficients (39). Note that,
unlike in the elementary eikonal approximation, it is now
essential to incorporate the angular distribution D(p/p.) into
the calculation. It is set here to be a Gaussian D(p/p.)
ccexp[—(p/p.)*/2a?] with a realistic width of =1 mrad.

One immediate consequence of the dependence of the
semiclassical and the Glauber approximations on the trans-
verse momentum is demonstrated in Fig. 8, where the inter-
ference visibility is plotted versus the longitudinal laser waist
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FIG. 8. Interference visibility as a function of the longitudinal
waist w, of the laser grating (for A=3 pm, starting from the experi-
mental value w,=20 um [22]). The dotted line gives the result of
the elementary eikonal approximation (33), while the solid curve
represents the semiclassical result (66).

w,, starting from the experimental value w,=20 um. The el-
ementary eikonal approximation (dotted line) is independent
of w, due to the longitudinal integration in (33). The semi-
classical result (solid line), which takes into account the
transverse motion through the laser field, decreases with
growing w,. While the difference between the approxima-
tions is negligible at the experimental value, it becomes sig-
nificant for a larger laser focus. The Glauber approximation
reproduces the semiclassical result up to a precision of 107*
and is therefore indistinguishable from the solid line Fig. 8.
This implies that the visibility loss with growing waist is due
to the free transverse motion through the laser grating, rather
than due to a considerable deflection of the trajectories.

A similar result is presented in Fig. 9, where we increase
the laser power starting from the experimental value P;
=6 W. This is equivalent to increasing the polarizability of
the particles, see (34). One observes that the semiclassical
result (solid curve) decreases more rapidly than the eikonal
visibility (dotted curve) as the strength of the phase grating is
increased. The Glauber approximation again matches the
semiclassical curve.

visibility
o o o
w - (4]

o
)

e
o

10 20 30 40 50 60 70 80 20 100
laser power (W)

FIG. 9. Fringe visibility as a function of the laser power Py,
starting from the experimental value P;=6 W [22]. For consider-
ably larger powers, or, equivalently, for larger polarizabilities of the
particles, the elementary eikonal approximation (dotted line) devi-
ates markedly from the semiclassical result (66).
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FIG. 10. Talbot-Lau interference visibilities for the laser grating
setup [22] with C,, fullerenes. We use increased de Broglie wave-
lengths corresponding to velocities around v.=16 m/s [51]. The
semiclassical approximation (solid line) yields values which are
clearly distinguishable from the Glauber eikonal approximation
(dotted line). The elementary eikonal approximation differs more
strongly.

Finally, in Fig. 10 we present the interference visibility as
a function of the de Broglie wavelength N\ around 30 pm,
corresponding to a tenfold smaller beam velocity than in the
experiment. In this case one observes at some wavelengths a
considerable difference between the Glauber eikonal ap-
proximation (dotted line) and the semiclassical approxima-
tion (solid line).

Note that the sharp dips, where the visibility drops to zero
in Fig. 10 and Fig. 9, indicate a shift of the interference
pattern by one-half of its period. One must take this into
account when averaging the visibility over the velocity dis-
tribution of the particle beam. For example, if this distribu-
tion was so broad that it amounts to averaging over two
subsequent peaks in Fig. 10 it would lead to almost zero
visibility.

We have seen that in general the validity of the eikonal
approximation depends on the grating interaction strength,
the passage time, the longitudinal velocity, and the distribu-
tion of the transverse momenta in the particle beam. For the
specific experiment [22] the elementary eikonal approxima-
tion breaks down by either decreasing the longitudinal veloc-
ity by a factor of 10, or similarly by increasing the laser
power P;, the longitudinal waist w,, or the particle polariz-
ability by an order of magnitude. The latter are effects
mainly due to the transverse motion of the beam particles,
which is not taken into account by the elementary eikonal
approximation. Here the Glauber eikonal approximation
(57), i.e., the semiclassical scattering factor without deflec-
tion, would be already sufficient, at least in the experimen-
tally accessible regime. This is no longer the case if one
increases the wavelength, since the deflection effect is more
sensitive to the wavelength than to the grating parameters,
limiting the validity of both the elementary and the Glauber
eikonal approximation.

VI. CONCLUSIONS

We presented a general theory of the coherent Talbot-Lau
interference effect. It allows us to incorporate the interaction
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between particle and grating structure—a dominant effect in
near-field interference—at various degrees of approximation.
Our treatment shows that it is necessary to account for de-
tailed beam characteristics, such as the angular distribution,
whenever one is required to go beyond the elementary eiko-
nal approximation, or if one wants to quantify the experi-
mental adjustment requirements.

Using the phase space formulation of quantum mechanics,
we identify the appropriate generalization of the Talbot-Lau
coefficients. They serve to incorporate the most general co-
herent grating transformation and to describe the various
near-field interference effects in a transparent fashion. The
general effect of the passage through a grating can thus be
formulated in terms of scattering theory, providing a starting
point for the numerically exact evaluation of the interference
pattern.

Moreover, the semiclassical approximation of the
S-matrix yields a systematic and nonperturbative improve-
ment over the elementary eikonal approximation. An addi-
tional high-energy approximation of the semiclassical trajec-
tories then yields the Glauber eikonal approximation and the
semiclassical deflection approximation as systematic correc-
tions to the standard treatment. A comparison with the nu-
merically exact calculation verifies the high quality of the
semiclassical deflection approximation. It suggests that a
Kapitza-Dirac Talbot-Lau interferometer, where the center
grating is replaced by a standing light wave, will be able to
demonstrate the wave nature even of particles which are so
large that the eikonal approximation is no longer valid.
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APPENDIX: CLASSICAL DESCRIPTION

If the Talbot-Lau experiment is to prove the quantum na-
ture of particles one clearly needs to be able to distinguish
between the quantum interference effect and the moiré-type
shadow effect that may occur with classical particles. A for-
mulation is therefore required that yields the classical
shadow contrast by using the same assumptions and approxi-
mations as in the quantum case. We present this classical
theory in the following by assuming a material grating of
thickness b with a transverse interaction potential V(x) of the
grating slit walls. The case of an explicitly z-dependent in-
teraction potential V(x,z), such as a laser grating [22], can be
treated in the one-dimensional model by an effectively time-

dependent potential V(x,t):V(x, p.t/m), where the longitu-
dinal motion provides the time coordinate for a given mo-
mentum p..

The classical formulation is based on the phase space den-
sity rather than the Wigner function. The corresponding clas-
sical propagator through a diffraction grating is given by the
expression
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Kcl(x’Pﬂo,Po) = |I(XO)|25<)C0 - x(c)l<
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(A1)

where the hard grating wall cutoff of the particle beam is taken into account at the entrance into the grating. The phase space
coordinates xgl, pgl are the starting point of the classical trajectory evolving to x,p under the influence of the interaction

potential V(x) within the grating passage time t=mb/p..

Since the free evolution of the phase space density is given by the same transformation (2) as in the case of the Wigner
function, one ends up with the general classical shadow pattern, denoted by f3 instead of wjs, after substituting the classical
propagator (A1) into the general Talbot-Lau calculation from Sec. II B.

)4 mb
1 [ dp p(c)l(x - ; 7L-p- p_) p mb 2
[0 =~ f —D - - t(XSI(x - —nL,p,—))
GJ p. p: p- p:
2
p mb
b pB‘(X— —nL,p,—)
X\t x81<x - EnL,p,—) - Pe Py (A2)
pZ 4 pZ
I
One can numerically implement this formula directly, rather 1 ¥
than performing a Fourier decomposition with respect to the f3(x) = 5 2 A:} exp<2m'€ d_>
argument x—pnL/p, of the trajectory terms. == 3
The ideal moiré shadow pattern is obtained if one disre- o dL
gards both the interaction potential and the grating thickness X 2 Bre—k(o)ck( Sg—_). (A4)
by setting x(c)l(x, p,t)=x and p(c)l(x, p.t)=p. If a particle-wall ke=—o di Ly
interaction is present, the classical analogue to the eikonal . . .
S . . . The classical momentum kick coefficients read as
approximation (33) is to approximate the deflection of the
trajectory due to the grating by an instantaneous momentum 1 (42 ‘ mbV' (x)/p,
kick [26], c,(é) = 7 f dxe™ 2™ exp ifﬁ— . (A5)
—an /d

mb mb
pf)l(x,p,—) =p+—V'(x). (A3)
P P

Z

Setting this into the classical formula (A2), performing all of
the Fourier decompositions, and focusing on a particular r:s
Talbot-Lau resonance, as done in the eikonal quantum case
(28), one obtains the classical shadow pattern in eikonal ap-
proximation,

If the second grating is implemented by a standing laser
beam the classical calculation yields an analytical expression
for the Talbot-Lau coefficients Bf,:(g):EkBm_k(O)ck(g). They
are related to the quantum expression (35) by replacing the
sine function in the argument with its linear expansion,

4MP,a, g)
———mé].
\’E’ﬁcsow}pz

Since the argument of the B,, is proportional to the de Bro-
glie wavelength N in the Talbot-Lau interference effect, this
means that the quantum interference and the classical

shadow effect become indistinguishable in the naive classical
limit of a vanishing wavelength, A — 0.

B(&) = Jm<— (A6)
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