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We study a two-level atom coupled to a Bose-Einstein condensate. We show that the rules governing the
decoherence of mesoscopic superpositions involving different classical-like states of the condensate can be
probed using this system. This scheme is applicable irrespective of whether the condensate is initially in a
coherent, thermal, or more generally, in any mixture of coherent states. The effects of atom loss and finite
temperature to the decoherence can therefore be studied. We also discuss the various noise sources causing the
decoherence.
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I. INTRODUCTION

Decoherence is a process of losing quantum superposi-
tions due to entanglement between the system and its envi-
ronment �1�. Studies of the decoherence are pivotal to under-
standing the emergence of the classical world from an
underlying quantum substrate �1,2�. This is because if deco-
herence did not suppress quantum superpositions in macro-
scopic systems, then one would end with situations such as
the Schrödinger’s cat �3�, which are not observed in practice.
By now, superpositions and decoherence of microscopic sys-
tems have been observed in several experiments such as cav-
ity QED �4,5� and trapped ions �6,7�. However, in view of
the fundamental implications for the quantum to classical
transition, it is necessary to gradually extend such experi-
mentation to superpositions in macroscopic systems, perhaps
tackling mesoscopic systems at first. In this context, several
years ago, Leggett and co-workers proposed the possibility
of observing superpositions of macroscopically distinct flux
states in superconducting systems �8,9�, an idea which has
only recently been experimentally realized �10�. Another
class of experiments, clearly probing quantum superpositions
and their decoherence in the mesoscopic domain, is the dif-
fraction of large molecules �11,12�. In order to move to me-
soscopic systems with slightly larger masses and investigat-
ing their decoherence, there exist a number of proposals for
using nanoscale movable mirrors coupled to quantized light
in cavities �13�, or coupled to a Cooper pair box �14� or to
photons in an interferometer �15�. The above three schemes
�13–15� rely on the common idea of coupling a microscopic
�coherent� system to a mesoscopic or macroscopic �decoher-
ent� system to probe the decoherence of the latter. In this
paper, we formulate a scheme based on the same general
principle for a completely different mesoscopic system,
namely, a Bose-Einstein condensate. While in the earlier
work involving nanoscale mirrors it is a superposition of
spatially separated coherent states whose decoherence is
studied, in the current paper it is the decoherence of a super-
position of coherent states with different phases �or relative
phases in the case of two mode condensates� which will be
studied.

Recently, a general scheme has been proposed �16� to
probe the decoherence of a mesoscopic harmonic oscillator
with a qubit whose state couples to the position of the oscil-

lator. It provides a simultaneous method to generate super-
positions and probe the decoherence of a mesoscopic system.
The basic assumption in this scheme is just to maintain the
coherence of the qubit during the whole period of the experi-
ment, while the oscillator is allowed to decohere �it is this
decoherence that the scheme aims to detect�. When a qubit
and the oscillator start in appropriate states, they become
entangled and a superposition in their joint system is created.
The special form of the coupling entails that after a certain
period of time evolution the qubit naturally disentangles
from the oscillator and the oscillator is brought back to its
original state. The evidence of the decoherence of the oscil-
lator is then imprinted on the partial coherence of the qubit.
This enables us to determine the decoherence rate of the
mesoscopic oscillator by measuring the qubit’s state. Perhaps
the strongest positive feature of this type of scheme is the
fact that the mesoscopic oscillator will not have to be cooled
to a pure or nearly pure state in order for the scheme to be
successful in probing its decoherence �13–16�; in fact it can
be in a thermal state at arbitrary temperature. This happens
because of the special nature of the qubit-oscillator coupling
and the fact that the mesoscopic system is never directly
probed. Naturally an important question is whether such a
scheme can be formulated for other kinds of qubits �the qu-
bits used earlier have been photon number or path �13,15� or
superconducting �14�� such as atomic hyperfine levels which
are more coherent, or oscillators which are more coherent
than nanoscale mirrors but at the same time still mesoscopic
in some sense. More fundamentally, would such a scheme
work, particularly would it still be applicable to thermal
states of the oscillator if the qubit was coupled to a different
variable of the oscillator instead of its position? The system
studied in this paper shows that the answer to both the above
questions is affirmative.

Atomic Bose-Einstein condensates �BEC’s� are mesos-
copic systems with a low dissipation rate. They are promis-
ing candidates for observing decoherence. In fact, experi-
mental studies have rapidly developed since the Bose-
Einstein condensation of atomic gases was observed in a
magnetic trap in 1995 �17�. For example, the quantum phase
transition from a superfluid phase to a Mott-insulator phase
has been observed using atoms in optical lattices �18�. The
trapping of multicomponent BECs of 87Rb �19� have been
realized. The control of scattering lengths using Feshbach
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resonances have also been reported �20–23�. These demon-
strate the sophisticated techniques available to manipulate
ultracold atoms precisely. Notably, schemes for deterministic
single atom preparation in the ground state in a trap potential
have been proposed �24,25�. In fact, a single atomic qubit
has been demonstrated to be confined in an optical dipole
trap �26� and to transport using a submicrometer optical
tweezer �27�. This paves the way for studying the dynamics
of a single atom coupled to a superfluid BEC �28�. In par-
ticular, schemes for cooling a single atom �29� and probing
the phase fluctuations of BEC �30� have been suggested with
precisely such an atom-BEC coupled system. In this paper,
we will present a foundational application of such a system
in probing the decoherence of a BEC �Fig. 1�.

Naturally, because of the low dissipation rates of BECs,
there have been quite a few proposals for preparing them
directly in nonclassical states such as Schrödinger cat states
�31–33� even without an additional system such as a single
atom. If realized, these proposals will also enable one to
detect the decoherence that such states of a BEC experience.
However, the nonclassical states of these papers, being su-
perpositions of states differing by large atom numbers in a
given mode, are highly decoherent and their preparation is
extremely hard �may even require one to engineer the envi-
ronment �32� and may be destroyed even due to scattering a
single photon �33��. Moreover, to prepare such states one
needs to have a BEC in its ground state and thus whether the
detection of decoherence will work for a thermal state is
unclear. Most importantly, it is a superposition involving the
most “classical-like” states of a harmonic oscillator, namely,
its coherent states, whose decoherence is the most relevant
for studying the transition from the quantum world to the
classical world �as among all the available quantum states of
a harmonic oscillator, the coherent states are the closest to
classical states because they have equal and minimum uncer-
tainty in all variables�. The scheme of this paper is more
ideally placed to detecting decoherence of superpositions in-
volving distinct coherent states as opposed to the
Schrödinger cat states of a mode occupation number
�31–33�.

In this paper, we study a two-level atom coupled to an
atomic BEC via coherent collisions. A trapped BEC behaves
like a harmonic oscillator �34–36� such that we can attempt
to formulate a scheme similar to Refs. �13,16� to probe the
decoherence of a BEC with a single atom. In this way, the
aim is to test the decoherence of superpositions of a mesos-
copic oscillator. The heuristic formula for the decoherence

rate of a superposition of two coherent states is given by
��=1� �13,16�

�̃ = 2��n̄ +
1

2
�D2, �1�

where � is the characteristic damping constant, D is the
separation of two coherence states in phase space, n̄
= �exp�� /kBT�−1�−1, � is the frequency of the oscillator, kB
is the Boltzmann constant, and T is the temperature.

We will show that our scheme can be applied to detect the
decoherence rate of an initial coherent state and even a ther-
mal mixed state. Finite temperature effects on the decoher-
ence of a BEC can thus be studied. Particle loss of the con-
densates gives rise to the decoherence �39�. Atom loss is
caused by inelastic collisions between atoms, and it is the
dominant source of decoherence in the BECs �40,41�.

This paper is organized as follows: In Sec II, we introduce
the coupled atom-BEC system. The coupling of a single two-
level atom to a single BEC and a two-component BEC are
examined. Both cases can be shown to map to a qubit-
oscillator model. In Sec III, we describe our scheme to probe
the decoherence of condensates when they are initially in
coherent and thermal states. In Sec IV, we discuss the main
decoherence sources of the BECs and the limitations of tun-
ing the scattering length with Feshbach resonances in Sec V.

II. SYSTEM

We consider a single atom with two hyperfine spin states
trapped in the motional ground state of a potential. The
Hamiltonian of this two-level atom is written as

Hs = �0��e�	e� − �g�	g�� , �2�

where 2�0 is the energy splitting, and �e� and �g� are the
upper and lower states, respectively. This spin-half system
can be expressed in terms of a Pauli operator: �z= �e�	e�
− �g�	g�, �+= �e�	g�, and �−= �g�	e�. Thus, the Hamiltonian
can be cast in the form as

Hs = �0�z. �3�

We study a single atom coupling to a single BEC and a
two-component BEC, respectively. We discuss these two
cases in the following two sections.

A. Case I: A BEC

We first consider the single atom coupled to a condensate.
The Hamiltonian of a BEC confined in a trapping potential is
given by

H1 =
 dr3�1
†�r��−

1

2m1
�2 + V1�r�

+
U11

2
�1

†�r��1�r���1�r� , �4�

where �1�r� is the annihilator field operator at the position r,
V1�r� is the external trapping potential, U11 is the self-
interaction strength, and m1 is the mass of an atom. The

Two-level

atom

BEC

FIG. 1. �Color online� A single two-level atom is coupled to a
Bose-Einstein condensate via coherent collisions. The single atom
is trapped in a state-dependent potential such that the upper state �e�
interacts with the trapped condensate merely.
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condensate is assumed to be trapped in a deep potential such
that the BEC can be well described within the single-mode
approximation �34,35�, i.e., �1�r�a�1�r�. Here a and �1�r�
are the annihilator operator and the mode function of the
condensate, respectively. Then, the Hamiltonian is written as

H1 = �1a†a + �1�a†a�2, �5�

where �1 and �1 are the energy frequency and the self-
interaction strength, respectively.

The single two-level atom interacts with the condensates
via coherent collisions. The Hamiltonian describes such a
coupling as

H1
I = 2�1e�e�	e�a†a �6�

=�1e��z + 1�a†a , �7�

where �1e=	a1e�dr3��
1
*�r��e�r��2 /m and �e�r� is the wave

function of the single atom and a1e is the s-wave scattering
length between the atom at the upper state �e� and the con-
densate. We consider this single atom trapped in a state-
dependent potential �42� so that only the upper state �e� in-
teracts with the condensate �30�. Besides, we assume that
coherent collisions between the atom and the BEC will not
further excite the motional state of the single atom. Other-
wise, it will give rise to additional noise and affect our de-
tection scheme.

The size of the ground state wave function of the atom
and the BEC are roughly equal to the trap size. We denote
the “volume” of the trap as V. The interaction parameter �
can be found as 	a1e /mV. In general, this interaction
strength is weak. Nevertheless, the scattering length a1e can
be greatly increased by tuning an external magnetic field
near a Feshbach resonance so that the interaction strength is
greatly enhanced �20–23�. This is a very useful tool for con-
trolling the atom-BEC coupling.

B. Case II: Two-component BEC

Next, we consider the single atom to be coupled to a
two-component BEC. The Hamiltonian of a two-component
condensate is given by

H2 =
 dr3�

†�r��−

1

2m


�2 + V
�r� +
U



2
�


†�r��
�r�

+
U
�

2
��

†�r����r���
�r� , �8�

where �
�r� is the annihilator field operator for the compo-
nent 
, V
�r� is the trapping potential, U

 and U
� are the
intracomponent and intercomponent interactions, respec-
tively, and 
 ,�=1,2.

As before, we adopt the single-mode approximation on
the two-component condensates in which they are confined
in a deep potential �34,36�. We write �
�r���
�r�, where
�=a ,b and �
�r� are the annihilation operator and the mode
function for the component 
, respectively. Thus, the Hamil-
tonian can be written as

H2 = �1a†a + �2b†b + �1�a†a�2 + �2�b†b�2 + �12a
†ab†b ,

�9�

where the energy frequency is �
, the self-interaction
strength is �
, and the intercomponent interaction strength is
�12. It is convenient to express the Hamiltonian in terms of
the angular momentum operators as

H2 = �̃Jz + �̃Jz
2, �10�

where Jx= �a†b+b†a� /2, Jy = �a†b−b†a� /2i, and Jz= �a†a
−b†b� /2. The parameters �̃ and �̃ are ��1−�2� /2 and �1
+�2−�12, respectively.

We consider the single atom coupled to the two-
component BEC via coherent collisions. The Hamiltonian for
such an atom-BEC coupling has the form

H2
I = 2�e�	e���1ea

†a + �2eb
†b� , �11�

where �
e=	a
e�dr3��


*�r��e�r��2 /m
 and a
e is the s-wave

scattering length between the atom in state �e� and the com-
ponent 
. We can rewrite the Hamiltonian in terms of the
angular momentum operators as

H2
I = ��1e − �2e���z + 1�Jz + ��1e − �2e�N , �12�

where N is the total number of atoms. The constant term will
be omitted in the subsequent discussion. To strengthen the
atom-BEC coupling, we can increase the scattering length
between the atom and one of the components by adjusting a
magnetic field approaching a Feshbach resonance. For ex-
ample, we can modulate the magnetic field to increase the
scattering length between the excited state �e� and the com-
ponent 
=2.

In fact, the collective excitations of the two mode conden-
sates behave like a harmonic oscillator. This can be shown
by taking the leading approximation based on the Holstein-
Primakoff transformation �HPT� �43� to map the angular mo-
mentum operators into the harmonic oscillators: J+�Nc†,
J−�Nc, and Jz=c†c−N /2. This approximation is valid as
long as the excitations are very small �36�, i.e., 	c†c� /N1.
Therefore, the effective atom-BEC Hamiltonian can be
readily obtained as follows:

H̃2
I = ��1e − �2e���z + 1�c†c . �13�

We assume the interaction strength �1e and �2e are unequal
to each other, i.e., �1e��2e. The state of collective excita-
tions of the BEC can be approximated as a coherent state �
�
�44� and �
�2 is the mean excitations of the two-component
condensate. The amount of mean excitations can be adjusted
by using a two-photon Rabi pulse �19�.

III. SCHEME TO PROBE DECOHERENCE

As discussed above, both the single and two-component
BECs can be described as harmonic oscillators. In other
words, the single atom �qubit� is effectively coupled to a
harmonic oscillator. In fact, the Hamiltonian in both cases is
of the same form and can be written as
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H = �0�z + �d†d + ��d†d�2 + ���z + 1�d†d , �14�

where d and � are the annihilation operator and the fre-
quency of the harmonic oscillator, respectively, � is the
strength of the nonlinearities, and � is the qubit-oscillator
coupling strength.

We consider the interaction strength � is much stronger
than the strength � so that the effect of nonlinearities arising
from particle interactions can be ignored in the quantum dy-
namics. The strength � is roughly equal to 100 Hz �34� for
the trap frequency around 1 kHz. The interaction strength �
can be enhanced to several times � by approaching the Fes-
hbach resonance with a magnetic field. Therefore, the system
is equivalent to a qubit-harmonic oscillator system without
any nonlinearity.

We present a scheme to detect the decoherence of the
BEC. The dominant decoherence source of the BECs is the
atom loss due to three-body inelastic collisions �40�. The
master equation for the condensate is given by �45–47�

�̇ =
�3

6
�2d3�d†3 − d†3d3� − �d†3d3� , �15�

where �3=K3�dr3���r��6, K3 is the three-body coefficient,
and d and ��r� are the destruction operator and the mode
function of the condensate mode, respectively. Remarkably,
in the limit of a large number of atoms, the master equation
�15� can be well approximated to the one-body master equa-
tion but with a new dissipation parameter � �46� as follows:

�̇ = ��2d�d† − d†d� − �d†d� , �16�

where �=3N2�3 /2. For the case of a two-component BEC,
we assume the atom loss mainly coming from one of the
components, say 
=2. We note that losing one atom in the
component 
=2 results in one loss in the relative population
	Jz�. Thus, the process of atom loss in the two-component
BEC can be described by the master equation �16� in the
large atom number limit.

The master equation �16� can be solved exactly and its
solution is best expressed in the coherent state basis. In our
paper we will require the time evolution of density operator
terms of the form �
�	
ei��, where �
� and �
ei�� are two
coherent states differing by a rotation in phase space, under
the master equation �16�. Up to a normalization constant, the
time evolution of the above term is of the form �38,39�

�̃�t� � �
e−�t/2�	
e−�t/2� + �
ei�−�t/2�	
ei�−�t/2�

+ e−�
�2�1−ei���1−e−�t���
e−�t/2�	
ei�−�t/2�

+ e−�
�2�1−e−i���1−e−�t��
ei�−�t/2�	
e−�t/2�� . �17�

For the short times, i.e., �t1, one can approximate �1
−e�t� and �
e−�t/2� as �t and �
�, respectively. This is a good
approximation for an underdamped oscillator if the detection
time scale �−1 is much shorter than the dissipation time scale
�−1. Note that the decoherence time scale ���
�2�−1 can still
be comparable to �−1, so that the decoherence can be de-
tected.

In addition, we assume that the two-level atom has very
long coherence times so that it can act as a faithful micro-
scopic probe to detect the decoherence. In fact, the long co-
herence times of the atomic condensates with two hyperfine
states have been measured using Ramsey spectroscopy �48�.

A. Initial coherent state

Our scheme is very simple in which it involves a few
procedures only. First, we perform a unitary transformation
of the two-level atom to create an equal superposition of the
states �g� and �e� whereas the BEC is prepared as a coherent
state. Such the unitary transformation can be easily made by
a Rabi pulse �42,48�. Initially, a separable state of the two-
level atom and the harmonic oscillator is considered as

���0�� = ���Q � �
� , �18�

where ���Q= ��e�+ �g�� /�2 and �
� is a coherent state. To
manifest the evolution of the atom-BEC system, we first con-
sider the case without the decoherence setting in. The atom
becomes entangled with the harmonic oscillator just after
switching on the atom-BEC interaction. The state can be
written as

���t�� =
1
�2

�e−i�0t�e� � �e−2i�t
�t�� + ei�0t�g� � �
�t��� ,

�19�

where �
�t��e−i�d†dt�
� for ���. The atom-BEC interac-
tion gives rise to a rotation of coherent state in phase space.
Thus, the phase shifts of the condensate are acquired accord-
ing to the states �g� and �e�, respectively. As a result, a su-
perposition of two coherent states is generated.

The “distance” D�t� in phase space between the two states
can be defined as 2�
�sin �t �4�. The quantity D can indicate
the distance of the superpositions. However, the atom com-
pletely disentangles with the BEC at time t�=	 /� and the
state reads

���t��� =
1
�2

�ei�0t��g� + e−i�0t��e�� � �
�t��� . �20�

Now we consider the system in the presence of the deco-
herence. We begin the investigation of the decoherence of
the harmonic oscillator in the underdamped case. We must
describe the system with the density matrix because the sys-
tem will evolve to a statistical mixture. Initially, the density
matrix is

�c�0� = ���	��Q � �
�	
� . �21�

At time t= t� /2, the density matrix evolves as

�c�t� =
1

2
��g,
0�	g,
0� + �e,
1�	e,
1�

+ e−�̄/2�e2i�0t�g,
0�	e,
1� + e−2i�0t�e,
1�	g,
0��� ,

�22�

where �g ,
0�= �g��
0�, �e ,
1�= �e��
1�, and �
0� and �
1� are
�
�t�� and �e−2i�t
�t��, respectively.
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The decoherence factor e−�̄/2 appears in the terms
�g ,
0�	e ,
1� and �e ,
1�	g ,
0�. At the end of detection times
t= t�, the density matrix reads

�c�t�� = ��g�	g� + �e�	e� + e−�̄�e2i�0t��g�	e� + e−2i�0t��e�	g���

�
1

2
�
�t���	
�t��� . �23�

The atom disentangles with the condensate and the conden-
sate is brought back to its original state. Although Eqs. �22�
and �23� look similar to Eqs. �2� and �3� in �16�, we should
point out that we study the decoherence here with completely
different mechanisms in �16�. Here we investigate the detec-
tion of the decoherence due to three-body atom loss of
BECs. In Ref. �16�, the probing of the decoherence of the
Caldeira-Leggett model was studied �49�.

The atom-BEC coupling can be effectively switched off
by tuning the external magnetic field and then we can slowly
move out the atom from the BEC. Then, the state of the atom
is measured and the probability of a single atom at the state
�e�	e� can be found as

P��e�	e�� =
1 + e−�̄ cos 2��0t� + ��

2
, �24�

if the initial state of the atom ������Q= ��g�+ei��e�� /�2 is
considered, where � is the phase shift between the states �g�
and �e�. The partial coherence factor e−�̄ appears in the prob-
ability of the state �e�	e�. The measurement of the visibility
of the fringes as a function of � leads us to determining the

factor e−�̄.
Since the instantaneous superposition of states decoheres

as �D2�t�, the average value of the decoherence rate 	�� can
be evaluated as

	�� =
4���
�2

	



0

	/�

dt sin2 �t . �25�

The average rate 	�� can be obtained as 2��
�2. Therefore,

the decoherence factor �̄= 	��	 /� after the completion of
the probing process is given by 2	��
�2 /�. We can probe the

decoherence factor �̄ by measuring of the probability of the
excited state of the single atom. Hence, the damping rate �
of the BEC can be determined.

It is noted that our scheme can be applied to find out the
effective size of superpositions where the superposed com-
ponents have a large overlap �50�. We can first create a su-
perposition of two coherent states with a small distance
D�t̃�=2�
�sin �t̃ for a small parameter �t̃. This can be
achieved by just turning on the atom-BEC interaction for
short times t̃. The superpositions decohere with a rate
4��
�2 sin2 �t̃, which is proportional to N sin2 �t̃ �50�. The
condensate is then brought back to the original state shortly
with a fast ramp speed. This can ensure that the decoherence
mainly comes from the superpositions with large overlap. We
can determine this decoherence rate by our detection scheme.

B. Initial thermal state

The temperature of the BEC is nearly absolute zero; in-
deed its temperature ranges from 100 nK to 500 pK �17,51�.
The state of the BEC can be well described as a thermal state
if the finite temperature is taken into account. Our detection
can be used for probing the decoherence with the initial ther-
mal state. This enables us to study the decoherence due to the
finite temperature effect. Initially, the density matrix is of the
form

�th�0� = ���	��Q � 
 d2
p�
��
�	
� , �26�

where p�
� are probabilities exp�−�
�2 / n̄� /	n̄. The evolution
of the density matrix at time t= t� /2 is

�th�t� =
 d2

p�
�

2
��g,
0�	g,
0� + �e,
1�	e,
1� + e−�̄
� /2

� �e2i�0t�g,
0�	e,
1� + e−2i�0t�e,
1�	g,
0��� , �27�

where e−�̄
� is the decoherence factor at time t for each 
.
Finally, the atom disentangles with the condensate and the
density matrix is found to be

�th�t�� =
1

2
��g�	g� + �e�	e� + e−�̄��e2i�0t��g�	e�

+ e−2i�0t��e�	g��� � 
 d2
p�
��
�t���	
�t��� .

�28�

The decohernce factor e−�̄=�d2
p�
�e−�̄
� sums up all con-
tributions from the decoherence of the different possible co-

herent states �
�. Similarly, the decoherence factor e−�̄ can be
detected through the measurement of the visibility of the
atom. We have shown that our scheme can be used to probe
the decoherence of the condensates with the initial coherent
and thermal states. In fact, as Eq. �28� is valid for any dis-
tribution p�
�, the scheme is valid for any mixture of coher-
ent states being the initial state of the condensate. So, for
example, if the amplitude of the coherent state was known
but its phase was completely unknown, our method of prob-
ing decoherence would still be applicable.

IV. DECOHERENCE SOURCES

The main decoherence sources of the BEC are three-body
inelastic collisions and collisions with the background gas
�40�. We sort out several noise sources of the BECs and
discuss them as follows.

A. Atom loss

Background gases and spontaneous light scattering. The
background gases and spontaneous emission contribute the
one-body loss and thus induce the decoherence of the BECs
�41�. The loss rate �1 is of the form K1N, where K1 is the
one-body loss coefficient. However, such a decoherence ef-
fect is weak in the current experiment circumstance �41�.
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Two-body and three-body inelastic collisions. The two-
body inelastic collisions are very rare in the atomic conden-
sates and its loss rate is K2N2 /V, where K2 is the two-body
coefficient and V is the volume of the trapped BEC. The
inelastic collisions mainly occur due to the three-body colli-
sions �22,40,41�. The rate of decoherence � is K3N3 /V2,
where K3 is the three-body coefficient. The three-body coef-
ficient K3 is about �10−29 cm6 s−1 �22,40�. It is noted that
inelastic collisions are greatly enhanced near Feshbach reso-
nances �41�. However, we assume this effect is minimal to
our detection scheme if the probing times are very short.

B. Phase damping

Phase damping describes a process of the loss of the co-
herence without losing energy. Elastic collisions between the
BEC and the surrounding gases can cause phase damping
�37,52,53�. The elastic scattering with vacuum noises can
also contribute to the dephasing. However, our scheme is not
applicable in detecting the phase damping for the coherent
states with the same magnitude �
�2 but with the different
phases. The decoherence factor cannot be imprinted on the
atom. In fact, the dephasing rate �p depends on the tempera-
ture of the gases and therefore its rate is very low in the
current experiments of the BEC �37,52,53�. The decoherence
time scale of the phase damping is much longer than that of
the atom loss. Thus, the dephasing effect is negligible com-
pared to the atom loss.

V. DISCUSSION

Our scheme involves the active control of the scattering
length using a magnetic field approaching Feshbach reso-
nances. We can greatly increase the scattering length a with
the Feshbach resonance and therefore speed up the process
of creating superpositions. The scattering length a is varied
as a function of external magnetic field B �41,54�.

a = abg�1 +
�

B0 − B
� , �29�

where abg is the off-resonant scattering length, B0 is the reso-
nant magnetic field, and � is the width of the Feshbach reso-
nance.

Nevertheless, the change of scattering length a will be
accompanied with an increasing three-body inelastic colli-
sion rate. The rate of three-body collisions loss increases to
20�60� times for the low magnetic field of sodium atoms
�41�. This limits the use of Feshbach resonance to create a
superposition state. In the worst case, the single atom may be
lost due to the formation of molecules �54�. Then, our
scheme is no longer applicable—of course, if we lose the
atom from our trap, we no longer continue with that run of
the experiment and simply restart the experiment with a fresh
atomic qubit. It is quite possible, though, to maintain the
coherence of the single atom and create superpositions with a
fast ramp speed �22�. Thus, our scheme can be applied to the
situation that the detection rate is much shorter than the de-
cay rate.

VI. CONCLUSION

In summary, we have studied the coupling of a single
atom to the single and two-component BECs, respectively.
We have presented a scheme to create mesoscopic superpo-
sitions involving distinct classical-like �or coherent� states of
the BEC and probe their decoherence. The probing of the
decoherence is applicable to both initial coherent and ther-
mal states of the BEC. Only the state of the atom state needs
to be directly measured in this experiment to probe the de-
coherence of the BEC. The various noise sources leading to
the decoherence of the condensates are also discussed. This
allows us to investigate the major decoherence source due to
atom loss in detail.
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