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We study the production of low-atom-number Fock states by sudden reduction of the potential trap in a
one-dimensional strongly interacting �Tonks-Girardeau� gas. The fidelity of the Fock-state preparation is char-
acterized by the average and variance of the number of trapped atoms. Two different methods are considered:
making the trap shallower �atom culling �Dudarev et al., Phys. Rev. Lett. 98, 063001 �2007��, also termed
“trap weakening” here� and making the trap narrower �trap squeezing�. When used independently, the effi-
ciency of both procedures is limited as a result of the truncation of the final state in momentum or position
space with respect to the ideal atom-number state. However, their combination provides a robust and efficient
strategy to create ideal Fock states.
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INTRODUCTION

The generation of Fock states with a definite, controlled
atomic number is a highly desirable objective from both fun-
damental and applied points of view. They may be useful for
studying few-particle interacting systems �1,2�, entanglement
�3�, or number- and spin-squeezed atomic systems �4,5�. The
production of photonic Fock states �6� and interferometric
schemes for sub-shot-noise sensitivity approaching the
Heisenberg limit �7� also require input Fock states.

A necessary step toward this goal is the development of
atom-counting devices paving the way to quantum atom sta-
tistics �8�. Indeed, a technique with nearly unit efficiency has
already been demonstrated �9�. Moreover, the recently pro-
posed method of atom culling by making the atom trap shal-
lower �in the following also termed “trap weakening”� �9,10�
has achieved sub-Poissonian atom-number fluctuations for
60–300 trapped atoms when adiabatic conditions were satis-
fied, i.e., when the trap depth is varied slowly. �The reference
case of Poissonian statistics is realized by the number of
particles in a small volume of a classical ideal gas.� In this
method the initial state is assumed to be a ground state for an
unknown number of bosons, in general smaller than the
maximum capacity of the initial trap �this is, the maximum
number of particles that can be confined in the trap�. This
capacity depends on the trap characteristics and interatomic
interaction. As the barrier height of the trap is slowly reduced
and the maximum capacity is surpassed, the excess of atoms
will leave the trap to produce eventually the Fock state cor-
responding to the maximum capacity of the final trap con-
figuration. For a pictorial representation, see Fig. 1 �upper
panel�.

A theoretical analysis has shown the basic properties of
atom culling regarding the final average number as a func-
tion of the trap well depth and atom-atom interaction
strength, covering the limits of the Tonks-Girardeau �TG� gas

and the mean-field regime �10�: a weaker dependence on
laser fluctuations of the height of the barrier that forms the
trap will be favored by strong interatomic interactions that
separate the energy levels. This motivates the present work,
in which we focus on the strongly interacting one-
dimensional TG limit, optimal for atom culling, and examine
the average number and fluctuations of the trapped atoms.
Particular attention is paid to the sudden regime, correspond-
ing to the “worst-case scenario” of an abrupt change from the
initial to the final trap. We show that, even in this case, a
state arbitrarily close to the ideal Fock state may be robustly
produced by combining weakening and squeezing of the
trap, the two basic processes represented schematically in
Fig. 1.

I. ATOM STATISTICS

Ultracold bosonic atoms in waveguides tight enough so
that the transverse degrees of freedom are frozen out are well
described by the Lieb-Liniger �LL� model �11�. In the
strongly interacting limit �12,13� �for low densities and/or
large one-dimensional scattering length� a LL gas tends to
the TG gas, which plays a distinguished role in atom statis-
tics since its spatial antibunching has been predicted �14�,
and observed �15�. The system exhibits “fermionization”
�16�, i.e., the TG gas and its “dual” system of spin-polarized
ideal fermions behave similarly, and share the same one-
particle spatial density as well as any other local-correlation
functions, while they differ in the nonlocal correlations.

The fermionic many-body ground-state wave function of
the dual system is built at time t=0 as a Slater determinant
for Ni particles, �F�x1 , . . . ,xNi

�= �1 /�Ni!�detn,k=1
Ni �n

i �xk�,
where �n

i �x� is the nth eigenstate of the initial trap, whose
time evolution will be denoted by �n�x , t� whenever the ex-
ternal trap is modified. The bosonic wave function, symmet-
ric under permutation of particles, is obtained from �F by
Fermi-Bose mapping �16,17�

��x1, . . . ,xNi
� = A�x1, . . . ,xNi

��F�x1, . . . ,xNi
� ,

where
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A = �1�j�k�Ni
sgn�xk − xj�

is the “antisymmetric unit function.” Since A does not in-
clude time explicitly, it is also valid when the trap Hamil-
tonian is altered, and the time-dependent density profile re-
sulting from this change can be calculated as �18� ��x , t�
=Ni����x ,x2 , . . . ,xNi

; t��2dx2¯dxNi
=	n=1

Ni ��n�x , t��2. By re-
ducing the trap capacity some of the Ni atoms initially con-
fined may escape and N will remain trapped. To determine
whether or not sub-Poissonian statistics or a Fock state are
achieved in the reduced trap we need to calculate the atom-
number fluctuations. We proceed by characterizing the TG
trapped state by means of its variance �N

2 = 
N2�t��− 
N�t��2.
First note the general relation


n̂�x�n̂�x���t = 
: n̂�x�n̂�x��:�t + ��x − x��
n̂�x��t, �1�

where the number field operator is n̂�x�=�†�x���x�, ��x�,
and �†�x� are the annihilation and creation operators at point
x, and : : denotes normal ordering. In particular, within the
Tonks-Girardeau regime,


n̂�x�n̂�x���t = D�x,x�;t� + ��x − x����x,t� , �2�

with �19�

D�x,x�;t� = Ni�Ni − 1� � �
i=3

Ni

dxi���x,x�,x3, . . . ,xNi
;t��2

= ��x,t���x�,t� − �	Ni
�x,x�,t��2 �3�

and

	Ni
�x,x�;t� = 	

n=1

Ni

�n�x,t�*�n�x�,t� . �4�

The mean value of the number of particles within the trap
and of its square can be obtained by integrating over x ,x�,


N�t�� = �
0

L+

dx ��x,t� ,


N2�t�� = �
0

L+ �
0

L+

dx dx�
n̂�x�n̂�x���t, �5�

where L+
L+
 is large enough to include the bound-state
tails in coordinate space. �For the trap configuration of Fig. 1
each bound state has a penetration length �
 j� beyond the
well width L, so 
=maxj 
 j.� The atom-number variance
reads finally

�N
2 �t� = 
N�t�� − �

0

L+ �
0

L+

dx dx�	Ni
�x,x�,t� . �6�

From it one can infer Poissonian statistics if �N
2 / 
N��1 and

sub-Poissonian as long as �N
2 / 
N��1. For a Fock state �N

=0.

II. THE SUDDEN APPROXIMATION

The requirement of adiabaticity, i.e., of a slow trap
change, is a handicap that one would like to overcome.
Achieving good fidelity with respect to the desired Fock state
may require exceedingly long times, a fact that is even more
critical whenever the interactions are finite, this is, for the
Lieb-Liniger gas in which the splitting between adjacent lev-
els �Bethe roots� diminishes. It is thus useful to examine the
opposite limit corresponding to a sudden trap change. For the
TG gas, we shall find general and exact results, which are a
useful guide, since small deviations from the sudden limit
increasing the switching time may only improve the fidelity.

In what follows we shall thus discuss the preparation of
Fock states by an abrupt change of the trap potential to re-
duce its capacity. Even though the arguments and results of
this section are rather general, consider for concreteness the
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FIG. 1. �Color online� Schematic potential change for trap
weakening and squeezing, where Li and Lf are the initial and final
well widths, and Vi and Vf the initial and final trap depths, respec-
tively. Each solid line in the contour plot represents an isospectral
family of traps at the threshold of a different bound state �for the
initial trap 2mViLi

2 /�2=25
2, Cf being the final trap capacity�. A
transition between two given families is achieved by reducing the
trap capacity. The bound energy levels are pushed up and the higher
ones cross the continuum threshold so that the excess of atoms
escapes from the trap.
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simple square trap configuration of Fig. 1, with an infinite
wall on one side and a flat potential �zero potential energy�
on the other side,

V��x� = �� , x � 0,

− V�, 0 � x � L�,

0, x � L�,
� �7�

where the subscript �= i , f refers to the initial and final con-
figurations, respectively. The corresponding eigenvalue prob-
lem is solved in the Appendix, where both bound and scat-
tering states are described. At t=0 the trap with shape Vi�x�,
which holds an unknown number of particles Ni �lower than
or equal to the initial capacity Ci� is suddenly modified to the
final trap Vf�x�, which supports Cf bound states � j

f�x�, j
=1, . . . ,Cf, of energy Ej

f �0. The process may consist in
weakening the trap �Vf �Vi, Lf =Li�, squeezing it �Lf �Li,
Vf =Vi�, or a combination of the two �Vf �Vi and Lf �Li�.

The continuum part of the spectrum of the one-particle
Hamiltonian with potential Vf�x� is spanned by the scattering
states �k

f�x�, labeled by the incident wave number k. It fol-
lows from standard scattering theory �20�, using the
Riemann-Lebesgue lemma �21�, that the contribution of the
continuum states in the trap region �x�L+� vanishes asymp-
totically as t→�,

�n�x,t� = 	
j=1

Cf


x�� j
f�
� j

f��n
i �e−iEj

ft/� + �
0

�

dk
x��k
f�

�
�k
f ��n

i �e−i�k2t/2m 
 	
j=1

Cf


x�� j
f�
� j

f��n
i �e−iEj

ft/�, �8�

so that the dynamics in the trap is finally governed by the
discrete part of the spectrum �� j

f � j=1, . . . ,Cf�. Therefore, as-
ymptotically, the mean number and variance of trapped at-
oms are


N���� = 	
n=1

Ni


�n
i ��̂ f��n

i � = 	
j=1

Cf


� j
f��̂i�� j

f�; �9�

note that 
N�����Cf, and

�N
2 ��� = 
N���� − 	

n,m=1

Ni

�
�m
i ��̂ f��n

i ��2

= 	
j

Cf


� j
f���̂i − �̂i�̂ f�̂i��� j

f� , �10�

where

�̂ f = 	
j=1

Cf

�� j
f�
� j

f� �11�

is the projector onto the final bound states and

�̂i = 	
n=1

Ni

��n
i �
�n

i � �12�

the projector onto the bound states occupied by the initial
state. We may thus conclude that trap reduction can actually

lead to the creation of Fock states with 
N����=Cf and
�N

2 ���=0 when the initial states span the final ones,

�̂ f � �̂i. �13�

A time scale for the validity of the asymptotic regime, after
the trap switch is provided by the lifetime of the lowest reso-
nance of the final trap. A simple semiclassical estimate is �
=Lf�m /2Vf�1/2, assuming the escape of a classical particle
from the well and approximating the resonance kinetic en-
ergy by the potential depth. To prepare a 23Na Fock state in
the final trap of width Lf 
50 �m, supporting Nf =10 bound
states, the asymptotic regime is approached for t��

30 ms. We insist, though, that any slower potential change
will play in favor of the fidelity of the resulting Fock state
until the time scale at which losses and decoherence begin to
play a role.

III. TRAP WEAKENING

A good guidance for Fock-state preparation is provided by

Eq. �10�, which leads to the requirement for �̂i to be an

extension of �̂ f. This result is model independent, and in
particular it holds irrespective of the smoothness of the trap-
ping potential. For illustration purposes we shall consider the
square trap in Eq. �7� shown in Fig. 1 �22�.

In a trap-weakening scheme, the potential is made shal-
lower by reducing the depth from an initial value Vi to Vf
�while Li=Lf; see Fig. 1�, a procedure that has been success-
fully implemented to prepare states with sub-Poissonian sta-
tistics �23�. Though, in practice, the value of Ni �and Cf�
cannot be arbitrarily large because the Tonks-Girardeau re-
gime requires a linear density n
1 �m−1, it is useful to
consider a large number of particles in an initial boxlike trap,

Ni→�, for which �̂i becomes the projector in the interval
�0,Li�,

�̂i 
 ��0,Li�
�x̂� . �14�

This asymptotic behavior is depicted in Fig. 2�a�. Preparation
of ideal atom-number states by trap weakening is thus hin-
dered by the suppression of the coordinate space tails, which
leak beyond the well along a given penetration length 
 j for
each � j

f �24�.

IV. TRAP SQUEEZING

There is a simple alternative to trap weakening to achieve
high-fidelity Fock states: atom-trap squeezing. Starting with
a state of an unknown number of particles Ni, the trap width
is reduced from an initial value Li to Lf keeping the depth
constant �Vi=Vf�, as shown in Fig. 1 middle panel�. The final
trap supports Cf bound states so that the excess of atoms is
squeezed out of the trap. From a comparison of initial and
final energy levels, it is clear that a minimum number of
initial particles is required for trap squeezing to work. Using
for an estimate the levels of the infinite well, we get Ni
�CfLi /Lf. Trap squeezing works optimally for initial traps
filled with atoms to the brim but it is not robust against
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partial filling. It is also less sensitive to threshold effects than
trap weakening, in particular for low atom numbers.

For a wide, filled initial trap,

�̂i 
 �
0

�

dk�k+�
k+� �15�

as L→�, where 
x �k+�=�2 /
 sin kx, x�0, satisfying

k+ �k�+�=��k−k�� and the cutoff is at ��Ui

1/2 /Li, in terms
of the dimensionless parameter Ui=2mLi

2Vi /�2 �Uf is de-
fined similarly in terms of the final values�. This is illustrated
in Fig. 2�b�. Therefore, trap squeezing may limit the fidelity
of the final Fock-state preparation due to the truncation of
the tails “in momentum space,” in the sense of Eq. �15�, for
k�Ui

1/2 /Li.

V. COMBINED WEAKENING AND SQUEEZING

From the previous discussion it follows that the optimal

potential trap change to satisfy �̂ f � �̂i is a combination of
weakening and squeezing. Let us choose two different fami-
lies of isospectral traps characterized by Ui and Uf, support-
ing Ci and Cf bound states, respectively. �In general Ci�Ni,
because of partial filling of the initial trap, the filling factor
being the ratio Ni /Ci.� The energy level of the highest occu-
pied state measured from the bottom of the trap, analogous to
the Fermi level in the dual system, is denoted by �i, which
depends on the filling factor of the Ui trap, while for the ideal
final Fock state � f �Vf.

From an arbitrary potential �Li ,Vi� in the Ui family, the
efficiency of the weakening-squeezing combination leading
to a potential of the Uf family varies with the filling factor
and with the ratio of widths in the final and initial trap, Lf /Li.
Figure 3 shows both the mean atom number and variance of

the final states for different ratios and preparation states. Be-
low a critical final width Lf

c= �Uf /Ui�1/2Li, the physical final
depth Vf is larger than the initial one Vi, and we disregard
this possibility since the efficiency is very poor, as expected
from the failure of the condition �13� for � f ��i. The ratio
Lf /Li=1 is the limit of pure trap weakening, and Lf

c /Li that
of pure trap squeezing; the limited efficiency of both extreme
cases can be noticed in Fig. 3. However, the combined pro-
cess achieves pure Fock states and is robust with respect to
different fillings in the initial trap and for a wide range of
final configurations. Moreover, the range of final configura-
tions for which high-fidelity states are obtained increases
with the initial potential Ui keeping the filling constant as
shown in Fig. 4. Hence, a recipe to create a Fock state �Cf� in
a trap of width Lf and depth Vf will be as follows. Choose
the width of the initial trap broad enough in the sense Li
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FIG. 2. �Color online� Limited efficiency of pure squeezing and
weakening techniques. For a completely loaded initial trap
�Ni=Ci� of depth Ui=Ci

2
2, the resolution of a given bound state of
the final trap, �n

f �n=5, Uf =25
2�, is quantified by the measure

Fn= 
�n
f ��̂i��n

f �, and shown to be limited in �a� pure squeezing, and
�b� pure weakening. For increasing capacity of the initial trap, Ci,
Fn tends to the probability of finding the particle in the well region
�0,Li� �weakening case, solid line, see Eq. �14��, or to the probabil-
ity of finding the particle in the momentum space region �squeezing
case, solid line, see Eq. �15��.

FIG. 3. �Color online� Asymptotic mean value �top� and vari-
ance �bottom� of the atom-number distribution of a Tonks-
Girardeau gas obtained by sudden trap reduction as a function of
the width ratio between the final and initial trap. The initial trap
with Ui /
2=104 supports a maximum of Ci=100 bound states,
while the final configuration Uf /
2=102 is limited to Cf =10. Dif-
ferent filling factors are considered for the initial trap. The left and
right edges of each curve correspond to pure squeezing and weak-
ening, respectively, the latter being remarkably less sensitive to the
trap filling as shown in the inset. Any other point combines weak-
ening and squeezing.

FIG. 4. �Color online� Asymptotic mean value �top� and vari-
ance �bottom� of the atom-number distribution of a Tonks-
Girardeau gas obtained by a sudden change of the trap potential for
Ui /
2=104 �solid line�, 2.25�104 �dotted line�, and 4�104

�dashed line� keeping a constant initial filling factor of 90%.
Uf /
2=102 with Cf =10. The high-efficiency region increases with
Ui reducing the critical ratio between the final and initial trap
widths, Lf

c /Li.
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�Lf +r
 �r�1�, where 
 is the penetration length of the state
�Cf

f in the final trap. Then make sure that �i�� f in such a
way that the final state is contained in the initial subspace in
both momentum and coordinate space. A deep and broad
initial trap, with respect to the final one, provides in sum-
mary a safe starting point to create a Fock state by sudden �or
otherwise� trap reduction.

DISCUSSION AND CONCLUSION

In this work we have studied and compared strategies for
atom Fock-state creation in the Tonks-Girardeau regime. We
have shown that Fock states can be prepared even under a
sudden trap-potential change. Thanks to the analysis of the
atom-number variance, we have determined that the key con-
dition for Fock state creation is that the initial occupied
bound states span the space of the final ones. This holds
regardless of the trap shape details, and in particular does not
depend on the potential-trap model. A combination of trap
weakening and squeezing allows us to resolve the ideal Fock
state in both momentum and coordinate space. We close by
noting that the Tonks-Girardeau regime is optimal with re-
spect to the strength of interactions. In this regime, the three-
body correlation function g3��� tends to vanish and therefore
the losses of atoms from the trap by inelastic collisions are
negligible �25�. For gases with finite interactions in tight
waveguides, when the Lieb-Liniger model holds, the quasi-
momenta obtained as solutions of the Bethe equations
�26–29�, are closer to each other for weaker interatomic in-
teractions, whence it follows that the required time scale for
the dynamics to be adiabatic is even larger than in the Tonks-
Girardeau regime. Large spacings in the Bethe roots also
imply that less precision is required in the control of Vf.
Given that the interatomic interactions can be tuned through
the Feschbach resonance technique, one can optimize the
atom Fock-state preparation by putting the system within a
strong-interaction regime in a first stage, followed by the
controlled reduction of the potential trap �weakening and
squeezing�, and finally slowly turning off the interaction.
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APPENDIX

In this appendix we describe the spectrum of the Hamil-
tonian for the potential in Eq. �7� considered in the numerical
examples. Both the initial and final traps have the same func-
tional dependence. Here we consider the general case for a
trap of width L and depth V �dropping the index �= i , f for
compactness�, whose spectrum can be easily determined us-
ing matching conditions in the wavefunction and its deriva-
tives. The trap supports a finite set of C bound states �its
capacity�

� j�x� = N j � �sin�qjx� , 0 � x � L ,

sin�qjL�e−�j�x−L�, x � L ,
� �A1�

with j=1, . . . ,C and normalization constant

N j = �L

2
−

sin�2qjL�
4qj

+
sin2�qjL�

2� j
�−1/2

. �A2�

The eigenvalues are Ej = ��qj�2 /2m−V�0 where �qj� satisfy
the transcendental equation � j =−qj cot qjL, with � j
= �2mV /�2−qj

2�1/2�0. The scattering states have the form

�k�x� =
1

�2

� �A sin qx , 0 � x � L ,

e−ikx − S�k�eikx, x � L ,
� �A3�

where q=�k2+2mV /�2 and the coefficient A and the scatter-
ing matrix S�k� are determined by imposing the usual match-
ing conditions,

A = −
2ike−ikL

q cos qL − ik sin qL
,

S�k� = e−2ikLq cos qL + ik sin qL

q cos qL − ik sin qL
. �A4�
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