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We develop a Fock-space WKB method for a Bose-Einstein condensate �BEC� in a double-well trap, using
an analogy with a single particle of either positive or negative mass in a quantum potential. The usual
mean-field approach is the classical limit, and the inverse number of atoms plays the role of Planck constant.
The ground state of positive-mass particles corresponds to the mean-field fixed point of lower energy, while
that of negative mass to the excited fixed point. In the case of attractive BECs above the threshold for
symmetry breaking, the ground state is the Schrödinger cat state and we relate this to the double-well shape of
the potential in Fock space. In the repulsive case, we identify the quantum states corresponding to the mean-
field macroscopic self-trapping phenomenon. In particular, the phase-locked �� phase� macroscopic quantum
self-trapping of BECs is related to the double-well shape of the potential in Fock space. The running-phase
macroscopic quantum self-trapping state is found to be subject to quantum collapses and revivals. The phase
dispersion grows exponentially, reaching the absolute maximum just before the first collapse of the running
phase, which may explain the growth of the phase fluctuations seen in the experiment on macroscopic quantum
self-trapping.
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I. INTRODUCTION

The analytical description of a system of a large number
N of interacting bosons is a difficult problem. In the case of
Bose-Einstein condensate �BEC�, characterized by a macro-
scopic number of atoms, N�1, the usual approach is the
mean-field substitution of the boson field operators by sca-
lars, which leads to the Gross-Pitaevskii equation �1–3�. The
relation between the full quantum and mean-field dynamics
of BEC is a subject of intensive studies. Of particular interest
are the classical bifurcation and its significance for the quan-
tum spectrum �4�, quantum collapses and revivals �5�, the
many-body quantum corrections to the mean-field theory
�6,7� �decoherence�, and the correspondence between the
many-body quantum and classical dynamics in phase space
�8�. Recently, in a study of the nonlinear two- and three-
mode boson models describing BEC interband tunneling in
optical lattices �9,10�, it was found that the quantum evolu-
tion distinguishes between stable and unstable mean-field
fixed points, following the classical dynamics about the
stable points and diverging from it at the unstable ones. One
of the insights of these studies was a link between the WKB
approach for the discrete Schrödinger equation �see, for in-
stance, Ref. �11�� and the large boson limit of the few-mode
boson models.

The purpose of this paper is to study in more detail the
analytical method for boson systems based on an analogy
with the discrete WKB approach. Our approach is based on
the fact that for N�1 the s-mode boson model is equivalent
to a quantum mechanical dynamics of a single particle resid-
ing in a compact �s−1�-dimensional space. We consider the
important two-mode model describing BEC in a double-well
potential—i.e., the boson Josephson junction �see, for in-
stance, the reviews in �12,13��. This system is a subject of
fundamental experiments and has many potential applica-

tions; it was already used for observation of macroscopic
quantum tunneling and macroscopic self-trapping �14�,
whereas future proposals include also the atomic Mach-
Zehnder interferometer �15,16�, the sensitive weak force de-
tector �17,18�, and the atomic interferometer on a chip �19�.
The two-mode boson model is analogous to a nonrigid quan-
tum pendulum if one uses the phase quantization method.
For instance, this method was previously used to study the
thermal versus quantum decoherence �20�. The exact quan-
tum Hamiltonian for the model in phase space has been de-
rived in Ref. �21�.

We work in Fock space and study the relation between the
mean-field fixed points, the most important features of the
classical dynamics, and the corresponding quantum states.
In particular, we point out that there are two different
Schrödinger equations for a description of quantum dynam-
ics, corresponding to positive and negative mass of the ef-
fective quantum particle in Fock space. The approach allows
us to identify the quantum states corresponding to the mean-
field phase-locked �� phase� macroscopic self-trapping phe-
nomenon �22� as bound states of the negative-mass quantum
particle. We also show that the experimentally observed
running-phase macroscopic self-trapping �14� is subject to
quantum collapse of the running phase. For a small number
of atoms, the sequence of collapses and revivals is observed.
A rapid exponential growth of the quantum phase dispersion
precedes the quantum collapse of the running phase.

The paper is organized as follows. In Sec. II we derive
the effective particle representation of the quantum-boson
Josephson-junction model. The two reduced Schrödinger
equations for the effective quantum particle are studied in
Sec. III. In Sec. IV we study the ground state of the quantum
model. In Sec. V the macroscopic quantum self-trapping
�MQST� phenomenon is related to the negative-mass effec-
tive quantum particle. We also study the quantum dynamics
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of the experimentally observed running-phase MQST. Sec-
tion VI contains a discussion of the main results.

II. QUANTUM PARTICLE APPROACH FOR BEC IN A
DOUBLE-WELL TRAP

We consider the case of sufficiently weak atomic interac-
tion, when only the degenerate energy levels of the double-
well trap are occupied by BEC �more precisely, when the
first two energy levels are quasidegenerate, �E=E2−E1
�E3−E2=�E�. The reduced Schrödinger equation for the
system reads �see, for instance, Refs. �8,13,23� and Appendix
A�

i

N
����� = Ĥ��� ,

Ĥ � �−
1

N
�a1

†a2 + a2
†a1� +

�

N
n1 +

	

N2 �n1
2 + n2

2�	 , �1�

where ��� is the system state, nj =aj
†aj �the boson field op-

erator is expanded over the localized states 
=�L�x�a1
+�R�x�a2�, and the time is measured in tunneling time units:
�= t /T. The parameters of the model are defined as

T =
2�

�E
, � =

2�V

�E
, 	 =

gN

�E

 d3x�L,R

4 ,

�E = − 2
 d3x�L�−
�2

2m
�2 + V�x���R,

�V =
 d3x��LV�x��L − �RV�x��R� , �2�

where g=4��2as /m with as being the s-wave scattering
length, V�x� is the double-well potential in one of the coor-
dinates �centered at zero, for below�, and the localized states
�L�x� and �R�x� are given by the normalized sum and differ-
ence of the ground state and the first excited state of
the “symmetrized” double-well potential Vs�x���V�x�
+V�−x�� /2 �for more details, see the Appendix in Ref. �24�;
due to the symmetry, the integrals of the fourth power are
equal�.

Note that �V can be of the same order as �E; thus, � is
arbitrary and 	 is finite �not small�, while the applicability
condition that the interaction energy be much less than the
average trap energy spacing—i.e., 	��E /�E—is satisfied
due to the large right-hand side �rhs�.

Subtracting the quantity 	

2N2 �n1+n2�2= 	
2 , due to the total

number of atoms conservation N=n1+n2, from the Hamil-
tonian in Eq. �1� we obtain the standard representation of the
Hamiltonian for the boson Josephson junction. Our interac-
tion parameter is related to the standard parameters as fol-
lows: 	=EcN

2 /Ej �we also note that 	=
 of Refs. �14,22��.
We have divided the Schrödinger equation �1� by N and

defined the parameters by extracting the explicit N factors
reflecting the “order” of the respective boson operators �e.g.,
a1

†a1
N�. This allows us to introduce the effective quantum

particle representation of Eq. �1� �see Eq. �5� below�. It is
important to observe for the following that the physical pa-
rameters of the model are N independent in the thermody-
namic limit, which is N→� at a constant density N

V , where V
is the volume occupied by the system. Indeed, T, �E, and �
are evidently independent of N, while the nonlinear param-
eter 	
 gN

�EV since ����4
V−2.
On the other hand, the extra factor N−1 on the lhs of Eq.

�1� can be considered as an effective Planck constant; hence,
the thermodynamic limit N→� is also the semiclassical
limit. To make this clearer, let us rewrite Eq. �1� in the ex-
plicit form using the Fock basis

��� = �
k=0

N

Ck�k,N − k� , �3�

where the occupation number corresponding to the left well
is denoted by k. We get

i

N

d

d�
Ck = − �bk−1Ck−1 + bkCk+1� + akCk, �4�

with

bk = N−1��k + 1��N − k��1/2,

ak = 	N−2�k2 + �N − k�2� + �N−1k .

Introducing the continuous variable x=k /N, the analog of the
Planck constant h=1 /N and a wave function 
�x�=�NCk we
obtain Eq. �1� in the continuous-variable representation

ih��
�x� = − �e−ip̂bh�x� + bh�x�eip̂�
�x� + a�x�
�x� , �5�

with p̂=−ih�x and

bh�x� = ��x + h��1 − x��1/2, a�x� = 	�x2 + �1 − x�2� + �x .

Here x� �0,1� and p̂� �0,2�� are canonical variables, with
�p̂ ,x�=−ih.1 Note that the inner product for N�1 reads
�
1 �
2�=�0

1dx

1
*�x�
2�x�.

It is instructive to rewrite Eq. �5� in the phase quantization
representation by putting p̂→� and x−1 /2→ ih�� �the
shifted variable is more convenient�. In a more rigorous way,
one can use the transformation of the state vector Ck to the
Fourier space, given in our case by the discrete Fourier trans-
form �see also Refs. �25��,

Ck =
1

�N + 1
�
l=0

N

e−ik�lC̃l, C̃l =
1

�N + 1
�
k=0

N

eik�lCk, �6�

where �l=2�l / �N+1�. Using periodicity of the exponent we
have for N�1

1The wave function 
�x� is supposed to decay to zero at the
boundaries of the interval �0,1�, as is in all the cases in this paper.
The difficulties with defining the conjugated phase and amplitude
variables in the quantum case are well known; see, for instance,
Ref. �35�.
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�x� =
1

2�



−�

�

d�eiN�x
̃���, 
̃��� = N

0

1

dxe−iN�x
�x� ,

�7�

where 
̃��l�= �N+1�C̃l. Thus, for N�1 the Hamiltonian for
the boson Josephson junction in the � representation reads
�save an inessential constant term�

Ĥ = − 2	h2��
2 − �bh�1/2 + ih���,cos����

+ i�h�� − i�bh�1/2 + ih���,sin �� , �8�

where �¯� denotes the anticommutator. Note that the phase-
space Hamiltonian �8� is Hermitian; it reduces to the usual
nonrigid pendulum form �12,20,22� if one neglects the varia-
tion of bh�x� with respect to x. The non-Hermitian exact
Hamiltonian in the Bargmann overcomplete continuous-
phase representation was derived in Ref. �21�.

The limit of large N of Eq. �5� can be considered by the
WKB approach for the discrete Schrödinger equation �11�,
where the solution of Eq. �5� is written in the form 

=exp�iS�x ,� ,h� /h� where S�x ,� ,h� is understood as a series
S=S�0��x ,��+hS�1��x ,��+O�h2� and the terms are assumed to
be differentiable functions. In the lowest order one obtains
the Hamilton-Jacobi equation for the classical action
S�0��x ,��,

− S�
�0� = a�x� − 2b0�x�cos� �S�0�

�x
� , �9�

where b0�x�=�x�1−x�. The classical Hamiltonian thus reads

H = a�x� − 2b0�x�cos � , �10�

with the canonical variables x� �0,1� and �� �0,2��:
�� ,x�=1 �cf. with Ref. �22�, where z=1−2x�. The first-order
approximation gives the amplitude: S�1�= i

2 ln�b0�x�sin�Sx
�0���.

Let us take a slightly different approach. The most impor-
tant features of the classical dynamics are the stationary
points and their stability properties. The classical action can
be expanded about a stationary point �say, xs and �s�

S�0��x,�� = − E�cl�� + �s�x − xs� + O��x − xs�2� , �11�

where we have used that S�0��x ,��=−E�cl��+S�st��x� and
�S�st�

�x �xs�=�s. We are interested in the limit of large N. The
wave function localized about some xs point has a singular
derivative in the limit h=1 /N→0: �


�x 
 ih−1�s
�x ,�� if �s
�0. The singularity is due to the classical phase in the wave
function. Hence, before taking the limit of large N, we ac-
count for the phase explicitly, introducing the transformation
�at some xs point�


�x,�� = eiN�����x−xs���x,�� . �12�

On the other hand, the phase ���� in Eq. �12� satisfies the
evolution equation �̇=�H�xs ,�� /�x �obtained by expanding
the Schrödinger equation in x−xs and taking the limit h→0�;
hence, it is nothing but the classical phase.

To obtain a reduced Schrödinger equation about a mean-
field stationary point we substitute the representation �12�
into Eq. �5� and expand the result into series in p̂, keeping

the terms up to O�p̂2� �since the derivative is regularized, the
expansion is actually in h�. As the O�1� term we recover the
Hamiltonian �10� as the quantum potential: V0�x�=H=a�x�
−2b0�x�cos �. Since the stationary states ��x ,��
=e−iE�/h�E�x� correspond to the phase extrema of the quan-
tum potential—i.e., given by

�V0�x,��
�� =0—there are two cases:

the positive ��=0� or negative ��=�� mass of the effective
quantum particle �the detailed derivation can be found in
Ref. �26��.

III. QUANTUM MODEL ABOUT THE MEAN-FIELD
STATIONARY POINTS

The exact Schrödinger equation �5� about the stationary
points with �+=0 and �−=� reduces to

ih��� = �� p̂�x�1 − x�p̂ + V��x��� . �13�

The upper and lower signs correspond to �+ /�−, V��x�
=	�x2+ �1−x�2�+�x�2�x�1−x�, and terms of order O�p̂3�
and of order O�h� in the quantum potential and in the coef-
ficients at p̂ were neglected. In the usual population imbal-
ance variable z=1−2x, Eq. �13� reads

ih��� = ��2h2 d

dz
�1 − z2 d

dz
+ V��z�	� , �14�

where the quantum potential simplifies to

V��z� =
1

2
�	z2 − �z� � �1 − z2. �15�

The symmetry of Eq. �14� with respect to replacing “�”
leads to the following mapping between the repulsive and
attractive BEC cases:

	attr = − 	rep, zattr = − zrep,

�attr�z,�;	,��� = �rep
* �− z,�;− 	,��� . �16�

Note that it is sufficient to consider also ��0, since ��0
corresponds to inversion of the coordinate z→−z.

The equivalence �16�, however, does not mean that the
attractive BEC is similar to the repulsive BEC. As we show
below, in both cases the Schrödinger equation �14� with posi-
tive mass gives the ground state of BEC and only in the
attractive case V+�z� has the double-well form �see Fig. 1�a�
below�.

The extrema of the potential �15� solve the equation

	 �
1

�1 − z2
=

�

2z
. �17�

Consider 	�0 �repulsive BEC�, ��0. In the case of posi-
tive mass ��=0� there is just one minimum. For the case of
negative mass ��=�� there is a critical 	cr below which
there is just one solution which is a minimum of V=−V−�z�,
whereas for 	�	cr there are three solutions, two correspond-
ing to local minima and one to a local maximum; see Fig.
1�a�. Equation �17� is easily solved graphically by plotting
the lhs and rhs as functions of z; see Fig. 1�b�. The corre-
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sponding classical phase-space portrait is given in Fig. 2.
The critical value of the nonlinearity coefficient reads

	cr = �1 + ��

2
�2/3�3/2

, �18�

while the corresponding solution is the point of inflection
zcr= �1+ �2 /��2/3�−1/2. For 	�	cr two positive solutions bi-
furcate from it: z1�zcr�z2, where z1 is the local maximum
of the inverted potential −V−�z�. The local maximum solution
is an analog of the z=0 solution for ��0.

Finally, all the results obtained for the repulsive BEC are
transferred to the attractive BEC case by using the equiva-
lence given in Eq. �16�. For instance the cases of �� are
interchanged and the double-well potential of Fig. 1�a� in the
case of attractive BEC appears for �=0 �i.e., now V
=V+�−z�� and 	�−	cr=−�1+ � �

2 �2/3�3/2.
The stability properties of the stationary points of the

classical Hamiltonian are directly related to the quantum po-
tential in Fock space. One can show that the local minima of
the quantum potential �or the inverted potential, in the case
of negative mass� correspond to the elliptic stationary points
of the classical dynamics and the local maximum to a hyper-
bolic stationary point, which is a physically clear result. In
the new variables �see also Ref. �22��,

H =
	

2
z2 −

�

2
z − �1 − z2 cos � , �19�

where one must remember that �� ,z�=−2. The stationary
points of the classical Hamilton equations, ż=−2 �H

�� , �̇
=2 �H

�z correspond to the extrema of the quantum potential
V�z�—i.e., cos �s= �1—whereas zs is defined from Eq.
�17�.

IV. GROUND STATE OF BEC IN A DOUBLE-WELL TRAP

To find the ground state of BEC for N�1 one needs to
compare the zero-point energies at the extremal points
�which is the classical energies of the stationary points�. We
find that the ground state of both repulsive and attractive
BEC is given by the effective quantum particle with the posi-
tive mass �see more details, Ref. �26��.

The direct link between the classical stationary points and
the nature of the corresponding quantum states discussed in
Sec. III allows one to get the local approximation for the
quantum bound states by directly quantizing the local classi-
cal Hamiltonian. Introducing the local phase-space coordi-
nates �=�s+� and z=zs+� in Eq. �19�, up to the second-
order terms in the local variables we get

H���,�� = V��zs� +
1

2
�a��2 + b��2� , �20�

where a�=�1−zs
2 and b�=	� �1−zs�−3/2. The local quan-

tum Hamiltonian is obtained from Eq. �20� by replacing �
→2ih��, since ��̂ ,��=2ih. In the negative-mass case the
wave function 
�x , t� of BEC in a double-well trap has also
the nontrivial phase given by Eq. �12�.

Thus, we obtain the local quantum approximation to the
classical stationary state of BEC and its energy as follows:


E�
�x� =

1

�1/4��
1/2 exp�i

��

h
x −

�x − xs�2

2��
2 	 ,

E� = V��zs� + O�h� , �21�

where ��
2 = 1

2N
�a�

b�
is the Gaussian width and we have used

that �z=2�x. The energy spacing for the few lower levels
reads �E�=h��, where ��=2�a�b� is the classical fre-
quency. In the case of negative mass the energy levels of a
local quantum Hamiltonian are descending.

A. Properties of the ground state of repulsive BEC

For 	�0 we obtain the single solution of Eq. �17� corre-
sponding to the positive mass case in the form of a series in
�:

zs =
�

2
�1 + 	�−1�1 −

�2

8�1 + 	�3 + O��4�� , �22�

which is valid for a weakly asymmetric potential V+�z�—i.e.,
��1+	. The average atomic population difference between
the two wells reads �n1−n2�=zsN. By the substitution
	→−	 and zs→−zs in Eq. �22� we get the position of the

−1 −0.5 0 0.5 1
−1.45
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−0.85

−0.65
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z

V
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0
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5

z

|γ|<|γ
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|

|γ|>|γ
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|

(a) (b)

FIG. 1. �Color online� The potential for the effective quantum
particle, panel �a� �here V=−V−�z� for the repulsive BEC corre-
sponding to negative mass, �=�, or V=V+�−z� for the attractive
BEC for �=0, positive mass� and the graphical solution for the
stationary point, panel �b�, where we plot the lhs and rhs of Eq. �17�
�again for �=� for the repulsive BEC, or for �=0 for the attractive
BEC, in the last case the axes are inverted�. Here �=0.3 which
gives �	cr�=1.4521.

φ/
π

z

γ < γ
cr

−1 −0.5 0 0.5 1
0

0.5

1

1.5

2

z

γ > γ
cr

−1 −0.5 0 0.5 1
0

0.5

1
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2

FIG. 2. �Color online� The phase portrait of the classical Hamil-
tonian, Eq. �19�, corresponding to a repulsive BEC in a double-well
trap. The parameters are as in Fig. 1.
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minimum of the inverted potential −V−�z� in the subcritical
case 	�	cr.

For a weakly asymmetric potential V+�z� one can also
calculate the atom number fluctuations �see the details in
Appendix B� using the local approximation for the ground
state given by Eq. �21�:

��n1
2� = N2��x − xs�2�

=
N2�+

2

2
=

N

4
�1 + 	�−1/2�1 −

�2�4 + 	�
16�1 + 	�3 + O��4�� ,

�23�

where xs= �1−zs� /2.
The result given by Eqs. �21� and �23� can be compared to

the exact solution in the noninteracting case ��=0�, where
the Hamiltonian is diagonalized by c�= �a1�a2� /�2 with
the effect H=−�a1

†a2+a2
†a1� /N= �c−

†c−−c+
†c+� /N. The eigen-

states are given by �c+
†�m�c−

†�N−k�0,0�, where a1�0,0�
=a2�0,0�=0. The ground state corresponds to m=N:

��� =
1

�2NN!
�a1

† + a2
†�N�0,0� . �24�

For large N, approximating the factorial, we get the coherent
state in the Fock basis as

��z� = �N� 1 − z

2
N,

1 + z

2
N���

= �2N

�
�1/4

exp�−
N

4
�z2 +

z4

6
+ ¯ �	 , �25�

which coincides with the approximate solution �21� up to the
O�z4� term in the exponent.

Equations �21�–�23� capture all three known regimes of
repulsive BEC tunneling in the double-well trap �see, for
instance, Refs. �12,13,25��: �i� Rabi regime, when the coher-
ence is very high and the atom number fluctuations are large
�essentially the interaction free regime�, 	�1; �ii� Josephson
regime, when the coherence is high and the atom number
fluctuations are small, 1�	�N2; and �iii� Fock regime,
when the coherence is low and the atom number fluctuations
vanish, 	�N2.

B. Transformation of the ground state of attractive BEC

Subcritical 	. In the case �	��	cr the ground state of
attractive BEC is also given by the general result �21� for the
positive-mass case �i.e., the upper sign�. The average popu-
lation difference is again given by the series solution �22�
and the number fluctuations are given by the same formula
�23� as in the repulsive case. However, since now 	�0,
there is an essential difference: even moderate attractive in-
teractions strongly enhance the atom number fluctuations
�which fact leads to the absence of the Josephson regime for
attractive BEC�.

For 	 approaching �from above� the critical value −	cr the
fluctuations given by the local oscillator approximation �21�
diverge, which is easily seen from Eq. �23� applied to the
case �=0. In the general case the result is similar and follows

from the exact expression for �+
2 with the use of the exact

value for the point of inflection zs �given below Eq. �18� in
Sec. III� and the expression 	cr= �1−zcr

2 �−3/2.2 The divergence
results from the oscillator approximation of the wave func-
tion 
�x�, Eq. �21�, which breaks down at the critical value
of 	, since at this point the potential is quartic �we give the
case �=0 and zs=0 for simplicity�:

V+�z� = −
z2

2
− �1 − z2 =

z4

8
+

z6

16
+ ¯ , �26�

Supercritical 	. In the case of �	��	cr, for 	 such that the
potential V+�z� is a double well with well-separated wells
�the form of this potential is essentially determined by the
atomic interaction parameter�, the oscillator approximation is
still valid locally �i.e., about the two minima of the potential
V+�z�; see Fig. 1� and the ground state can be now approxi-
mated by a linear combination of the local eigenfunctions.

The case �=0 is the most interesting. The two local
minima, solutions of Eq. �17�, read zs

���= ��1−	−2. The va-
lidity of the local approximation by oscillator eigenfunctions
in the two wells is the width of the local eigenfunctions
being much smaller than the distance between the two wells.
We have zR−zL=2�1−	−2 and using Eq. �21� ��z−zL�2�
=4��x−xL�2�=N−1�	�−1�	2−1�−1/2. Therefore, the applicabil-
ity condition ��z−zL�2�� �zR−zL�2 /4 reads

�	���	� − �	�−1�3 �
1

N2 , �27�

where on the lhs we have a monotonically growing function
of �	�. The condition is satisfied for �	� slightly above the
critical value �	�=1; e.g., setting �	�=1+� with ��1 in Eq.
�27�, we obtain ��N−2/3, which for N=1000 gives ��0.01.

To obtain the ground state we need to evaluate the tunnel-

ing rate—i.e., the matrix element �
L�Ĥ�
R�, where one can

use the local approximation �21� and Ĥ can be taken from
Eq. �14�. We have �here s=L ,R�


s�z� =
1

�1/4��
e−�z − zs�

2/2�2
, �28�

where �2=4�+
2 = 2

N �	�−1�	2−1�−1/2. There is an exponentially
small overlap between 
L and 
R:

�
L�
R� =
1

���



−1

1

dz exp�−
�z − zL�2 + �z − zR�2

2�2 	
= exp�−

N

2
�	�−1�	2 − 1�3/2	 , �29�

where we have used that �z−zL�2+ �z−zR�2=2�z2+zL
2� and the

normalization of the function 
�z�=�−1/4�−1/2 exp�− z2

2�2 �.
Using the integration by parts we get

2Note that Eq. �23� seems to give a higher value 	=−1 than −	cr

for divergence of the fluctuations for ��0. However, by more care-
ful inspection one notices that the second term in the square brack-
ets for the number fluctuations becomes of order 1 at the critical 	;
this is an artifact of the approximation in Eq. �22�.
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�
L�Ĥ�
R� =
2

�4N2 �
L��z − zL��z − zR��1 − z2�
R�

+ �
L�	z2/2 − �1 − z2�
R� .

To estimate the products we use �z−zL��z−zR�=z2−1+	−2

and set z=0 where the overlap of the wave functions 
L,R�z�
is maximal, with the effect

�
L�Ĥ�
R� � − �1 +
�	2 − 1�2

2
��
L�
R� . �30�

It is natural to define the “tunneling coefficient” � for the
effective quantum particle as follows �cf. with Eq. �2��:

� = − �
L�Ĥ�
R� � �1 +
�	2 − 1�2

2
�exp�−

N

2�	�
�	2 − 1�3/2	 .

�31�

The ground and first excited states in the supercritical
double-well potential V+�z� for 	�0 read

�G� =
1
�2

��
L� + �
R��, �E� =
1
�2

��
L� − �
R�� , �32�

where 
L,R�z� are given by Eq. �28�.
The analytical expression for the ground state, Eq. �32�, is

a very good approximation of the exact ground state of the
quantum Hamiltonian �1�; see Fig. 3. On the other hand, the
extremely small degenerate level energy splitting, given by
�E=2� and defined by the tail slope of the solution at z=0, is
only a qualitative result. The energy splitting is usually esti-
mated by perturbation theory, but this is valid only for small
values of N �since the small parameter is equivalent to N /	;
see, for details, Ref. �27��.

For large �	� above the critical value the ground state of
the attractive BEC in the symmetric double-well trap is the
Schrödinger cat state, i.e., a superposition of two macro-
scopicaly occupied states �see also Refs. �28,29��. Precisely,
for �	���N we have

�G� =
1
�2

��N,0� + �0,N�� . �33�

Indeed, in the supercritical case 
L,R�z�, Eq. �28�, has the
Fock-space width given by N���z−zs�2� /2=

�N
2 �	�−1/2�	2

−1�−1/4��N / �2�	���1 for �	���N.

V. MQST AND THE NEGATIVE-MASS QUANTUM
PARTICLE

The equivalence between the repulsive and attractive
BEC cases, given by Eq. �16�, means that the repulsive BEC
also contains the Schrödinger cat state �see also Ref. �30��,
which is an excited stationary state. The double-well poten-
tial V=V−�z� for the classical phase �=� is responsible for
the MQST states of a repulsive BEC in the symmetric
double-well trap, predicted in Ref. �22� and observed experi-
mentally in Ref. �14�. There are two major types of MQST:
the phase-locked ����� states and the running-phase states
��� t�.

Consider the symmetric double-well trap ��=0�. Follow-
ing the arguments of Ref. �22�—i.e., using the energy E con-
servation and Eq. �19�—one obtains

1

4
� dz

d�
�2

= 1 − z2 − �	

2
z2 − E�2

. �34�

Equation �34� results in a neighborhood of z=0 being inac-
cessible if �E��1. On the other hand, for N�1 the energy
satisfies V+�z��E�V−�z� and the above is possible only
when the potential V−�z�= 	

2 z2+�1−z2 is an inverted double
well and the energy line crosses the central �inverted� barrier.
Hence, MQST is possible only for 	�1. On the other hand,
the mean-field condition for MQST reads 	�	c, where �22�

	c = 2
1 + �1 − z2�0� cos���0��

z2�0�
. �35�

The mean-field critical value always satisfies 	c�1. �This is
easily seen by rewriting Eq. �35� as 	z2 /2=1+�1−z2cos �
and noticing that if 	�1 the functions on the lhs and rhs
have no intersections for 0� �z��1.�

Equation �35� gives 	c�2 for cos ��0��0. For 	�2 the
MQST condition reads �z�0���zc, where zc is the solution of
Eq. �35�. On the other hand, for cos ��0��0 and 1
+ �sin ��0���	�2 there is an interval of the initial popula-
tion imbalance for MQST: z1� �z�0���z2, where z1,2 solve
Eq. �35� �see also Ref. �22��.

If repulsive BEC is prepared in one well of the double-
well trap and the initial phase ��0���, one can use the
negative-mass Schrödinger equation �14� to explain the
quantum dynamics. In this case the inverse quantum poten-
tial V=−V−�z� in Fock space has double-well form with
quasidegenerate energy levels, which reflect the existence of
two classical fixed points zs

���= ��1−	−2. The degeneracy is
estimated as twice the tunneling coefficient of Eq. �31�.
Therefore, experimental observation of phase-locked mean-
field MQST ������� is subject to the quantum condition
that the oscillation time of the effective quantum particle in
one of the wells be much less than the tunneling time be-

−1 −0.6 −0.2 0.2 0.6 1
0

0.5

1

1.5

2

2.5

z

Ψ
γ = −1.2
N = 200

FIG. 3. �Color online� The ground state of attractive BEC in the
supercritical case: analytical �given by Eqs. �28� and �32�, solid
line� vs numerical diagonalization of the Hamiltonian �dashed line�.
The thick gray line shows schematically the effective potential
V+�z�. Here N=200, 	=−1.2, and �=0.
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tween the wells of the double-well potential V−�z�, which is
almost always satisfied due to the extremely small degen-
eracy �E=2��1 �recall that �E, the degeneracy in Fock
space, is measured in units of the real-space double-well en-
ergy level degeneracy �E�. Indeed, we have to show that
�E�h�−=2h�a−b−, or using the estimate �31�,

�1 +
�	2 − 1�2

2
�exp�−

N

2	
�	2 − 1�3/2	 �

�	2 − 1

N
,

�36�

which is satisfied for all 	 just above the critical value, even
for a small number of BEC atoms. This fact makes possible
the experimental observation of phase-locked mean-field
MQST. A similar conclusion was made before using a differ-
ent approach �31,32�. We note also that the �-phase MQST
was analyzed in Ref. �31� by considering the numerical ei-
genvalue spectrum and was related to the appearance of the
quasidegenerate energy doublets.

Numerical simulations show that the quantum average
values, defined as3

�z� = 1 −
2

N
�
k=0

N

k�Ck�2, ��� = arg�eip̂� = arg �
k=0

N−1

C
k
*Ck+1,

�37�

initially follow the mean-field dynamics; see Fig. 4. The nu-
merical method of propagating the Schrödinger equation is
adopted from Ref. �33� �see also Ref. �10��.

During the evolution, the atomic distribution in Fock
space remains localized in one of the wells of the inverse
quantum potential V=−V−�z�, Fig. 5�a�. The distributed
quantum phase �k, defined as �k=arg�C

k
*Ck+1�, remains very

close to �; see Fig. 5�b�. For longer times the classical os-
cillations are subject to collapses and revivals �5�.

To get a quantitative estimate of the validity the classical
dynamics, one can use the standard deviations of the quan-
tum variables, defined as �z=2�x=2���x− �x��2��1/2 and

�eip̂ = ���e−ip̂ − �e−ip̂���eip̂ − �eip̂����1/2 = �1 − ��eip̂��2�1/2

�38�

�we assume that ��N ,0 �
��=0; in the case of ��N ,0 �
���0
and ��0,N �
��=0, one can use the operator e−ip̂ instead with
similar result�. From Eq. �38� one concludes that for the av-
erage phase defined in Eq. �37� we have �eip̂�=�ei��� with
some ��1. One can also show that

�eip̂ = ��2 cos p̂ + �2 sin p̂�1/2; �39�

hence, for a small deviation, �eip̂��p̂—i.e., ��. Using the
Schwartz inequality �A�B�

1
2 ��A ,B��� for A=eip̂ and B=z

we arrive at

�� �
�eip̂

��eip̂��
�z � h . �40�

The quantity �� characterizes the quantum-state proximity
to the semiclassical state.

For the simulations presented in Fig. 4, the standard de-
viation �z decreases from 0.122 to 0.096, while �eip̂ grows
from 0.0479 to 0.268 �the average ��eip̂�� decreases from
0.999 to 0.963�. In this case the quantity ��, Eq. �40�, grows
during the evolution by one order of magnitude as compared
to the initial value on the order of h=1 /N.

In the experiment of Ref. �14� the running-phase MQST
was observed. Its classical dynamics is well understood �22�.
Here, we focus on the full quantum dynamics. First of all we
have found that the quantum averages over the MQST state

3The usual definition of the phase is via the average �a1
†a2�. Our

definition is slightly different and prompted by the quantum-
classical correspondence established in Sec. II: p̂→�. The two
definitions agree very well for large N. We use eip̂ to define the
dispersion, since the shift operator is defined for any N, while p̂ is
ill defined for small N.
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FIG. 4. �Color online� The phase-locked MQST state dynamics:
quantum averages �black lines�, as defined by Eq. �37�, vs classical
dynamics �gray lines�. The dashed line in the upper panel gives the
classical stationary point zs=0.866. Here N=1000, 	=2 �whereas
	c=1.23�, and �=0. The initial Gaussian distribution of width �z
=0.12 centered at the point �z�=0.78 and with phase �=� was
used.
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FIG. 5. �Color online� The snapshot of the atomic number dis-
tribution �a� �represented by vertical bars� of the phase-locked
MQST state and that of the distributed quantum phase �b� �given by
bars�. The line in panel �a� gives a schematic portrait of the inverse
quantum potential −V−�1−2k /N�.
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with the running phase, though initially follow the classical
dynamics, are subject to quantum collapses and revivals; see
Fig. 6. In particular, the dynamics of the quantum average
��� is interrupted by plateaus of constant phase, while the
classical phase follows almost linear growth.

Moreover and most importantly, the first occurrence of the
quantum collapse of the running phase �see Fig. 7� is accom-
panied by a rapid growth �the peaks in the inset of the lower
panel of Fig. 7� of the quantity �� �40� �initially ���h�.
The quantum dispersions grow exponentially, and the disper-
sion of the phase �i.e., �eip̂� reaches its maximal value close
to the absolute maximum �equal to 1� at the first collapse
�and at each subsequent collapse�; see Fig. 8. The dispersions
decrease �though not reaching the initial value� at the reviv-
als of the classical dynamics of the quantum averages. Note
that, notwithstanding the difference between the classical and

quantum dynamics �the collapses and revivals�, the popula-
tion imbalance z effectively remains “trapped” during the
evolution, since the quantum dispersion �z is significantly
smaller than the population imbalance itself.

We found that the occurrence of the first collapse depends
on the initial state �for instance, the dispersions of the num-
ber of atoms and the quantum phase�, but does not seem to
depend on the number of atoms for a fixed initial state �e.g.,
for a fixed average and dispersion of the observable �n1
−n2� /N�, while the subsequent quantum revivals and col-
lapses do depend on N: we have found no revivals for N
=1000 and the other parameters of Fig. 6 up to �=200. The
clean visibility of the collapses and revivals �as in Fig. 6�
depends on the value of �� corresponding to the initial
state: the closer is the state to classical—i.e., the closer is ��
to the lower limit 1 /N—the more pronounced are the subse-
quent collapses and revivals.

Next, let us demonstrate that experimental observation of
at least the first occurrence of the quantum collapse of the
running phase is possible already with the setup of Ref. �14�.
Though the exact initial quantum state of the experiment on
MQST is not known, we can try to reproduce the dynamics
using the experimental values on the initial number of atoms,
N=1150�150, quantum averages �z�=0.062, ���=0, and
dispersion �z=0.06 by modeling the initial state by a Gauss-
ian �in Fock space; see Eq. �21�� fitting it to the above val-
ues. Both the method of creating the initial population im-
balance of Ref. �14� by using an initially highly asymmetric
trap with the subsequent sudden ramp to a symmetric trap
and the results of Sec. IV A indicate that a Gaussian is in-
deed a good approximation of the initial state. First of all, we
have reproduced the Josephson oscillations similar to Fig.
2�a� of Ref. �14� �with all the features resembling the experi-
mental results�, to make sure that we are reproducing the
experimental regime. This also allows to estimate the time
unit �though very imprecisely� t= texpt� with texpt

30–40 ms. The MQST dynamics for the experimental ini-
tial conditions is presented in Fig. 9 �compare with Fig. 2�b�
of Ref. �14��.

Note that the collapse of the running phase in Fig. 9 oc-
curs about ����=3�, which is close to the final phase of the
experiment �14� when the phase fluctuations take over. The
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FIG. 6. The quantum collapses and revivals of the running-
phase MQST state. We use N=200, 	=5, and �=0. The initial
condition is a Gaussian with �z�=0.8, ���=0.75� �thus 	c=1.8� and
width �=0.05N. We show the quantum average �z� �upper panel�
and the average phase ���, �lower panel� as defined by Eq. �37�.
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FIG. 7. The classical dynamics �dashed lines� and the corre-
sponding quantum averages �solid lines� at the first occurrence of
quantum collapse of the running-phase MQST state of Fig. 6. In the
inset in the lower panel we give the quantity �� �40�.
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FIG. 8. The dispersions of the quantum distributions of z and eip̂

for longer times corresponding to Figs. 6 and 7.
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exponential growth of �eip̂—i.e., of the fluctuations of the
quantum phase variable �see Fig. 10�—is similar as for the
case of ���=0.75� �Fig. 8�, with reaching a maximum �close
to the absolute one equal to 1� at the time of the quantum
collapse of the running phase. We have not found subsequent
revivals up to �=200, similar as for the large number of
atoms �N=1000� in the case of the initial phase ���=0.75�;
however, for a smaller number of atoms �for instance, N
=200�, they are present at longer times.

Concluding this section, our principal results are that
running-phase MQST is subject to quantum collapses and
revivals and that the first quantum collapse is associated with
an exponential growth of the quantum fluctuations of the
phase distribution; see Figs. 8 and 10, reaching a maximal
value at the collapse time. In this case, ��, Eq. �40�, rapidly
grows �by two or three orders of magnitude; the absolute

value of the phase exponent �= ��eip̂�� rapidly decreases� and
reaches a peak value at the first collapse. Here we note that
the growing fluctuations are also seen in the experimental
results on the running-phase MQST presented in Ref. �14�.
The experimental results also contain finite-temperature ef-
fects. However, finite-temperature effects being negligible,
the quantum evolution on its own rapidly destroys the mean-
field running phase of the MQST state by an exponential
growth of the quantum phase dispersion in an experimentally
feasible time �and within the experimental time range there is
no subsequent revival�. Although the population imbalance
stays trapped �due to the small dispersion of the correspond-
ing quantum observable�, the real MQST is not the mean-
field effect, but has essentially quantum character.

VI. CONCLUSIONS

We have proposed an analytical approach for a descrip-
tion of quantum phenomena in systems of a large number of
interacting bosons occupying only a few modes �two in the
present study�. The method links the many-boson system
with the dynamics of a single quantum particle in a potential,
where the normalized occupation number in Fock space
serves as the particle coordinate. We have used as the ex-
ample the well-known two-mode model, describing, for in-
stance, BEC tunneling in a double-well trap—i.e. the boson
Josephson effect. Our method has allowed us to �a� analyze
the quantum states corresponding to the mean-field station-
ary points, �b� study the transformation of the ground state of
the system of identical bosons for attractive and repulsive
interactions, �c� derive the quantum fluctuations of the num-
ber of atoms in the ground state, �d� relate the appearance of
the macroscopic quantum self-trapping phenomenon to the
double-well shape of the potential for the effective quantum
particle, and �e� explain the quantum nature of the phase-
locked and running-phase mean-field self-trapping of BEC in
the double-well potential.

For the running-phase macroscopic self-trapping phenom-
enon of BEC, which is a feature of the mean-field approach,
we have found that even in the absence of finite-temperature
effects, the quantum evolution on its own destroys the clas-
sical running phase of the mean-field MQST dynamics. It
happens due to a quantum collapse caused by an exponential
growth of the quantum phase dispersion. We estimate that it
occurs in an experimentally feasible time and the subsequent
revival does not. The population imbalance trapping is due to
the small dispersion of the corresponding quantum observ-
able; however, the real MQST state is not the mean-field one
�which has the lhs of the Heisenberg uncertainty relation—
i.e., the product of dispersions of the relative particle number
and the phase, on the order of N−1�, but a more complicated
essentially quantum state with an undefined relative phase
�which has product of dispersions of the relative particle
number and the phase much larger than N−1�.

Finally, our approach is of a general nature and can be
applied to other boson models including the theory of
molecular-atomic coherence in BEC with the account of the
nonlinear interactions �34�, the quantum model of nonlinear
intraband tunneling of BEC in optical lattices �9,10�, and
many others.
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FIG. 9. The quantum dynamics of the running-phase MQST
state for N=1150, 	=15, and the initial values �z�=0.62 and ���
=0. The initial state is Gaussian with the width fitted to reproduce
the experimental standard deviation �z=0.06. In the inset of the
lower panel we give ��, Eq. �40�. The arrow indicates the time of
occurrence of the peak shown in the inset.
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FIG. 10. The dispersions of the quantum distributions of z �up-
per panel� and eip̂ �lower panel� corresponding to Fig. 9. In the
lower panel �= ��eip̂�� is also given �dashed line�.
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APPENDIX A: THE FULL TWO-MODE BOSON
JOSEPHSON MODEL

One can show that the full two-mode boson model de-
scribing BEC in a double-well trap can be cast in the �dimen-
sional� form

H = �Va1
†a1 − �Jlin + Jnonl�N − 1���a1

†a2 + a2
†a1�

+
�1 − �2

2
��a1

†a1�2 + �a2
†a2�2� +

�2

2
�a1

†a2 + a2
†a1�2,

�A1�

where some scalar N-dependent term has been discarded.
The coefficients are given as Jlin=�E /2,

Jnonl = − g
 d3x ���x���
3�x� ,

�1 = g
 d3x��
4�x� ,

�2 = g
 d3x ��
2�x���

2�x� �A2�

�the subscripts � and � are permutation of the list �L ,R� and
the functions give the localized states in the left or right well

defined by the appropriate linear combinations of the ground
state and the first exited state; see Sec. II�. The derivation is
similar to that of Refs. �23,13� and is omitted. However, with
the help of numerical evaluation, one can verify that for all
double-well traps with two lower degenerate levels E1 and
E2 satisfying the inequality �E=E2−E1�E3−E2 the coeffi-
cients satisfy

�1 � �2 � �Jnonl� . �A3�

The coefficients Jlin and Jnonl�N−1�, however, can be of the
same order. Discarding the small terms and dividing the
Hamiltonian by the quantity �Jlin+Jnonl�N−1��N one gets the
reduced model given by Eq. �1� with a different definition of
the parameters.

APPENDIX B: THE RELATIVE ATOM NUMBER
FLUCTUATIONS IN THE POSITIVE-MASS CASE

We have ��x−xs�2�=�+
2 /2, where

�+
2 =

1

2N
� �1 − zs�1/2

	 + �1 − zs
2�−3/2�1/2

. �B1�

From Eq. �17� for positive-mass case we get �1−zs
2�1/2= �

2zs

−	. Now using Eq. �22� we obtain

�

2zs
− 	 = 1 +

�2

8�1 + 	�2 + O��4� ,

	 + � �

2zs
− 	�3

= �1 + 	��1 +
3�2

8�1 + 	�3 + O��4�� .

Therefore

�+
2 =

1

2N
�1 + 	�−1/2�1 −

�2�4 + 	�
16�1 + 	�3 + O��4�� . �B2�
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