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A time-independent many-body Rayleigh-Schrödinger perturbation theory is developed for total energy
functionals, which depend simultaneously on a wave function and on the associated electron density. The most
prominent example of such functionals is the Kohn-Sham energy functional, but similar situations occur as
well in quantum chemical solvent effect theories. In contrast to previous density-functional perturbation theo-
ries, formulated in terms of one-electron orbitals, the present approach provides energy and eigenvector
corrections for a many-electron wave function that satisfies a nonlinear effective Schrödinger equation. While
the perturbed eigenvalues of order n depend on the eigenvector corrections up to the nth order, perturbational
corrections of the total energy functional satisfy Wigner’s �2n+1� rule by virtue of nontrivial cancelations
between eigenvalue and double count corrections up to order n. As a direct consequence of the nonlinearity of
the effective Schrödinger equation, the wave-function corrections of any order are obtained by the solution of
a self-consistent equation involving the second functional derivative of the density functional. Explicit total
energy corrections are elaborated up to the fourth order. It is shown that the present approach reproduces
standard results of the density-functional perturbation theory for static one-electron perturbations. Furthermore,
two variants of the long-range Møller-Plesset correlation energy corrections in the range-separated hybrid
density-functional framework are derived and discussed.
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I. INTRODUCTION

In the past 20 years, density-functional perturbation
theory �DFPT� became a powerful tool to determine first-
and higher-order response properties in molecules and solids
�1,2�. DFPT was formulated first by Baroni �3� using a
Green’s-function �resolvent� technique for linear-response
properties. In the context of the efficient calculation of
higher-order response quantities, the importance of Wigner’s
�2n+1� rule was pointed out �4� and further elaborated on by
Gonze �5,6�. Gonze’s variation-perturbation framework �7,8�
has been generalized for nonorthogonal Kohn-Sham orbitals
�9� as well. A common feature of these methods is that they
are formulated in a one-electron �orbital� framework. This is
understandable in the context of the Kohn-Sham theory,
which is an effective independent-particle method, where
many-body effects are taken into account via a density-
dependent effective potential, obtained as the functional de-
rivative of a nonlinear density functional. Since the perturb-
ing external potential �e.g., nuclear displacement, external
electromagnetic field, etc.� modifies the one-electron poten-
tial in the Kohn-Sham Hamiltonian, which is nonlinear in the
electron density, a self-consistent procedure is necessary to
obtain the perturbed orbitals and energies, in close analogy to
the perturbed coupled Hartee-Fock perturbation equations.

One can envisage other situations in which the one-
electron, independent-particle model cannot be maintained.
For instance, in the recently proposed generalization of the
Kohn-Sham method �10,11�, which consists in replacing the
noninteracting Kohn-Sham reference system by a weakly
�long-range� interacting one, but retains an effective one-
electron density-functional description of the short-range
electron interactions via a density-dependent effective poten-

tial, the model Hamiltonian becomes nonlinear, while at the
same time it has a many-body character. In this context, we
have recently raised the question of whether it is possible to
elaborate a general, time-independent Rayleigh-Schrödinger
perturbation theory �RSPT� �12,13� for N-electron wave
functions that satisfy a nonlinear many-body Hamiltonian
�14�. In a study of long-range correlation corrections ap-
proximating London dispersion forces in the range-separated
hybrid density-functional approach �14,15�, the necessary
second-order correlation corrections were derived. Neverthe-
less, the question of elaborating on a general perturbation
theory for nonlinear Hamiltonians has been left open.

It should be noted that other types of model Hamiltonians,
depending explicitly on the electron density, may lead to
analogous perturbation theory problems. One can mention
the case of quantum chemical solvent effect theories �16–18�
based on some of the variants of the reaction field model
�19�. Here the solvent potential depends on the charge den-
sity of the quantum chemically treated solute molecule. A
reformulation of the RSPT for a solvent potential as pertur-
bation has been discussed in Refs. �20,21�, while the case of
linear �density-independent� perturbations to a system de-
scribed by a nonlinear reaction field Hamiltonian has been
derived in Ref. �22�. According to our knowledge, specific
problems of the perturbation theory related to the nonlinear-
ity of density-dependent effective Schrödinger equations
were first discussed by Tapia and his co-workers �23,24�.

In all of the above-mentioned cases, the main difficulty in
the development of a perturbation theory is related to the
nonlinear character of the effective Schrödinger equation.
This nonlinearity comes from a density-dependent term of
the effective Hamiltonian, related either to the exchange-
correlation density functional or to the density-dependent ef-
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fective solvent �polarization� potential. A central result,
which has been proven independently in the case of the
DFPT �4–6� and in that of the nonlinear RSPT for solvent
effect models �22�, is that due to a nontrivial cancelation of
terms at a given order, Wigner’s �2n+1� rule of perturbation
theory �25–28� is satisfied for the derivatives of the total
energy. The benefits of the �2n+1� rule could be exploited,
e.g., to calculate higher polarizabilities �8,29�, and they also
lead to significant simplifications in the second-order corre-
lation energy corrections to effective solvent effect Hamilto-
nians �30� as well as in the range-separated hybrid �RSH�
density-functional framework �14�.

Various self-consistent-field �SCF� �31� and density-
matrix �32� perturbation theories are also based on a nonlin-
ear effective Hamiltonian, the Fockian. In this latter case, the
nonlinearity is due to the Hartree-Fock potential, which de-
pends on the first-order density matrix, instead of the density
itself. Although this case will not be treated here, the gener-
alization of the forthcoming results, by replacing the density
as the central variable with the first-order density matrix,
seems to be relatively straightforward �33�.

Other type of perturbation theories specifically designed
for the treatment of the electron correlation problem have
been elaborated on in the past, based on a Kohn-Sham
zeroth-order Hamiltonian. The prototype of such approaches
is the Görling-Levy perturbation theory �34–36�, �GLPT�,
which has been generalized in view of obtaining an explicit
expression for the correlation potential �37–48�. Although
the perturbed Hamiltonian of the GLPT has a similar nonlin-
ear character as in the problems outlined above �36�, the
explicit treatment of nonlinearity could be avoided by per-
forming the perturbation expansion of the correlation energy
at constant density. However, as far as the initial density is
not the exact Kohn-Sham density, the GLPT is supposed to
be used iteratively by improving the correlation potential ob-
tained as the functional derivative of the correlation energy
correction obtained in the previous step. This is an implicit
way to take into account the inherently nonlinear character of
the problem.

It seems to be a challenging question whether it is pos-
sible to develop a general perturbation theory framework for
nonlinear effective Schrödinger equations, which is equally
valid for both one- and two-electron perturbations and
handles the nonlinearity explicitly at each order. As men-
tioned previously, the family of approaches, which is often
called density-functional perturbation theory in a narrower
sense, was originally developed to treat one-particle pertur-
bations �1�. Its formulation remains in the independent-
particle framework, which makes it less obvious to general-
ize it for cases in which the perturbation is of two-particle
nature, as in the explicit perturbational treatment of the elec-
tron correlation problem of the nonlinear case. In the follow-
ing, it will be shown that such a common framework can be
established for both kinds of perturbations. Starting from the
condition that the total energy can be written as a minimum
principle, applied to the normalized expectation value

���Ĥ��� of a linear Hamiltonian, Ĥ, plus a functional, F�n�,
of the electron density, n�r�= ���n̂�r����, a general perturba-
tion theory will be developed without specifying from the

outset the nature of the perturbation itself. As illustrated by
the examples given in Sec. IV, specific equations describing
both one- and two-electron perturbations can be easily ob-
tained from the general perturbation equations.

The main results of this paper consist in the elaboration of
RSPT energy corrections for the total energy of model prob-
lems that can be described by nonlinear time-independent
many-body Schrödinger equations. In addition to the
general-order expressions, explicit second-, third- and
fourth-order RSPT energy corrections are given in Eqs. �66�,
�68�, and �77�, respectively. Self-consistent equations to ob-
tain first- and second-order wave-function corrections are de-
rived as well in Eqs. �47� and �51�. Higher-order generaliza-
tion of the second-order perturbation expressions used in the
range-separated hybrid+second-order Møller-Plesset �RSH
+MP2� approach �14,15� is provided by Eqs. �106� and
�109�, and the second-order working equations �118� and
�120� are derived for the case in which the conventional ap-
proximate Kohn-Sham determinant is considered as the
zeroth-order approximation of the range-separated problem.

Section II is devoted to a presentation of the basic defini-
tions for the RSPT for a nonlinear Schrödinger equation.
Perturbational expansion is given for the functional and for
the corresponding effective potential. The derivation of the
perturbation expansion of the variational total energy expres-
sion and of the associated wave-function corrections is given
and discussed in Sec. III. Section IV provides a few ex-
amples of application of the general theory, namely the
coupled perturbed Kohn-Sham equations and the second-
order Møller-Plesset long-range correlation energy correc-
tions in the range-separated hybrid framework. Finally, con-
clusions and some perspectives will be presented in Sec. V.

II. RSPT FOR NONLINEAR SCHRÖDINGER
EQUATIONS

A. General definitions

A wide class of model problems that provide a simplified
representation of a fully interacting physical system can be
defined by a variational total energy expression that includes
a functional of the electron density,

E = min
�→N

����Ĥ��� + F�n��	 , �1�

and leads to the associated nonlinear Euler-Lagrange �effec-
tive Schrödinger� equation,

�Ĥ + �̂�n��	��� = E��� , �2�

where Ĥ is an N-electron, possibly interacting Hamiltonian
�not equal to the physical Hamiltonian�, F�n�� is a functional
of the total electron density, n��r�= ���n̂�r����, obtained
from the normalized wave function as the expectation value
of the electron density operator, n̂�r�=
i

N��r−ri�. A typical
example of a model that leads to such a problem is the Kohn-

Sham method. The Hamiltonian Ĥ, appearing in Eq. �1�, is

Ĥ= T̂+ V̂ne, where T̂ is the kinetic energy operator and V̂ne is
the operator of the electron-nuclear attraction. The functional
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F�n��, associated with this particular model is EHxc�n��, the
Hartree-exchange-correlation functional,

EHxc�n� = FHK�n� − Ts�n� , �3�

i.e., the difference between the universal Hohenberg-Kohn
functional �49�

FHK�n� = min
�→n

���T̂ + Ŵee��� �4�

and the noninteracting kinetic energy functional, Ts�n�,

Ts�n� = min
�→n

���T̂��� = ��KS�T̂��KS� . �5�

The effective Hamiltonian of the corresponding Euler-
Lagrange equation, Eq. �2�, is the noninteracting Kohn-Sham

Hamiltonian, T̂+ V̂ne+ V̂Hxc= T̂+ V̂s, where V̂s is the Kohn-
Sham potential.

As another example of a quite different nature, one could
cite the case of the reaction field solvent effect models

�16–18�. Here the Hamiltonian Ĥ is the usual molecular
Hamiltonian of the solute, while the functional F�n� de-
scribes the electrostatic solvation energy as a quadratic func-
tional of the solute multipole moments. Further specific ex-
amples, related to range-separated hybrid density-functional
theory, will be discussed in Sec. IV.

The variation in Eq. �1� is performed for normalized
N-electron wave functions, �. The eigenvalue of the effec-
tive Schrödinger equation, E, is the Lagrange multiplier, re-
lated to the normalization constraint on the wave function.

The density-dependent potential operator, �̂=�dr��r�n̂�r�, is
defined through the local scalar potential ��r�, functional
derivative of F�n��,

��r��n� =
�F�n�
�n�r�

. �6�

As a consequence of the presence of a density-dependent

�nonlinear� potential operator, �̂�n��, the effective Hamil-
tonian of Eq. �2� itself is nonlinear, i.e., it depends on its own
lowest eigenfunction. In contrast to the usual linear case, the
eigenvalue E is not equal to the variational total energy. This
latter can be obtained from the relationship between the ei-
genvalue, the expectation value of the potential operator, and
the density functional, such as

E = E − ����̂��� + F�n�� = E −� dr
�F�n�
�n�r�

n�r� + F�n�� .

�7�

The quantity F�n��− ����̂��� is usually called double count
correction �50�. The term “double count” may be related to
the fact that in the case of a second-order nonlinearity �e.g.,
Hartree-energy�, the corresponding functional is half of the

expectation value of the potential 2F�n��= ����̂���. Al-
though for general functionals �e.g., in DFT� the relationship
can be more complicated, the DFT literature has retained this
terminology in a wider sense. Since one is working on a
model that is designed to reproduce the total energy and
certain properties �e.g., electron density� of the physical sys-

tem, it is plausible that the eigenfunctions and the corre-
sponding eigenvalues of the auxiliary effective Schrödinger
equation are not necessarily the same as those of the physical
Hamiltonian.

Considering a partition of the Hamiltonian to a zeroth-

order part and a perturbation, as Ĥ= Ĥ�0�+�Ŵ, where � is an
order parameter to be set to 1 at the end of the procedure, the
total energy E��� can be developed in power series of �. The

perturbation Ŵ is a Hermitian one-or two-electron operator,
whose nature will be specified later, in the context of the
various applications of the general perturbation scheme, in
Sec. IV. All three components, namely the eigenvalue of the
effective Schrödinger equation, E, the density functional,
F�n�, and the expectation value of the potential operator,

�̂�n�, are to be expanded in power series of �. The total
energy correction of a given order is given by the sum of
three contributions, provided by the respective corrections of
the same order.

B. Expansion of the charge density

The expectation value of the charge density operator

nr��� =

�=0

	 

=0
	 ��+
������n̂r���
��


�=0
	 

=0

	 ��+
��������
��
�8�

can be expanded into Taylor series with respect to � leading
to

nr��� = ���0��n̂r���0�� + 

m=1

	

�mnr
�m�. �9�

In this work, the intermediate �correlation� normalization,
���0� ���0��=1 and ���k� ���0��=0 for ∀k�0, will be
adopted. The lowest-order density corrections can be written
explicitly as

nr
�1� = ���0��n̂r���1�� + ���1��n̂r���0�� �10�

and

nr
�2� = ���0��n̂r���2�� + ���2��n̂r���0�����1��n̂r − �n̂r����1�� .

�11�

Note that this definition of nr
�2� contains an explicit contribu-

tion, −�n̂r����1� ���1��, due to the intermediate normalization
of the wave function. This is a difference with respect of the
definition for the second-order charge density by Gonze �6�,
who used another normalization convention �28�, leading to
somewhat different explicit energy corrections at higher than
third order.

The general definition of the mth-order charge density
correction is given formally as

nr
�m� =

1

m!

dm

d�mnr������=0, �12�

which leads to the charge density correction at arbitrary or-
der,
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nr
�m� = ���0��n̂r���m�� + ���m��n̂r���0�� + nr

�m̄�, �13�

where nr
�m̄� collects all contributions coming from wave-

function corrections of order lower than m, obeying the re-
cursion formula,

nr
�m̄� = 


j=1

m−1���j��n̂r − nr
�0����m−j�� − nr

�m−j�

i=1

j−1

���i����j−i��� .

�14�

C. Expansion of the double count correction

Suppose that the density functional F�n� can be expanded
in Taylor series around F�n�0��, where n�0��r�
= ���0��n̂�r����0�� is the density associated with the zeroth-
order wave function. In terms of the density shift, �nr=nr
−nr

�0�, one has the following general expression:

F�n���� = F�n�0�� + 

k=1

	
1

k!
Kr1,. . .,rk

�k� �
p=1

k

�nrp
��� . �15�

Expanding the density shift itself in power series of the per-
turbation parameter, �, as

�nr��� = 

m=1

	

�mnr
�m���� , �16�

the coefficient F�k� corresponding to the kth-order contribu-
tion to the power series,

F�n� − F�n�0�� = 

k=1

	

�kF�k�, �17�

is given formally as

F�k� =
1

k!
� dk

d�kF�n�����
�=0

. �18�

In particular, the kth-order contribution can be written as

F�k� = 

m=1

k
1

m!
Kr1,. . .,rm

�m� 

j1=1

k−1

¯ 

jm=1

k−1

�
p=1

m

nrp

�jp���k − 

p=1

m

jp� .

�19�

For the sake of notational brevity, the functions Kr1,. . .,rm

�m� , etc.
have been defined as functional derivatives of F�n�, for in-
stance

Krr�
�2� =

�2F

�n�r��n�r��
=

�2F

�n2 , �20�

Krr�r�
�3� =

�3F

�n�r��n�r���n�r��
=

�3F

�n3 , �21�

Kr,r�,r�,r�
�4� =

�4F

�n�r��n�r���n�r��n�r��
=

�4F

�n4 . �22�

The implicit integration convention for the repeated lower
indices can be illustrated by the following example:

Krr�
�2�nr

�2�nr�
�1�

�� � drdr�K�2��r,r��n�2��r�n�1��r�� . �23�

In some of the forthcoming equations, an explicit �but sym-
bolic� indication of the functional derivatives, �nF /�nn, will
be preferred to the shorthand Kr,. . .,r�r�

�n� notation. Explicit low-
order terms of the � expansion of the functional are given in
Appendix A.

In an analogous manner, the power series of the potential
�r���,

�r��� = 

m=0

	

�m�r
�m�, �24�

can be obtained as the functional derivative of F�n�, i.e.,

�r1
��� = �r1

�0� + 

k=1

	
1

k!
Kr1,. . .,rk+1

�k+1� �
p=2

k+1

�nrp
��� , �25�

and the corresponding kth-order potential is given by the
following general expression:

�r1

�k� = 

m=1

k
1

m!
Kr1,. . .,rm+1

�m+1� 

j1=2

k

¯ 

jm=2

k

�
p=2

m+1

nrp

�jp���k − 

p=2

m+1

jp� .

�26�

The lowest-order explicit formulas can be found in Appendix
A.

The kth-order potential operator �̂�k�=�r
�k�n̂r contains al-

ways a contribution of kth-order charge-density correction,
according to the following general scheme:

�̂�k� = �̂� k̄ � + n̂rKrr�
�2�nr�

�k�, �27�

where all the terms that contain lower than kth-order density

correction contributions have been collected in �̂� k̄ �. The
kth-order contribution to the expectation value of the poten-
tial operator consists in a sum of integrals of the mth-order
potential and the �k−m�th-order charge density,

��̂��k� = 

m=0

k

�r
�m�nr

�k−m�, �28�

which can be evaluated by the general expression

��̂��k� =�r
�0�nr

�k� + �r
�k�nr

�0�

+

m=2

k
1

�m−1�!
Kr1,. . .,rm

�m� 

j1=1

k−1

¯ 

jm=1

k−1

�
p=1

m

nrp

�jp���k− 

p=1

m

jp� .

�29�

Finally, combining the expansions of the functional and
the expectation value of the potential operator, the double
count correction of the kth order is obtained as
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F�k� − ��̂��k� = − �r
�k�nr

�0� − 

m=2

k
m − 1

m!
Kr1,. . .,rm

�m�

� 

j1=1

k−1

¯ 

jm=1

k−1

�
p=1

m

nrp

�jp���k − 

p=1

m

jp� . �30�

D. Perturbational solution of the effective Schrödinger
equation

1. Expansion and eigenvalue corrections

The effective Schrödinger equation

�Ĥ�0� + �Ŵ + �̂�n��	��� = E��� �31�

can be expanded in power series of the perturbational param-
eter � using the Taylor expansions of the eigenvalue, E, the

eigenfunction, �, and of the potential operator, �̂,

E = 


=0

	

�
E�
�, �32�

��� = 


=0

	

�
���
�� , �33�

�̂ = 


=0

	

�
�̂�
�, �34�

leading to




=0

	

�
Ĥ�0� + �Ŵ + 

=0

	

��̂������
�� = 


=0

	



=0

	

�+
E�����
�� .

�35�

After regrouping the terms in the same power of �, one ob-
tains at the zeroth order

�Ĥ�0� + �̂�0�	���0�� = E�0����0�� . �36�

For the general kth order,

�Ĥ�0� + �̂�0� − E�0�	���k�� + Ŵ���k−1��

= 

=1

k

�E�� − �̂��	���k−�� . �37�

The kth-order eigenvalue correction is obtained after multi-
plication of the kth-order equation by ���0��

E�k� = ���0��Ŵ���k−1�� + 

=1

k

���0���̂�����k−�� . �38�

It should be recalled that the presence of a kth-order contri-

bution from �̂�k� �=k in the summation� requires the knowl-
edge of the kth-order wave function.

2. Wave-function corrections

A convenient way to express the eigenfunction correc-

tions consists in introducing the reduced resolvent, R̂0, de-
fined by the equation

R̂0�Ĥ�0� + �̂�0� − E�0�	 = 1 − ���0�����0�� , �39�

and the kth-order wave-function correction is obtained by
applying the reduced resolvent to the kth-order equation,
leading to

���k�� = − R̂0Ŵ���k−1�� − R̂0

=1

k

��̂�� − E��	���k−�� .

�40�

Using that R̂0���0��=0, the first- and second-order wave-
function corrections are, respectively,

���1�� = − R̂0�Ŵ + �̂�1�	���0�� , �41�

���2�� = − R̂0�Ŵ + �̂�1� − �Ŵ + �̂�1��	���1�� − R̂0�̂�2����0�� ,

�42�

where �Ŵ+�̂�1��= ���0��Ŵ+�̂�1����0��.
Although it is not immediately obvious, one should real-

ize that the kth-order wave-function corrections must be de-
termined self-consistently, because the kth-order potential

�̂�k� depends on ���k��. For instance, consider the expansion

of the kth-order potential operator, �̂�k�, in the following
form, cf. Eqs. �13� and �28�:

�̂�k� = �̂� k̄ � +� � drdr�n̂�r�K�2��r,r������0��n̂�r�����k��

+ ���k��n̂�r�����0��	 , �43�

where �̂� k̄ � collects all the contributions that come
from wave-function corrections of order inferior to
k. Since K�2��r ,r��=K�2��r� ,r� and ���0��n̂�r�����k��
= ���k��n̂�r�����0��, the second term can be rewritten as
2��drdr�n̂�r�K�2��r ,r�����0��n̂�r�����k��. Introducing the ef-

fective interaction operator, Ĝ0,

Ĝ0 = 2� � drdr�n̂�r����0��K�2��r,r�����0��n̂�r�� , �44�

one arrives at the following simple form of Eq. �43�:

�̂�k����0�� = �̂�k̄����0�� + Ĝ0���k�� . �45�

Substituting Eq. �45� in the kth-order wave-function correc-
tion, the nonlinearity becomes obvious through the presence
of the last term, containing ��k�,
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���k�� = − R̂0Ŵ���k−1�� − R̂0

=1

k−1

��̂�� − E��	���k−��

− R̂0�̂� k̄ ����0�� − R̂0Ĝ0���k�� . �46�

Application of the above expression to the first-order wave-
function correction leads to

���1�� = − R̂0Ŵ���0�� − R̂0Ĝ0���1�� , �47�

which can be formally rearranged by introducing an effective

screening factor, �1+ R̂0Ĝ0�−1, as

���1�� = − �1 + R̂0Ĝ0�−1R̂0Ŵ���0�� . �48�

Using the series expansion of the effective screening factor,
one obtains

���1�� = − 

n=0

	

�− R̂0Ĝ0�nR̂0Ŵ���0�� , �49�

where the sum can be constructed by recursion.
In a similar manner, the second-order wave-function cor-

rection is seen to satisfy the following self-consistent equa-
tion:

���2�� = − R̂0�Ŵ + �̂�1� − �Ŵ + �̂�1�����1��

− R̂0�̂�2̄����0�� − R̂0Ĝ0���2��� , �50�

which can be formally solved as

���2�� = − �1 + R̂0Ĝ0�−1R̂0�Ŵ + �̂�1� − �Ŵ + �̂�1��	���1��

− �1 + R̂0Ĝ0�−1R̂0�̂�2̄����0�� . �51�

Here �̂�2̄� denotes the part of the second-order potential op-
erator that is independent of the second-order wave-function
correction,

�̂�2̄� =� � drdr�n̂�r�K�2��r,r�����1��n̂�r�� − n�0��r�����1��

+
1

2
� � � drdr�dr�n̂�r�K�3��r,r�,r��n�1��r��n�1��r�� .

�52�

In fact, the effective screening factor, �1+ R̂0Ĝ0�−1, that
handles formally the nonlinearity, occurs in the same form in

all orders. Introducing the notation �� k̄ � for the wave-
function correction of order inferior to k,

�� k̄ � = − R̂0Ŵ���k−1��

− R̂0

=1

k−1

��̂�� − E������k−�� − R̂0�̂� k̄ ����0�� ,

�53�

the kth-order wave-function correction satisfies an equation
of the following general form:

���k�� = − 

n=0

	

�− R̂0Ĝ0�n��� k̄ �� , �54�

where the iterative calculation of the infinite sum can prob-
ably be truncated at a low value of n.

Remark that in the first-order case, Eq. �37� becomes

�Ĥ�0� + �̂�0� − E�0�����1�� = − �Ŵ + �̂�1� − E�1�	���0�� ,

�55�

and it can be considered as the many-body analog of the
generalized Sternheimer equation �51–53�.

III. PERTURBATIONAL CORRECTIONS TO THE TOTAL
ENERGY

The kth-order total energy correction is given by the sum
of the eigenvalue, Eq. �38�, and double count Eq. �30� cor-
rections. The last term in the sum of the eigenvalue correc-

tion, ���0���̂�k����0��, cancels with the term �r
�k�nr

�0� in the
double count correction, and we have

E�k� = ���0��Ŵ���k−1�� + 


=1

k−1

���0���̂�
����k−
�� + EF
�k�,

�56�

where EF
�k�=F�k�− ��̂��k�+�r

�k�nr
�0� collects all the “functional-

dependent” contributions.
This total energy expression is in contradiction with

Wigner’s �2n+1� rule, which tells that energy corrections of
order 2n and 2n+1 are fully determined by the wave-
function corrections up to order n �6,33�. While it can be
expected that the �2n+1�-rule violating terms involving the
density functional and its derivatives cancel each other, the

matrix elements of the perturbation operator Ŵ depending on
the wave-function corrections up to order k−1 should be
converted to another form, which does not contradict Wign-
er’s �2n+1� rule. Such a turnover transformation �28,54–56�
of the matrix elements has been derived for a nonlinear
Schrödinger equation in Ref. �33� as

���0��Ŵ���p�� = ���m��Ŵ���p−m��

+ 

j=1

m

���p+1−j��E�j� − �̂�j����0��

− 

j=1

m




=0

p−m

���j��E�p+1−j−
� − �̂�p+1−j−
����
�� .

�57�

Applied to the kth-order energy correction, Eq. �56�, the
turnover expression leads to the following form of the total
energy correction:
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E�k,m� = ���m��Ŵ���k−m−1��

+ 

j=1

m

���j���̂�k−j����0�� + 

j=m+1

k−1

���k−j���̂�j����0��

− 

j=1

m




=1

k−m−1

���j��E�k−j−
� − �̂�k−j−
����
�� + EF
�k�,

�58�

where m�k indicates the number of times the basic turnover
transformation has been applied.

Explicit total energy corrections for even �2n� and odd
�2n+1� orders can be obtained by setting m=n and k=2n or
k=2n+1,

E�2n� = ���n−1��Ŵ���n�� + 

j=1

n

���j���̂�2n−j����0��

+ 

j=n+1

2n−1

���j���̂�2n−j����0��

+ 

j=1

n




=1

n−1

����j���̂�2n−j−
����
�� − E�2n−j−
����j����
���

+ EF
�2n�, �59�

E�2n+1�= ���n��Ŵ���n�� + 

j=1

n

���j���̂�2n+1−j����0��

+ 

j=n+1

2n

���j���̂�2n+1−j����0��

+

j=1

n




=1

n

����j���̂�2n+1−j−
����
��−E�2n+1−j−
����j����
���

+ EF
�2n+1�. �60�

Further cancelations are expected on the basis of the gen-
eral �2n+1� rule. However, they seem to be difficult to for-
malize in a general way, for instance between the functional
contribution EF

�2n� and the higher-order � contributions. They
will be treated in a case-by-case manner, by discussing the
lowest-order total energy expressions up to order 4.

A. Zeroth order

The zeroth-order total energy expression obtained directly
from Eq. �56�,

E�0� = E�0� −
�F

�nr
nr

�0� + F�n�0�� , �61�

is the sum of the eigenvalue, E�0�, and of the zeroth-order
double count correction.

B. First order

At first order, the general formula, Eq. �56�, provides

E�1� = ���0��Ŵ���0�� + ���0���̂�1����0��

−
�2F

�nr�nr�
nr

�1�nr�
�0� −

�F

�nr
nr

�1� +
�F

�nr
nr

�1�, �62�

where, like in Eq. �61�, the implicit integration convention is
used for the repeated lower indices. It is easy to see that the

���0���̂�1����0�� term in the eigenvalue correction is canceled
by the �r

�1�nr
�0�= ��2F /�nr�nr��nr

�1�nr�
�0� term of the potential,

while the �F /�nrnr
�1�=�r

�0�nr
�1� contributions to the functional

and the potential cancel each other trivially. Thus one obtains
the “conventional” energy correction,

E�1� = ���0��Ŵ���0�� , �63�

i.e., the expectation value of the perturbation operator with
the zeroth-order wave function. This result is a generaliza-
tion of the Hellman-Feynman theorem and it is a conse-
quence of the variational character of the solution of the
zeroth-order Schrödinger equation.

C. Second order

The general expression, Eq. �56�, applied to the second
order leads to

E�2� = ���0��Ŵ���1�� + ���0���̂�1����1��

−
1

2

�2F

�nr�nr�
nr

�1�nr�
�1�. �64�

Using the explicit form �A6� of the first-order potential, ��1�,
and remembering the form of the first-order density correc-
tion, Eq. �10�, it can be seen immediately that the second and
the third terms of Eq. �64� cancel each other, i.e.,

���0���̂�1����1�� −
1

2

�2F

�nr�nr�
nr

�1�nr�
�1� = 0, �65�

and finally one is left with an apparently “conventional”
form of the second-order energy correction,

E�2� = ���0��Ŵ���1�� . �66�

This expression is equivalent to Eq. �131� of Ref. �5� as far
as the external perturbation is considered to contain a linear
contribution only.

It should be kept in mind that the first-order wave-
function correction ���1�� itself is obtained from the solution
of the self-consistent equation, Eq. �47�, which means that in
general the nonlinearity of the problem appears already at
this order of the perturbation.

D. Third-order correction

Third- and higher-order total energy corrections can be
obtained after the application of the turnover relationship,
i.e., from Eqs. �59� or �60�, and handle the remaining �2n
+1�-rule violating contributions individually. For instance, in
the third-order case one obtains from Eq. �60�
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E�3� = ���1��Ŵ + �̂�1����1��

− E�1����1����1��

+ ���1���̂�2����0��

+ ���0���̂�2����1��

−
1

3

�3F

�nr�nr��nr�
nr

�1�nr�
�1�nr�

�1� −
�2F

�nr�nr�
nr

�1�nr�
�2�. �67�

After a series of relatively straightforward transformations

and using the definition of E�1� and �̂�2�, as detailed in Ap-
pendix B, the final third-order expression

E�3� = EW
�3� + E��1�

�3� + EF�3�
�3� �68�

is split into three components, each having a well-defined
physical origin.

The first contribution, EW
�3�, has the form of the usual third-

order RSPT correction,

EW
�3� = ���1��Ŵ − �Ŵ����1�� , �69�

calculated with the self-consistently determined first-order
eigenfunction correction of Eq. �47�.

There is an analogous term, E��1�
�3� , which is due to the

first-order shift of the density-dependent potential operator,

E��1�
�3� = ���1���̂�1� − ��̂�1�����1�� . �70�

The third contribution, EF�3�
�3� , involves the functional explic-

itly as

EF�3�
�3� =

1

6

�3F

�nr�nr��nr�
nr

�1�nr�
�1�nr�

�1�. �71�

In the special case of one-electron perturbations of a non-
interacting Kohn-Sham system, i.e., F�n�=EHxc�n�, Eq. �68�
is similar to the third-order DFPT expression obtained by
Gonze and Vigneron �4�, and it is equivalent to Eq. �112� of
Gonze �6� provided that the perturbation does not influence
the form of the local potential explicitly.

E. Fourth-order correction

The fourth-order energy correction, obtained directly from
the general formula, Eq. �59�, reads

E�4� = ���1��Ŵ���2�� + ���1���̂�1����2�� + ���1���̂�3����0��

+ ���0���̂�3����1�� + ���0���̂�2����2�� + ���1���̂�2����1��

− E�2����1����1�� − E�1����1����2��

−
1

8

�4F

�n4 n�1�n�1�n�1�n�1� −
�3F

�n3 n�1�n�1�n�2�

−
1

2

�2F

�n2 n�2�n�2� −
�2F

�n2 n�1�n�3�. �72�

After substitution of the first- and second-order eigenvalue
corrections and using the explicit expressions of the potential

operators, �̂�2� and �̂�3�, two alternative versions of the
fourth-order total energy correction, both in full harmony
with the �2n+1� rule, can be derived, as shown in Appendix
C. Both of these expressions contain a conventional fourth-
order term, due to the perturbation operator on the one hand,
and to the first-order shift of the potential operator on the
other,

EW
�4� = ���1��Ŵ − �Ŵ����2�� − ���0��Ŵ���1�����1����1�� , �73�

E��1�
�4� = ���1���̂�1� − ��̂�1�����2�� − ���0���̂�1����1�����1����1�� ,

�74�

as well as specific nonlinear terms.
According to the first variant, one of the contributions is

due to the second-order potential operator,

E��2�
�4� = ���0���̂�2����2�� + ���1���̂�2� − ��̂�2�����1�� , �75�

and another comes from the explicit functional terms,

EF�2,4�
�4� =

1

24

�4F

�n4 n�1�n�1�n�1�n�1� −
1

2

�2F

�n2 n�2�n�2�. �76�

The total fourth-order correction is the sum of the above
contributions,

E�4� = EW
�4� + E��1�

�4� + E��2�
�4� + EF�2,4�

�4� . �77�

In another alternative variant of the fourth-order energy

expression, the terms containing �̂�2� and the functional are
regrouped in a different way, as explained in Appendix C.
While the contributions EW

�4� and E��1�
�4� remain the same, the

last two contributions can be redefined as

E
��2��
�4�

= − ���0���̂�2����2�� , �78�

EF�2,3,4�
�4� =

1

2

�2F

�n2 n�2�n�2� +
1

2

�3F

�n3 n�1�n�1�n�2�

+
1

24

�4F

�n4 n�1�n�1�n�1�n�1�, �79�

leading to

E�4� = EW
�4� + E��1�

�4� + E
��2��
�4�

+ EF�2,3,4�
�4� . �80�

It should be noted that both forms of the fourth-order total
energy expression contain at most second-order wave-
function corrections. Equation �80� is equivalent to the
fourth-order result of Ref. �5�, disregarding E

��2��
�4�

contribu-
tion. This difference is a consequence of a different choice of
the normalization convention for the wave function.

IV. EXAMPLES OF APPLICATION

The above derived energy and wave-function corrections
are valid for arbitrary perturbations. In principle, they can be
applied in the context of many-electron �multideterminant�
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zeroth-order wave functions, and one has a wide choice as
far as the nature of the density functionals is concerned. In
the case of one-electron perturbations applied to the Kohn-
Sham independent particle system, one obtains the DFPT,
essentially the same as derived by Gonze and others. For
two-electron perturbations, like the long-range fluctuation
potential in the context of the range-separated hybrid func-
tionals applied to a zeroth-order Kohn-Sham determinant,
the general results apply and one can retrieve and generalize
earlier second-order results �14�. It should be recalled that
the same framework can be adapted to other kinds of more
general density-dependent functionals, such as those arising
in quantum chemical solvent effect models. In fact, a first
realization of the nonlinear RSPT has been worked out in a
solvent effect context �20–22� and applied recently to the
study of solvent effects on excited states �57�. It should also
be mentioned that the present perturbational scheme can be
applied to multiconfigurational zeroth-order problems. How-
ever, in such cases special attention should be paid to
quasidegeneracy problems �58�.

A. Coupled perturbed Kohn-Sham equations

The first example is the case of a time-independent one-

electron perturbation Ŵ= V̂=�dr�̂�r�v�r� applied to an elec-
tronic system described by the conventional Kohn-Sham
theory. The density functional, F�n�=EHxc�n�, is the Hartree-
exchange-correlation functional, and the unperturbed prob-
lem is the solution of the Kohn-Sham Hamiltonian, leading
to the Kohn-Sham determinant, ���0��= ���. The perturbation
can be a polarization under the effect of time-independent
electric fields, the displacement of atoms, permitting the
determination of the force constants, etc. The first-order
wave-function correction can be expanded in terms of
singly excited configurations generated from the Kohn-Sham
determinant,

���1�� = 

ia

ci
a��i

a� . �81�

After substitution of the above form of the wave-function
correction and the spectral expansion of the reduced resol-

vent R̂0 in terms of the excited eigenfunctions and eigenval-
ues of the Kohn-Sham Hamiltonian,

R̂0 = 

I��0�

��I���I�
EI − E0

= 

ia

��i
a���i

a�
�a − �i

+ 

ia



jb

��ij
ab���ij

ab�
�a + �b − �i − � j

+ ¯ , �82�

the first-order perturbation equation, Eq. �47�, becomes



ia

ci
a��i

a� = − 

kd

��k
d���k

d�V̂���
�d − �k

− 2

kd



jb

cj
b
��k

d���k
d�n̂r���Krr�

�2����n̂r��� j
b�

�d − �k
, �83�

where �k and �d are occupied and virtual one-electron Kohn-

Sham orbital energies, respectively. Note that only singly
excited determinants contribute to the reduced resolvent,

since both V̂ and n̂r are one-electron operators, which have
vanishing matrix elements between the ground state and dou-
bly excited Slater determinants.

After multiplication of the perturbation equation by �� j
b�,

and taking into account the orthogonality of the orbitals, the
following set of linear equations is obtained:



bj
�ij�ab��a − �i� + 2� � drdr��i

*�r��a�r�KHxc�r,r��

��
b
*�r��� j�r���cj

b

= −� dr�
i
*�r�v�r��a�r� , �84�

where the Hartree-exchange-correlation kernel, entering in
the definition of the effective interaction operator, Eq. �44�, is

KHxc�r,r�� =
1

�r − r��
+

�2Exc

�n�r��n�r��
. �85�

Denoting the quantity in curly brackets on the lhs of Eq. �84�
as Aia,jb, and the matrix element of the perturbation operator
on the rhs by via, the set of linear equations �84� can also be
written as



jb

Aia,jbcj
b = − via, �86�

which provides the second-order energy correction in terms
of the inverse of the Ajb,ia matrix,

E�2� = − 

jb



ia

v jbAjb,ia
−1 via. �87�

Recall that the A matrix can be calculated in various approxi-
mations. For instance, in the RPA �random phase approxima-
tion�, which consists in neglecting the exchange-corelation
�xc� contribution to the Hartree-exchange-correlation kernel,
KHxc�r ,r��, it reads

Aia,jb
RPA = �ij�ab��a − �i� + 2�ab�ij� , �88�

where the notation �ab � ij� stands for the electron repulsion
integral,

�ab�ij� =� � drdr��a
*�r��

b
*�r���r − r��−1�i�r�� j�r�� .

�89�

Equation �88� is the standard form of the static DFT pertur-
bation equations for real orbitals. Third- and fourth-order
response equations can be worked out along similar lines to
get first and second hyperpolarizabilities.

B. Long-range correlation corrections to range-separated
hybrid functionals

A promising approach to overcome several difficulties in
standard Kohn-Sham density-functional theory, related to the
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approximate nature of popular exchange-correlation func-
tionals, is based on the hypothesis that while short-range
electron interactions can be efficiently treated by a universal
density functional, long-range exchange and correlation ef-
fects are better handled by explicit wave-function techniques
�10,59,60�. This idea has led to a range-separated generali-
zation of the Kohn-Sham method �11�, where the noninter-
acting Kohn-Sham reference system is replaced by a “long-
range-interacting” one, defined by the following total energy
functional:

E� = min
��→N

�����T̂ + V̂ne + Ŵee
lr,����� + EHxc

sr̄,��n���	 . �90�

The short-range Hartree-exchange-correlation functional,
appearing in Eq. �90�, is defined as EHxc

sr̄,��n�=EHxc�n�
−EHxc

lr,��n� �11,14�. The total Hartree-exchange-correlation
functional has been already given in Eqs. �3�–�5� and the
long-range Hartree-exchange-correlation functional, EHxc

lr,��n�,
is defined in an analogous manner by taking the difference of
the universal long-range interacting functional,

FHK
lr,��n� = min

�→n
���T̂ + Ŵee

lr,���� , �91�

and Ts�n�, Eq. �5�. The notation sr̄ stresses the fact that the
above-defined short-range correlation functional is “comple-
mentary” with respect to the purely long-range functional
and, in addition to the short-range electron correlation, in-
cludes short-range—long-range coupling effects �61�.

If the short-range Hartree-exchange-correlation func-
tional, EHxc

sr̄,��n�, were known exactly, the total energy, E
=E�, would be independent of the parameter �, which con-
trols the separation between the two components of the e-e
interaction function, wee�r�=wee

sr,��r�+wee
lr,��r� entering in the

definition of the e-e interaction operators, Ŵee
=��dr1dr2wee��r2−r1��n̂2�r1 ,r2�, with n̂2�r1 ,r2� the operator
of the pair density. There are several possibilities to realize
the long-range–short-range separation of the Coulomb inter-
action �62�, e.g., by the error function, wee

lr,��r�=erf��r� /r,
but this particular detail does not influence the forthcoming
perturbational results, which are valid for arbitrary partition-
ing of the e-e interaction.

In the following, the perturbation theory will be applied
for the treatment of the long-range correlation effects. The
zeroth-order reference state, ��, will be a single determinant
obtained by the self-consistent solution of the Kohn-Sham
equations with the range-separated hybrid �RSH� functional
�14�, where long-range exchange effects are described in a
Hartree-Fock-like manner. It will be shown that the second-
order result, described earlier �14�, can be obtained as a spe-
cial case of the general theory outlined in the preceding sec-
tions. The main features of higher-order generalizations will
be discussed as well. For the sake of notational simplicity,
the superscript �, referring to the range-separation param-
eter, will be omitted in the forthcoming expressions.

The minimizing wave function � in Eq. �90� is provided
by the Euler-Lagrange �effective Schrödinger� equation �cf.
Eq. �2��,

�T̂ + V̂ne + V̂Hx,HF
lr ��� + �Ŵlr + V̂Hxc

sr̄ �n������ = E��� .

�92�

For �=1, the physical energy is recovered, while for �=0,
Eq. �92� reduces to the range-separated hybrid model: ���
=0�=�.

The perturbation, Ŵlr, switched on by a formal coupling
constant �,

Ŵlr = Ŵee
lr − V̂Hx,HF

lr ��� , �93�

is the long-range fluctuation potential operator, defined as the
difference between the exact long-range electron interaction
operator and its mean-field �Hartree-Fock-type� approxima-
tion. The following correspondences can be established with
the general RSPT scheme:

F�n� = EHxc
sr̄ �n�� , �94�

�̂�n�� = V̂Hxc
sr̄ �n�� , �95�

Ŵ = Ŵlr = Ŵee
lr − V̂Hx,HF

lr ��� . �96�

The zeroth-order energy is the sum of the Kohn-Sham
orbital energies plus the double count correction due to the
short-range Hartree-exchange-correlation functional,

E�0� = 

k

occ

�k −� drn��r�vHxc
sr̄ �r��n�� + EHxc

sr̄ �n�� , �97�

while the first-order correction,

E�1� = ���Ŵee
lr − V̂Hx,HF

lr ������ , �98�

provides the double count correction of the long-range Har-
tree and exchange energies, in close analogy with the usual
MP2 theory. The sum of these two terms provides the total
electronic energy in the RSH approximation.

The second-order correction can be formally written as

E�2� = − ���Ŵlr�1 + R̂0Ĝ0
sr̄�−1R̂0Ŵlr��� , �99�

or, by expanding the inverse operator in Taylor series, as

E�2� = − ���ŴlrR̂0Ŵlr��� − 

n=1

	

���Ŵlr�− R̂0Ĝ0
sr̄�nR̂0Ŵlr��� .

�100�

It is recalled that the short-range screened interaction opera-

tor, Ĝ0
sr̄, takes the form

Ĝ0
sr̄ = 2� � drdr�n̂�r����KHxc

sr̄ �n���r,r�����n̂�r�� ,

�101�

where the short-range Hartree-exchange-correlation kernel is
given by

KHxc
sr̄,��n��r,r�� =

�2EHxc
sr̄,��n�

�n�r��n�r��
. �102�
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In order to obtain an explicit expression in terms of occu-
pied and virtual RSH orbitals and their eigenvalues, one
should insert in Eq. �99� the spectral expansion of the re-
duced resolvent, Eq. �82�, in terms of the excited eigenfunc-
tions �I and eigenvalues EI of the effective RSH Hamil-
tonian. Denoting the contributions to the reduced resolvent

coming from single and double excitations by R̂0
S and R̂0

D,
respectively, the analysis of the second-order energy expres-
sion can be pursued in terms of matrix elements. It is easy
to show that singly excited determinants give vanishing
matrix elements with the ground-state determinant, i.e.,

��i
a�Ŵlr���=0. This is a consequence of a Brillouin-like

theorem, which is satisfied by the long-range electron inter-
action operator,

��i
a�Ŵee

lr ��� = ��i
a�V̂Hx,HF

lr ������ , �103�

as demonstrated in Appendix D. Since only the doubly ex-
cited determinants may have nonvanishing contributions and

V̂Hx,HF
lr ��� is a one-electron operator having zero matrix ele-

ments between determinants differing in two spin orbitals,
the second-order energy correction can be written as

E�2� = − ���Ŵee
lr R̂0

DŴee
lr ��� − 


n=1

	

���Ŵee
lr �− R̂0Ĝ0

sr̄�nR̂0
DŴee

lr ��� .

�104�

Furthermore, it should be noted that, as a consequence of the
Slater rules, the one-electron charge-density operator, n̂�r�,
has vanishing matrix elements between the determinant �
and the corresponding doubly excited configurations. There-
fore, the double excitations do not enter in the expansion of

the screening operator, i.e., R̂0
DĜ0

sr̄= Ĝ0
sr̄R̂0

D=0, and the second
line of Eq. �104�, containing nonlinearity contributions, is
always zero in the RSH+MP2 framework.

The second-order energy correction is thus reduced to its
conventional form,

E�2� = − ���ŴlrR̂0
DŴlr���

= − 

i�j
a�b

���i� j�ŵee
lr ��a�b� − ��i� j�ŵee

lr ��b�a��2

�a + �b − �i − � j
,

�105�

where �r is a spin-orbital of � and �r is its associated eigen-
value, and ��i� j�ŵee

lr ��a�b� are the two-electron integrals as-
sociated with the long-range interaction wee

lr �r12�. It should be
recalled that the indices i , j refer to occupied spin orbitals
and a ,b to virtual spin orbitals. Equation �105� is fully analo-
gous to the conventional MP2 energy correction.

From a practical point of view, once the RSH orbitals and
one-electron eigenvalues are available, any standard MP2
implementation can be used, provided that the long-range
electron repulsion integrals calculated over to the RSH orbit-
als are used in place of the usual electron repulsion integrals.
By virtue of the long-range nature of these integrals, one can
take advantage of efficient modern algorithms, like local
MP2 �63�, multipolar integral approximations, which have

particularly favorable convergence properties for the long-
range part of the split Coulomb interaction �64�, or the res-
olution of identity approach �65�. It means that in appropriate
implementations the extra cost of the MP2 corrections can be
made negligible for large systems with respect to the reso-
lution of the self-consistent RSH equations, similar to a usual
KS calculations with a hybrid functional. Solid-state applica-
tions for semiconductors can also be envisaged in a Wannier
orbital-based MP2 implementations �66�.

Concerning the MP3 energy expression in a RSH+MPn
scheme, one can benefit from the fact that the first-order
wave-function correction is entirely due to doubly excited
configurations. It means that both the first-order density and

potential operator corrections, n�1� and �̂�1�, vanish and one
can continue to use the traditional MP3 energy expression, as
far as the long-range two-electron integral list is used,

E�3� = ���Ŵee
lr R̂0

DŴlrR̂0
DŴee

lr ��� + ���Ŵlr���

����Ŵee
lr R̂0

DR̂0
DŴee

lr ��� . �106�

The situation is slightly more complicated for the fourth-
order correlation energy correction, which involves the
second-order wave-function correction. The first-order wave-
function correction,

���1�� = − R̂0
DŴee

lr ��� , �107�

contains only double excitations and, as a consequence, the
first-order charge-density correction is zero and the second-
order wave-function correction obeys the following equa-
tion:

�1 + R̂0Ĝ0
sr̄����2�� = R̂0�Ŵlr − �Ŵlr��R̂0

DŴee
lr ��� − R̂0

S�̂�2̄���� .

�108�

Only single excitations contribute to the last term, because

the complementary second-order potential, �̂�2̄�, is a one-
electron operator. Writing the second-order wave-function
correction in its power series as

���2�� = 

n=0

	

�− R̂0Ĝ0
sr�nR̂0�Ŵlr − �Ŵlr��R̂0

DŴee
lr ���

− 

n=0

	

�− R̂0
SĜ0

sr�nR̂0
S�̂�2̄���� , �109�

one can see that the recursion procedure in the second term
involves only single excitations. This is not true in the first
term, where even higher than double excitations can contrib-
ute. Numerical experience would be necessary to evaluate
the relative importance of the different kinds of terms at
fourth order, but one may hope that nonconventional contri-
butions are negligible.

C. Explicit long-range corrections to the Kohn-Sham
equations

An alternative perturbational solution of the range-
separated hybrid density-functional problem, defined by the
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total energy functional, Eq. �90�, and the effective
Schrödinger equation, Eq. �92�, can be sought by choosing a
different partitioning scheme for the effective Hamiltonian.
As far as one introduces the perturbation operator

Ŵlr = Ŵee
lr − V̂Hxc

lr ��KS� , �110�

where the long-range Hartree-exchange-correlation potential

V̂Hxc
lr ��KS� is chosen such that it sums up with the comple-

mentary short-range potential to the total Kohn-Sham poten-
tial,

V̂Hxc��KS� = V̂Hxc
lr ��KS� + V̂Hxc

sr̄ ��KS� , �111�

the zeroth-order problem becomes simply the conventional
Kohn-Sham equation. The partitioning in Eq. �110� depends
on the range-separation parameter �, which has been omitted
from the equations for the sake of notational simplicity.

While such a scheme has the advantage that the correc-
tions are defined with respect to conventional Kohn-Sham
results, one loses definitely the formal simplifications due to
the Brillouin-like theorem valid in the previously discussed
RSH+MP2 case. The basic equations defining such a model
are similar to those described in Sec. IV B. The minimizing
wave-function satisfies the effective Schrödinger equation,

�T̂ + V̂ne + V̂Hxc
lr ��KS� + �Ŵlr + V̂Hxc

sr̄ �n������ = E��� .

�112�

The zeroth-order problem ��=0� is just the usual Kohn-
Sham one, leading to the Kohn-Sham determinant �KS. The
following correspondences can be established with the gen-
eral formulation

F�n� = EHxc
sr̄ �n�� , �113�

�̂�n�� = V̂Hxc
sr̄ �n�� , �114�

Ŵ = Ŵlr = Ŵee
lr − V̂Hxc

lr ��KS� . �115�

The zeroth-order energy correction,

E�0� = 

i

occ

�i
KS − ��KS�V̂Hxc

sr̄ �n�KS���KS� + EHxc
sr̄ �n�KS� ,

�116�

includes the short-range double count correction, while the
first-order energy correction,

E�1� = ��KS�Ŵee
lr ��KS� − ��KS�V̂Hxc

lr �n�KS���KS� , �117�

describes the double count correction of the long-range Har-
tree energy, replaces the density-functional exchange by the
Hartree-Fock exchange calculated for the Kohn-Sham deter-
minant, and removes completely the energy associated with
the long-range correlation potential. Thus the energy correct
up to first order, E�1�, is

E�1� = ��KS�T̂ + V̂ne��KS� + EH�n�KS� + Exc
sr̄ �n�KS� + Ex

lr�n�KS� ,

�118�

where EH�n�KS� is the Hartree functional related to the total
�long- and short-range� electron interaction.

The second-order energy correction involves matrix ele-
ments of the perturbation operator between the Kohn-Sham
determinant and singly as well as doubly excited determi-
nants. For singly excited determinants, although the long-
range Hartree potential cancels with the matrix element of
the long-range e-e interaction, there remains a correction due
to the difference of the matrix elements of the nonlocal
Hartree-Fock exchange and the local DFT exchange-
correlation potentials,

��i
a�Ŵee

lr − V̂Hxc
lr �n�KS���KS� = − 


k

occ

��i�k��k�a�lr

− ��i�vxc
lr ��a� . �119�

As far as the double excitations are concerned, only the ma-

trix elements of the two-electron operator, Ŵee
lr , survive.

Starting from Eqs. �66� and �49�, and partitioning the re-
duced resolvent to singly and doubly excited components,

R̂0= R̂0
S+ R̂0

D, the second-order energy correction becomes

E�2� = − 

n=0

	

���Ŵlr�− R̂0Ĝ0
sr̄�nR̂0Ŵ

lr���

= − 

n=0

	

���Ŵlr�− R̂0
SĜ0

sr̄�n�R̂0
S + R̂0

D�Ŵlr���

= − 

n=0

	

���Ŵlr�− R̂0
SĜ0

sr̄�nR̂0
S
Ŵlr���

− ���Ŵee
lr R̂0

DŴee
lr ��� . �120�

The interesting point about this result is that the conventional
correlation correction calculated from the KS orbitals �last
term� is uncoupled from the effects of the relaxation of the
KS orbitals due to the removal of the long-range correlation
�probably less important� and of the replacement of the long-
range DFT exchange by the long-range Hartree-Fock ex-
change. This alternative partitioning of the problem as com-
pared to the RSH+MP2 scheme is supposed to lead different
and probably less good results in comparison with the ap-
proach described in Sec. IV B.

V. CONCLUSIONS AND PERSPECTIVES

A general Rayleigh-Schrödinger perturbation theory has
been presented for many-electron systems where the total
energy is defined as a minimum principle involving a func-
tional of the electron density. An example of outstanding
importance is the Kohn-Sham method, or its generalizations
including Kohn-Sham-like theories with partially �e.g., long-
range� interacting reference systems �11�. As mentioned in
the Introduction, other physical situations may lead to math-
ematically analogous, nonlinear effective Schrödinger equa-
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tions, such as the reaction-field-type solvent effect models in
quantum chemistry �16�, or the self-consistent Madelung po-
tential approach �67,68� to handle electrostatic effects in pe-
riodic systems. The present RSPT framework allows the
treatment of one- and two-electron perturbations. The valid-
ity of the �2n+1� rule has been demonstrated in the case of
the perturbational expansion of the total energy functional.
The wave-function corrections can be obtained self-
consistently at each order of the perturbation. Explicit ex-
pressions of the term that is responsible for the nonlinearity
have been given and shown to be the same for all orders.

In comparison with earlier works, which were either lim-
ited to one-electron perturbations applied to an independent-
particle system, or the form of the nonlinearity was supposed
to take a simple quadratic form, the present work has at-
tempted to provide a unified framework, valid for most of the
situations. Such a general perturbation theory was necessary
to handle the new type of nonlinearity, raised by the split-
Coulomb or range-separated hybrid density-functional meth-
ods, which constitute a new and promising way to handle
successfully situations in which conventional density func-
tionals seem to fail, i.e., the handling of London dispersion
forces, correct evaluation of charge transfer, etc.

As an example of application of the general theory, the
coupled Kohn-Sham equations have been rederived for a real
one-electron perturbation operator. In addition to this illus-
tration of the approach, MPn correlation corrections have
been derived for a long-range interacting system, where the
short-range electron-electron interactions are taken into ac-
count by a density functional. Starting from a self-consistent
Hartree-Fock-like independent-particle model of the long-
range interactions, the long-range correlation corrections can
be developed in a perturbational series, which benefits from
a nontrivial cancelation of the nonlinear terms, leading to
remarkably simple expressions. The simplicity of the RSH
+MPn corrections is due to the Hartree-Fock-like partition-
ing of the Hamiltonian. First applications of this RSH
+MP2 theory seem to be very promising to describe van der
Waals interactions in a density-functional context �14,15�.
Another partition of the problem has been considered too,
where the Kohn-Sham independent-particle model serves as
zeroth order and the nonlinearity corrections are treated ex-
plicitly.

A further development could be the implementation of the
higher �third- and fourth-order� Møller-Plesset correlation
energy corrections, or application of a double-perturbation
approach to treat external one-electron perturbation and elec-
tron correlation effects in the mean time. The general formu-
lation makes it possible to envisage other applications as
well, such as long-range dynamic correlation corrections on
the top of a multideterminental long-range corrected DFT-CI
wave function �58�.
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APPENDIX A: EXPANSION OF THE FUNCTIONAL AND
THE ASSOCIATED POTENTIAL

Using self-explanatory shorthand notations and implicit
integration conventions for the repeated lower indices �in
fact, coordinates�, the lowest-order contributions to the ex-
pansion of the density functional are

F�0� = F�n�0�� , �A1�

F�1� =� dr
�F

�n�r�
n�1��r� = �rnr

�1�, �A2�

F�2� =
1

2
Krr�

�2�nr
�1�nr�

�1� + �rnr
�2�, �A3�

F�3� =
1

6
Krr�r�

�3� nr
�1�nr�

�1�nr�
�1� + Krr�

�2�nr
�2�nr�

�1� + �rnr
�3�, �A4�

F�4� =
1

24
Krr�r�r�

�4� nr
�1�nr�

�1�nr�
�1�nr�

�1�

+
1

2
Krr�r�

�3� nr
�2�nr�

�1�nr�
�1�

+
1

2
Krr�

�2��nr
�2�nr�

�2� + 2nr
�1�nr�

�3�� + �rnr
�4�. �A5�

The lowest-order terms in the Taylor expansion of the poten-
tial are

�r
�1� = Krr�

�2�nr�
�1�, �A6�

�r
�2� = Krr�

�2�nr�
�2� +

1

2
Krr�r�

�3� nr�
�1�nr�

�1�, �A7�

�r
�3� = Krr�

�2�nr�
�3� + Krr�r�

�3� nr�
�1�nr�

�2� +
1

6
Krr�r�r�

�4� nr�
�1�nr�

�1�nr�
�1�.

�A8�

APPENDIX B: DERIVATION OF THE THIRD-ORDER
ENERGY CORRECTION

Equation �67� still contains the second-order potential op-
erator and the second-order charge density, both violating the
�2n+1� rule. By use of the potential operator expansion,

2���1���̂�2����0�� = 2���1��n̂���0���2F

�n2 n�2� +
1

2

�3F

�n3 n�1�n�1��
=

�2F

�n2 n�1�n�2� +
1

2

�3F

�n3 n�1�n�1�n�1�, �B1�

one obtains
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E�3� = EW
�3� + E��1�

�3� +
�2F

�n2 n�1�n�2� +
1

2

�3F

�n3 n�1�n�1�n�1�

−
1

3

�3F

�n3 n�1�n�1�n�1� −
�2F

�n2 n�1�n�2�, �B2�

which leads directly to the final form, Eq. �68�, of the third-
order energy correction.

APPENDIX C: DERIVATION OF THE FOURTH-ORDER
ENERGY CORRECTIONS

After substitution of E�1� and E�2� from Eq. �38�, and sepa-
rating EW

�4� and E��1�
�4� , one has

���1���̂�2� − ��̂�2�����1�� + ���0���̂�2����2��

+ 2���0���̂�3����1��

−
1

8

�4F

�n4 n�1�n�1�n�1�n�1� −
�3F

�n3 n�1�n�1�n�2�

−
1

2

�2F

�n2 n�2�n�2� −
�2F

�n2 n�1�n�3�. �C1�

Using the definition of the third-order potential, Eq. �A8�,
one has the relationship

2���0���̂�3����1�� =
1

6
n�1��

4F

�n4 n�1�n�1�n�1� + n�1��
3F

�n3 n�1�n�2�

+ n�1��
2F

�n2 n�3� �C2�

leading directly to the elimination of the �3F /�n3 and the

�̂�3� contributions,

���1���̂�2� − ��̂�2�����1�� + ���0���̂�2����2��

+
1

24

�4F

�n4 n�1�n�1�n�1�n�1� −
1

2

�2F

�n2 n�2�n�2�, �C3�

free of third-order wave-function corrections. The above two
terms are just the contributions identified in the main text as
E��2�

�4� and EF�2,4�
�4� .

APPENDIX D: LONG-RANGE BRILLOUIN THEOREM
FOR THE RANGE-SEPARATED HYBRID

Let us calculate the matrix element

��i
a�Ŵee

lr − V̂Hx,HF
lr ��� . �D1�

The matrix element of Ŵee
lr is given by the Slater rules,

��i
a�Ŵee

lr ��� = 

k

occ

�ik�ak�lr − �ik�ka�lr, �D2�

where the summation over the occupied orbitals and the two-
electron integrals are defined as

�ij�kl�lr =� � drdr��i
*�r��

j
*�r��wee

lr �r,r���k�r��l�r� .

�D3�

The long-range Hartree-Fock-potential

��i
a�V̂Hx,HF

lr ��� = 

k

�ik�ak�lr − �ik�ka�lr, �D4�

which exactly cancels the previous term. The long-range
Brillouin theorem follows from the variational character of
the range-separated hybrid problem.
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