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We present a precise determination of the polarizability and other proton structure-dependent contributions
to the hydrogen hyperfine splitting, based heavily on the most recent data on proton spin-dependent structure
functions from the EG1 collaboration experiment at the Jefferson Laboratory. As a result, the total calculated
hyperfine splitting now has a standard deviation slightly under 1 part per million, and is about one standard
deviation away from the measured value. We also present results for muonic hydrogen hyperfine splitting,
taking care to ensure the compatibility of the recoil and polarizability terms.
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I. INTRODUCTION

In this paper, we consider precision calculation of the hy-
perfine splitting �hfs� of hydrogen, with the goals of calcu-
lating the hfs to a part-per-million �ppm� accuracy for ordi-
nary �electronic� hydrogen and of extending the calculation
to the muonic hydrogen case.

Experimentally, the hfs of the hydrogen ground state is
known to 13 significant figures in frequency units �1�,

Ehfs�e−p� = 1420.405 751 766 7�9� MHz. �1�

On the theoretical side, at the level of a ppm accuracy, the
QED corrections are not in question. Rather, achieving the
stated accuracy requires better evaluation of corrections from
the finite size of the proton. Finite size corrections come
from two-photon exchange, Fig. 1, where there is the possi-
bility that the photons are individually hard and can see
deeply into the proton. For one-photon exchange, proton
structure plays no role at the ppm level because the momen-
tum transfer is necessarily very low.

Presently, our ability to numerically deal with quantum
chromodynamics �QCD�, the theory that governs how matter
is bound together to form a proton, is insufficient to calculate
proton structure corrections to the desired accuracy. For ex-
ample, a nice chiral Lagrangian based calculation �2�, which
should give results equivalent to QCD, achieves an accuracy
of about 30%, of the circa 40 ppm structure-dependent cor-
rections. Instead, the corrections can be related to proton
structure information measured in electron-proton scattering.
The information is codified in terms of Pauli and Dirac form
factors F1�Q2� and F2�Q2� for the elastic case and structure
functions g1�� ,Q2� and g2�� ,Q2� for the spin-dependent in-
elastic case. Here Q2=−q2, where q is the four-momentum
transferred from the electron and � is the energy transferred
from the electron in the laboratory frame; one can also use
x=Q2 / �2mp��, where mp is the proton mass.

Recently reported �3� data on g1�� ,Q2� from Jefferson
Laboratory spur the present study. The data are from the EG1
collaboration, and extend the measurements of g1�� ,Q2�
down to much lower Q2 than previously available. The rela-
tions between the hfs and g1�� ,Q2� weight heavily on the
low Q2 data, so the latest data, which include a careful analy-

sis of statistical and systematic errors, lead to a more accu-
rate and reliable hfs calculation.

The proton structure-dependent corrections can be divided
into Zemach, recoil, and polarizability corrections, to be de-
fined shortly. The first two depend entirely on elastic inter-
mediate states in the two-photon exchange, and all contribu-
tions from inelastic intermediate states are in the third. Our
main, though not exclusive, focus will be upon the polariz-
ability corrections, which contain the dependence upon
g1�� ,Q2� and which have had larger statistical and system-
atic uncertainties limits than the other two terms. The situa-
tion has now improved and we will find that the uncertainty
in the polarizability corrections is now comparable to the
uncertainty in the elastic structure-dependent terms. Hence,
we shall evaluate these also, using up-to-date form factors,
and discuss the uncertainty limits in the calculations of all
terms.

For muonic hydrogen hfs, there is currently no measure-
ment, but one may be possible �4�, so it is appropriate to
quote a calculated result. In the muon case, the structure-
dependent corrections are in total larger than the QED cor-
rections, because the former have a lepton mass proportion-
ality, while the latter are to a first approximation independent
of the lepton mass.

The muon case prompts a discussion of the definitions of
the recoil and polarizability corrections. The sum of all pro-
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(b)

FIG. 1. Upper part: The full box: Lower part: The box with
elastic intermediate states only.
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ton structure corrections is unambiguous. However, the sepa-
ration between the recoil and polarizability corrections de-
pends upon a protocol. The issue is that the elastic and
inelastic corrections separately have �after an overall lepton
mass, m�, is factored out� logarithmic divergences in the
m�→0 limit. For convenience, the polarizability corrections
have been defined �5� by taking the inelastic corrections and
adding an elastic-looking term to cancel the logarithmic sin-
gularity. An identical term is subtracted from the recoil cor-
rections, and the overall sum is unchanged.

The term added to form the polarizability correction must
satisfy the criteria that it cancel the existing m�→0 diver-
gence, and that it introduce no new divergence. This does not
uniquely fix the residual nondivergent part of the term. For
the electron case, the choice is standard. Hence, one can in
principle add calculations of electronic hydrogen polarizabil-
ity and recoil corrections from different sources without
worry. For the massive lepton case, it appears that there are
two different protocols, which agree in the m�→0 limit but
not otherwise. Hence, there is a need for care in combining
muonic hydrogen calculations from different sources, or else
for a unified calculation of all the proton structure-dependent
terms, as we do here.

Our calculations and results are detailed in Sec. II. The
relevant formulas are first summarized and discussed, fol-
lowed by numerical evaluations for the electronic and
muonic hydrogen systems. Section III summarizes our con-
clusions.

II. FORMULAS AND CALCULATIONS

A. Formulas and calculations

The calculated hyperfine splitting can be given as �6,7�

Ehfs��−p� = �1 + �QED + �hvp
p + ��vp

p + �weak
p + �S�EF

p ,

�2�

where lepton �− is either e− or �− and the Fermi energy is

EF
p =

8�3mr
3

3�
�B�p =

16�2

3

�p

�B

R�

�1 + m�/mp�3 . �3�

Mass mr=m�mp / �mp+m�� is the reduced mass and R� is the
Rydberg constant �in frequency units�. By convention, the
Bohr magneton �B is inserted for the lepton and the mea-
sured magnetic moment �p is used for the proton. The con-
stants on the right-hand side are well enough known to
evaluate the Fermi energy to 0.01 ppm.

The first four corrections are due to QED, hadronic
vacuum polarization, muonic vacuum polarization, and weak
interactions �Z0 exchange�. They are well enough known not
to require discussion here.

The proton structure-dependent corrections are

�S = �Z + �R
p + �pol. �4�

The subscripts stand for “Zemach,” “recoil,” and “polariz-
ability.” The measured value of Ehfs�e−p� and calculated val-
ues of other quantities implies a “target value” �S
=−32.77�0.01 ppm for ordinary hydrogen �6,7�.

The structure-dependent corrections can be obtained by a
dispersive calculation of the two-photon exchange diagram
�Fig. 1�, as pioneered by Iddings �8� and by Drell and Sulli-
van �5�. The reason for separating the result into three terms
is partly to shorten individual formulas and partly for histori-
cal reasons. We only quote the results, reserving a discussion
of the derivation, particularly for the massive lepton case, for
a later report.

We start with the polarizability corrections. They are usu-
ally given in the limit m�→0 �5,8–11�. To our knowledge,
the only previous exception is in the paper of Cherednikova,
Faustov, and Martynenko �12�. Including the lepton mass,
our result for the polarizability corrections is

�pol =
�m�

2�1 + 	p��mp
��1 + �2� , �5�

with

�1 = �
0

� dQ2

Q2 �
1����F2
2�Q2�

+
8mp

2

Q2 �
0

xth

dx
̃1��,���g1�x,Q2�� ,

�2 = − 24mp
2�

0

� dQ2

Q4 �
0

xth

dx
̃2��,���g2�x,Q2� , �6�

where 	p is the proton anomalous magnetic moment in
nuclear magnetons, xth=Q2 / �2mpm�+m�

2 +Q2� with m� the
charged pion mass, and


̃1��,��� =
x2
1��� − �m�

2/mp
2�
1����

x2 − m�
2/mp

2 ,


̃2��,��� =
x2�
2��� − 
2�����

x2 − m�
2/mp

2 . �7�

The plain 
1,2 auxiliary functions, introduced by De Rafael
�10�, are


1��� = − 3� + 2�2 + 2�2 − ������ + 1� ,


2��� = 1 + 2� − 2���� + 1� , �8�

which have limits


1��� = 	4�� + O��� , � → 0,

9

4
�1 −

5

18

1

�
+

7

48

1

�2 + ¯ � , � → � , 


2��� = 	1 + O���� , � → 0,

0 +
1

4

1

�
−

1

8

1

�2 + ¯ , � → � , 
 �9�

and are used with the notations
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� �
�2

Q2 , �� �
Q2

4m�
2 , �p �

Q2

4mp
2 . �10�

Finally, F2�Q2� is the �elastic� Pauli form factor, normalized
by F2�0�=	p.

The polarizability terms come mainly from inelastic inter-
mediate states in Fig. 1; hence, the appearance of the struc-
ture functions g1,2. The term containing F2 is the term de-
scribed in the Introduction, which is inserted to cancel the
divergence that appears in the g1 term of �1 in the massless
lepton limit. As m�→0, one can show that �1,2→
1,2 and

1����→1, and further, for Q2→0, 
1���→1. Then, the
Gerasimov-Drell-Hearn �13,14� sum rule,

lim
Q2→0

8mp
2

Q2 �
0

xth

dxg1�x,Q2� = − 	p
2, �11�

both ensure that the second term of �1 diverges in the mass-
less limit, and that the first term will regularize it.

Our polarizability correction agrees with �12� for the g1,2
terms, which are unique. Some choice is possible for the F2

2

terms, and here, and in Ref. �12�, different choices are made.

Further explanation of this point joins the discussion of the
recoil correction, below.

The Zemach corrections are �15�

�Z = − 2�mrrZ�1 + 
Z
rad� , �12�

where rZ is the Zemach radius

rZ = −
4

�
�

0

� dQ

Q2 �GE�Q2�
GM�Q2�
1 + 	p

− 1� . �13�

The electric and magnetic Sachs form factors are

GM�Q2� = F1�Q2� + F2�Q2� ,

GE�Q2� = F1�Q2� −
Q2

4mp
2 F2�Q2� , �14�

and the Dirac form factor is normalized with F1�0�=1.
The extra radiative correction 
Z

rad is given in �16,17�. For
the dipole form factor, GE,M�Q2�� �1+Q2 /�2�−2, one finds

Z

rad= �� /3�� �2 ln��2 /me
2�−4111 /420�=0.0153, using the

standard value �2=0.71 GeV2. For other form factors that
we use, the changes in 
Z

rad have a 0.01 ppm or smaller effect
upon the hyperfine splitting.

The leading order recoil corrections are �16,18�

�R
p =

2�mr

�mp
2 �

0

�

dQF2�Q2�
GM�Q2�
1 + 	p

+
�m�mp

2�1 + 	p���mp
2 − m�

2���0

� dQ2

Q2 �
1��p� − 4��p

�p
−


1���� − 4���

��
�F1�Q2�GM�Q2�

+ 3�
0

� dQ2

Q2 �
2��p� − 
2�����F2�Q2�GM�Q2�
 −
�m�

2�1 + 	p��mp
�

0

� dQ2

Q2 
1����F2
2�Q2� . �15�

Factoring out an overall m�, there remain recoil terms that
diverge like ln�m�� as m�→0; hence the m�→0 limit is not
taken. Further, and in contrast to the Zemach corrections, the
recoil corrections are not zero in the static and pointlike pro-
ton limits. �The static limit neglects the Q2 dependence of the
form factors, so that F1�Q2�→F1�0�=1 and F2�Q2�→F2�0�
=	p; the pointlike limit additionally takes 	p→0.� Thus, part
of the recoil correction is structure independent. However,
that they are overall structure dependent is clear, and so it is
proper to include them here along with �Z and �pol.

Notice that the last term in the recoil correction is the
negative of the F2 term from the �1 polarizability correction.
These are the terms that were added and subtracted to ensure
that �1 contained no divergence in the massless lepton limit.

We specify the term here using a historical criterion. An
alternative nondispersive calculation of the elastic contribu-
tions alone, the lower part of Fig. 1, inserts photon-proton-
proton vertices

�� = ��F1�Q2� +
i

2mp
���q�F2�Q2� , �16�

for incoming q, and does the loop integral directly. In mod-
ern times, one should hesitate to do the calculation this way

because there is no reason to think the vertex representation
is correct when the intermediate proton is off shell. �The
dispersive calculation is not subject to the same criticism
because it obtains the real part of the two-photon corrections
from the imaginary part, which only requires knowing the
vertices when all protons are on-shell.� However, the direct
calculation is historically older than the dispersive one, and
is still often quoted; for relatively modern source see �18�. It
is possible to choose the F2

2 terms in the polarizability and
recoil corrections to cancel the zero mass divergence in one
case and give the historical result in the other, and that is the
choice we made. Reference �12�, which showed only the
polarizability term, differs from us in the F2

2 terms in �pol
and this can be traced to a different choice early on �19�.

B. Ordinary hydrogen polarizability corrections

For electronic hydrogen, take the m�→0 limit to obtain
the well-known result �5,8–11�,

�1 =
9

4
�

0

� dQ2

Q2 �F2
2�Q2� +

8mp
2

Q2 B1�Q2�� ,
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�2 = − 24mp
2�

0

� dQ2

Q4 B2�Q2� , �17�

with

B1�Q2� =
4

9
�

0

xth

dx
1���g1�x,Q2� ,

B2�Q2� = �
0

xth

dx
2���g2�x,Q2� . �18�

Information on g1�x ,Q2� is obtained from polarized elec-
tron on polarized proton inelastic scattering, and the lowest
Q2 data come from the EG1 collaboration experiment at Jef-
ferson Laboratory, reported in �3,20� with data details posted
on the High Energy Physics database at Durham University
�UK�. The EG1 collaboration data have beam energies of 1.6
and 5.7 GeV, and give g1�� ,Q2� /F1�� ,Q2� �F1,2�� ,Q2� are
the spin-independent structure functions� for 28 Q2 bins with
central values from 0.0496 to 4.96 GeV2, and with W rang-
ing from threshold to about 1.65 GeV for the lower Ebeam
data and from threshold to about 3.1 GeV for the higher
Ebeam data. We obtain F1�� ,Q2� in the resonance region from
the Christy and Bosted parametrization �21�, and in the scal-
ing region from combining the F2�� ,Q2� fit of the NMC
collaboration �22� with the fit to R �the ratio of longitudinal
and transverse photon cross sections� from SLAC E143 �23�.
Where there is no EG1 collaboration data, we use fits to g1
from Simula et al. �24� in the resonance region and from
SLAC E155 �25� in the scaling region.

For Q2 below Q1
2=0.0452 GeV2 �the lower edge of the

lowest bin� there is no data, and we complete the integrals by
interpolating data between higher Q2 and zero Q2. For B1,
which is proportional to Q2 as Q2→0, this is possible be-
cause the GDH sum rule �13,14� fixes the slope, so that for
small Q2,

B1�Q2� = −
	p

2

8mp
2 Q2 + c1BQ4 + ¯ . �19�

We obtain c1B=4.94�0.30�1.22 GeV−4 by fitting to
B1�Q2� in the data region below Q2=0.3 GeV2. �This is
somewhat larger than the c1 we quote in �26�, partly because
we are here fitting B1 instead of �1, but more because of
improvements in the data.� The contribution to �1 from the
low Q2 range is thus

�1�0,Q1
2� = �− 3

4	p
2rP

2 + 18mp
2c1B�Q1

2 + O�Q1
4rp

4� , �20�

where rP is the Pauli radius of the proton, coming from the
expansion of F2�Q2�.

The structure function g2 gives a small contribution to the
hfs, because the auxiliary function 
2 is small for the kine-
matics where the g2 integral has its main support. This is
fortunate, since g2 for the proton is not well measured. The
�2’s in our tables are based on a model for g2 provided by
the EG1 collaboration, which we also used in �26� and which
is heavily based on the MAID parametrization �27� of exist-
ing photoproduction and electroproduction data. Given the
overall lack of data that is specific to g2, we assigned 100%
error limits to the �2 determination; even so, the contribution
to the overall uncertainty of �pol is not large. A more detailed
discussion of �2 is given in Sec. II E.

Results for the polarizability correction are broken down
in Table I for one particular parameterization of the elastic
form factor F2�Q2�. In this table, “systematic errors” mean
systematic errors that come from the listed data �3,20�, and
“modeling errors” come from error limits accompanying the
parametrizations �24� that we use to complete the integrals
where data is lacking. Not all of these uncertainties apply to
each of the numbers in the table, and we indicate this by
leaving blanks in the parentheses. In the table, the statistical
errors are always combined in quadrature; the systematic er-
rors from g1 �the error in the low Q2 bin is treated as due to
uncertainty in g1, as it mostly is� are combined directly, and
then combined in quadrature with those from the F2 terms;
and the modeling errors in �1 and �2 are separately com-

TABLE I. Contributions to �pol for the electron case. Statistical, systematic, and modeling errors, in that
order, are given in the parentheses and discussed in the text.

Term Q2 �GeV2� From Value with AMT �32� F2

�1 �0, 0.0452� F2 and g1 1.35�0.22��0.87� � �
�0.0452, 20� F2 7.54 � ��0.23� � �

g1 −0.14�0.21��1.78��0.68�
�20, �� F2 0.00 � � �0.00� � �

g1 0.11 � � � � �0.01�
Total �1 8.85�0.30��2.67��0.70�
�2 �0, 0.0452� g2 −0.22 � � � � �0.22�

�0.0452, 20� g2 −0.35 � � � � �0.35�
�20, �� g2 0.00 � � � � �0.00�

Total �2 −0.57 � � � � �0.57�
�1+�2 8.28�0.30��2.67��0.90�
�pol �ppm� 1.88�0.07��0.60��0.20�
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bined directly, and then combined in quadrature with each
other.

Further combining the statistical, systematic, and model-
ing errors in quadrature gives the result

�pol = 1.88 � 0.64 ppm. �21�

For other choices of F2�Q2�, the resulting changes in �pol are
small compared to the overall error limit quoted above, as
may be seen in the �pol column of Table II. The current result
differs from our previous 1.3�0.3 result �26� based on ear-
lier data and a less sufficient treatment of the systematic
errors. Other �pol results incompatible with zero are the 2002
Faustov and Martynenko �28� value of 1.4�0.6 ppm and the
2006 Faustov, Gorbacheva, and Martynenko �29� value of
2.2�0.8 ppm.

C. Ordinary hydrogen Zemach and recoil corrections

Form factor measurements have improved in the past de-
cade largely due to the use of polarization transfer techniques
�30� and to an understanding of how two-photon corrections
impact the Rosenbluth measurements �31�. Analytic form
factor parametrizations new within the past year are available
from Arrington, Melnitchouck, and Tjon �AMT� �32�, who fit
over all Q2 where there is data, and from Arrington and Sick
�As� �33�, who concentrate on the lower Q2 data. The Zem-
ach contributions from these, and two slightly older fits
�34,35�, are listed in the third and fourth columns of Table II.
One notices that modern form factors give larger radii and
larger magnitude Zemach corrections than the old dipole
form.

�The fits of Ref. �33� are valid only for Q2�1 GeV2, and
for Q2 above this value we supplement them with form fac-
tors taken from Ref. �32�. The integrals are strongly
weighted to lower Q2, so that if we supplement them with the
dipole forms instead, the results would be the same to the
number of figures given.�

Using the same form factors, we quote the recoil correc-
tions in the fifth column of Table II. The bulk of the result
comes from the one-loop corrections of Eq. �15�. We also
included a 0.46 ppm two-loop recoil correction from Bodwin
and Yennie �BY� �16�. The latter are O��2� beyond the Fermi
energy scale and are given by

�R
p�r�2� = �2 m�

mp
�2 ln

1

2�
− 6 ln 2 +

65

18

+ 	p�7

4
ln

1

2�
− ln 2 +

31

36
�

+
	p

1 + 	p
�−

7

4
ln

1

2�
+ 4 ln 2 −

31

8
�
 . �22�

This correction is evaluated only in the static limit. For the
O��� recoil correction �leading order �LO��, evaluating in the
static limit gave a different sign and about a factor of 2
smaller magnitude than using physical form factors. How-
ever, this was possible only because the static evaluation of
the LO is unexpectedly small due to striking internal cancel-
lations. To wit, the LO static correction evaluated with the
measured 	p is about 15 times smaller than it would be using
	p=0. Similar internal cancellations do not occur in the next-
to-LO corrections, and we should not expect—albeit this is
not verified—that evaluation with physical form factors
would occasion big changes in the two-loop corrections. We
also include an additional 0.09 ppm radiative correction
noted by Karshenboim �17�.

An overall summary of calculated results for the ordinary
hydrogen hfs is given in Table III, along with, in the first
line, the experimental value of the corrections in units of the
Fermi energy.

Regarding error limits for the Zemach correction, three of
the four modern form factor fits give uncertainties in their fit
parameters that allow an estimate of the uncertainty in �Z

TABLE II. Zemach radii, �Z including 
Z
rad, and the recoil corrections, for four modern form factors. The dipole form factor is included

only as a benchmark. The “target” �S is −32.77�0.01 ppm; the errors on �S are typically �0.7 ppm.

Form factor
rP

�fm�
rZ

�fm�
�Z

�ppm�
�R

p

�ppm�
�pol

�ppm�
�S

�ppm�

AMT �32� 0.885 1.080 −41.43 5.85 1.88 −33.70

AS �33� 0.879 1.091 −41.85 5.87 1.89 −34.09

Kelly �34� 0.878 1.069 −40.99 5.83 1.89 −33.27

FW �35� 0.808 1.049 −40.22 5.86 2.00 −32.36

Dipole 0.851 1.025 −39.29 5.78 1.94 −31.60

TABLE III. Summary of corrections for electronic hydrogen;
�Z, �R

p , and �pol come from Tables I and II.

Quantity
�Ehfs�e−p� /EF

p�−1
Value �ppm�

1103.19
Uncertainty
�ppm�0.01

�QED 1136.19 0.00

��vp
p +�hvp

p +�weak
p 0.14

�Z �using �32�� −41.43 0.44

�R
p �using �32�� 5.85 0.07

�pol �this work,
using �32��

1.88 0.64

Total 1102.63 0.78

Deficit 0.85 0.78
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obtained from the respective fits. There are, of course, corre-
lations. For example, some of the data are cross sections, so
that if the extracted GE goes up, then GM goes down. We
estimated the uncertainty in �Z by letting GE vary to the
maximum allowed by the respective authors’s error limits,
and doing so leads to variations in �Z of �0.085 ppm,
�0.33 ppm, and �0.80 ppm for the Arrington-Sick �AS�
�33�, Kelly �34�, and Friedrich and Walcher �FW� �35� fits,
respectively. This may be an argument for favoring the AS
fit. However, the variations among the results for the differ-
ent form factor fits are larger than some of the uncertainties
just quoted, and we have taken the approach of using the
result from the Arrington-Melnitchouk-Tjon �AMT� fit �32�
with an uncertainty chosen to accommodate the two most
modern of the other fits. A similar choice has been made for
the recoil corrections.

The total of the hfs corrections gives a result that is
0.85 ppm short of the data, with a quoted uncertainty of
0.78 ppm. The goal of a 1 ppm calculation appears to have
been reached, with the theory versus data difference barely
over a standard deviation. There is no evidence of missing
physics at this level. Also, the uncertainty in the polarizabil-
ity term is now comparable to the uncertainty in the Zemach
term, which is purely dependent upon the elastic form fac-
tors.

D. Muonic hydrogen structure-dependent corrections

For muonic hydrogen we, of course, keep m��0. There
are no poles in the integrands of Eqs. �6�; the numerators of

the 
̃i are zero when the denominators are zero. For numeri-
cal purposes, one can analytically divide to obtain


̃1��,��� = − 2��� +
�� + 1

��� + ��
�2��� + 4�����

+
���

��� + 1 + �� + 1
�2��� − 4�� ,


̃2��,��� = 2���− 1 +
��� + 1
��� + ��

+
��

��� + 1 + �� + 1
� .

�23�

Evaluating �i for the 0�Q2�Q1
2=0.0452 GeV2 data gap is

somewhat different from the electron case. Now, ��=�� and
is small �in the range 0 to about 1� rather than very large,
although � is still fairly large. A numerically good approxi-
mation for these ranges is


̃1��,��� � 
1�����1 −
1

6�
� . �24�

This leads to

�1�0,Q1
2� = �−

1

3
	p

2rP
2 + 8mp

2c1 −
mp

2

3�
�0��

0

Q1
2

dQ2
1���� ,

�25�

where �0 is the forward spin polarizability,

�0 =
2�

mp
�

�th

� d�

�4 g1��,0� �26�

and �th=m�+ �m�
2 +Q2� / �2mp�. From data, �0

= �−1.01�0.08�stat��0.10�syst���10−4 fm4 �36�, and c1
=4.50�0.35�1.42 is from the analog of Eq. �19� but for
�1�Q2�=�0

xthdxg1�x ,Q2� �26�.
The evaluation of the polarizability corrections for higher

Q2 is similar to the evaluation in the electronic case, and
depends upon the same combination described previously of
the EG1 collaboration data for g1 /F1, Christy and NMC/
E143 fits for F1, and supplements from Simula et al. and
E155 fits where there is no EG1 collaboration data �20–25�.

Table IV shows the breakdown of contributions to �pol for
muonic hydrogen using the AMT �32� elastic form factor.
Error limits in the table are combined the same way as for
Table I. Finally combining the statistical-, systematic-, and
model-dependent errors in quadrature yields

TABLE IV. Contributions to �pol for muonic hydrogen. As in Table I, statistical, systematic, and modeling
errors are given in the parentheses.

Term Q2 �GeV2� From Value with AMT �32� F2

�1 �0, 0.0452� F2 and g1 0.86�0.17��0.67�� �
�0.0452, 20� F2 6.77 � � �0.21� � �

g1 0.18�0.18��1.6��0.64�
�20, �� F2 0.00 � � �0.00� � �

g1 0.11 � � � � �0.01�
Total �1 7.92�0.25��2.30��0.66�
�2 �0, 0.0452� g2 −0.12 � � � � �0.12�

�0.0452, 20� g2 −0.29 � � � � �0.29�
�20, �� g2 −0.00 � � � � �0.00�

Total �2 −0.41 � � � � �0.41�
�1+�2 7.51�0.25��2.30��0.77�
�pol �ppm� 351.0�12.0��107.0��36.0�

CARLSON, NAZARYAN, AND GRIFFIOEN PHYSICAL REVIEW A 78, 022517 �2008�

022517-6



�pol = 351 � 114 ppm. �27�

Results for �pol using other form factors are, as in the elec-
tron case, not greatly different on a scale set by the current
systematic errors on �pol. Results are shown in Table V.

Also in Table V are results for the Zemach and recoil
corrections in the muon case. The structure-dependent cor-
rections become large compared to the electron case since
they are, unlike the QED corrections, proportional to the
lepton mass. The Zemach corrections follow simply from
scaling the electron case with the new reduced mass. The
recoil corrections are easily recalculated and include the two-
loop corrections of Bodwin and Yennie in Eq. �22�. The latter
scale directly with the lepton mass; they were 0.46 ppm for
the electron case and are here 96 ppm. The extra radiative
recoil corrections that accounted for 0.09 ppm in the electron
case have been omitted. The vacuum polarization part of
these corrections are easy to scale to the muon case �17�, but
formulas are not available for the self-energy part. These
corrections were, for electronic hydrogen, small compared to
the current overall accuracy of the final result.

E. Estimates regarding �2

In this section we reconsider �2, first using the Wandzura-
Wilczek �WW� approximation �37�, and then considering
what existing proton data can tell us about the non-
Wandzura-Wilczek part of �2. After reconsideration, we
shall still believe that �2 based on the EG1 collaboration
model, with 100% error limits, is satisfactory for the present
hfs accuracy goal.

The structure function g1 can be divided into

g2�x,Q2� = g2
WW�x,Q2� + ḡ2�x,Q2� , �28�

where the Wandzura-Wilczek relation states

g2
WW�x,Q2� = − g1�x,Q2� + �

x

xth g1�y,Q2�
y

dy . �29�

Although at high Q2, g2
WW is the leading twist contribution

and ḡ2 is the higher twist component, this formal division is
well defined all the way to Q2=0. Hence, we can define

B2�Q2� = B2
WW + B̄2,

B2
WW�Q2� = �

0

xth

dx
2���g2
WW�x,Q2� ,

B̄2�Q2� = �
0

xth

dx
2���ḡ2�x,Q2� . �30�

Substituting and manipulating yields

B2
WW = �

0

xth

dx
3���g1�x,Q2� , �31�

in which


3��� = 4���� + 1� − 4� − 2�� ln��� + 1 + 1
��

� , �32�

for the electron case. The function 
3 has limits


3��� = �ln � − 2 ln 2 + 4��� − 4�, � → 0,


3��� = −
1

6�
+

1

10�2 + ¯ , � → � . �33�

The result is �2
WW=−0.71�0.08�0.10�0.01 using the

same data and techniques as for determining B1 and �1.
For the muon case, one replaces 
3 by


̃3��,��� = − 
̃2��,��� − 2�� + 2������ + 1�

+ 2������ + 1� ln���� + 1 + �� + 1
��� + ��

�
− 2�� ln��� + 1 + 1

��
� , �34�

and obtains �2
WW��p�=−0.57�0.06�0.10�0.01.

Notice that we obtain negative �2, which means that the
main support in the integrals comes from regions where
g2�x ,Q2� is positive. Hence, the main contribution to the hfs
from the g2 terms comes from the resonance region, and
specifically from the region of the ��1232� resonance, since
the existing data shows g2 is positive there and negative else-
where. As the integrals also have stronger support at low Q2,
one specific need for more data would be in the higher reso-
nance and continuum regions at low Q2.

TABLE V. For muonic hydrogen hyperfine splitting: Zemach radii �as before, included for completeness�,
�Z including 
Z

rad, recoil corrections, polarizability corrections, and the summed structure-dependent correc-
tions �S, for four modern form factors, with the dipole form factor included as a benchmark. Typical errors
on �S are �120 ppm.

Form factor
rZ

�fm�
�Z

�ppm�
�R

p

�ppm�
�pol

�ppm�
�S

�ppm�

AMT �32� 1.080 −7703.0 931.0 351.0 −6421.0

AS �33� 1.091 −7782.0 931.0 353.0 −6498.0

Kelly �34� 1.069 −7622.0 931.0 353.0 −6338.0

FW �35� 1.049 −7479.0 939.0 370.0 −6170.0

Dipole 1.025 −7311.0 935.0 362.0 −6014.0
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There is interest among hadronic physicists in the higher
twist component ḡ2�x ,Q2�. In particular, the higher twist co-
efficient defined by

d2�Q2� � 3�
0

xth

x2ḡ2�x,Q2�dx = �
0

xth

x2�2g1 + 3g2�dx

�35�

has been studied by experimenters.
Osipenko et al. �38� quote results for d2�Q2� that are small

at low and high Q2, but significant and positive for values
within a decade on either side of Q2=1 GeV2. However, they
also give systematic errors, and these are very large. For
comparison, Kao et al. �39� also model d2, and do not find a
fixed sign.

At one value of Q2, namely, 1.3 GeV2, there is good data
on the proton’s g2�x ,Q2� from the RSS collaboration �40�.
This data shows that g2 is typically about one-half of g2

WW, at
this Q2. If this is generally true, then �2 is, of course, about
one-half the �2

WW values just quoted.
We conclude that, partly because of the smallness of the

contribution, the existing data allows us to use the �2 values
quoted in our tables, with confidence that the generous per-
centage error limits will include any changes that will come
with better data. Of course, we do want more complete data
�there is already more complete data for neutron targets, ex-
tracted from polarized 3He targets� and know that experi-
menters are also interested.

III. CONCLUSIONS

Our result for the polarizability corrections to the hfs of
the hydrogen ground state is

�pol = 1.88 � 0.64 ppm, �36�

where the error limit includes both statistical and systematic
uncertainties. The main ingredient in this determination is
the recently presented data on the spin-dependent structure
function g1�� ,Q2� from the Jefferson Laboratory EG1 col-
laboration �20�. The result is somewhat larger than our pre-
viously presented �pol �26�, and the quoted uncertainty limit
is also larger due to a better comprehension of the systematic
error.

There are also recent results on �pol from Faustov, Gor-
bachova, and Martynenko �29�. They have not used the EG1
collaboration data, relying instead on theoretically motivated
fits to earlier data. Their result is somewhat larger than ours,
but compatible within error limits.

A consequence of the slightly larger �pol and larger un-
certainty is that the calculated hfs is just within 1 ppm, and
just about one standard deviation, from the experimental
value. The goal of a 1 ppm hydrogen hfs calculation appears
to be realized. One needs to make this claim with some dif-
fidence; a well-known �16� paper is sometimes read as hav-
ing made this claim in 1988. However, the claim only re-
ferred to the accuracy of the methods, and the authors
themselves pointed out that the polarizability correction at
that time was known only as compatible with zero to the
4 ppm level, and that the dipole form factor they used al-

ready differed systematically from the data. Indeed, Ref. �17�
found that a better low Q2 fit to the form factor data changed
the Zemach contributions by about 2 ppm. Now, both form
factors and structure functions are better known, and a claim
of 1 ppm accuracy is plausible, with, at this level, no un-
known terms remaining to be included.

Further improvement in the calculation of hfs using elec-
tron scattering data depends upon further improvement in the
data and/or its analysis. The largest uncertainty currently fol-
lows from systematic uncertainties in the inelastic structure
functions. In Tables I and IV we give error limits separately
for the statistical, systematic, and modeling errors. “System-
atic” here means systematic errors only from the data, and
“modeling” is the uncertainly estimated from the models that
we use to complete the integrals where there is no data. The
statistical errors are small. The largest errors are the system-
atic ones, which can only be improved by understanding the
apparatus better, or by improved apparatus.

In addition, the uncertainty in the Zemach term, which
depends upon elastic form factors, is also noticeable. Even
restricting to modern form factor fits, there is a 2% variation
in the charge radius, with the fit �33,41� arguably most atten-
tive to the low Q2 data giving the largest result. Progress may
depend not only on experimental progress, but also on a
clearer understanding of the corrections needed to connect
electron scattering cross section and polarization data to the
form factors, and an assessment of how these corrections are
implemented in current and future form factor fits. Atomic
determinations, based upon Lamb shift measurements, are in
line with the lower values and have about 1% error limits
�42�. Further, the atomic determinations of the charge radius
will become remarkably more precise with the hope for suc-
cess of the muonic hydrogen Lamb shift experiment �4�.

The structure function g2�� ,Q2� is less important for the
hfs than g1, because the auxiliary function that multiplies it
tends to be numerically small. This is good, given that g2 is
harder to measure than g1, and there is little data for the
proton. We included the g2 contributions with 100% uncer-
tainty limits and we believe these suffice. The overall uncer-
tainty still comes mainly from g1. We did give some further
consideration to the g2 contributions, in particular calculating
the Wandzura-Wilczek part and discussing the remainder.
And certainly, more g2�x ,Q2� data would be welcome, to
ensure that there are no surprises in, for example, the low Q2

region at low x �where the higher resonances and continuum
contribute�.

We have also given results for the structure-dependent
contributions to muonic hydrogen hfs. The total correction is
unambiguous, but for the massive lepton case the protocols
for separating the recoil and polarizability terms seem not yet
standardized. One hence needs to be watchful when adding
together terms from different sources. We have quoted alge-
braically all of the structure-dependent terms to leading cor-
rection order ��order ��� �mass radio�� �Fermi energy��,
with matching conventions. Our result for the polarizability
term is

�pol��−p� = �351 � 114� ppm, �37�

and for the structure-dependent terms overall, with the AMT
elastic form factors,
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�S��−p� = �Z + �R
p + �pol = �− 6421 � 140� ppm. �38�

These are the largest corrections for the muonic case. The
QED corrections, in particular, are very nearly the same size
as in the electronic case, since they do not have the mass
proportionality that the structure-dependent terms have.
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