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For single-qubit teleportation, it has been shown that there is a family of two-qubit mixed states whose
teleportation fidelity can be enhanced by subjecting one of the qubits to an amplitude damping channel. This
is an interesting result, since noise in general degrades quantum entanglement. It is believed that this enhance-
ment is due to an improvement in the classical correlations of the two-qubit states. Here, we consider two-qubit
teleportation using a family of four-qubit mixed states as a resource. In this context, we show that one can
again achieve enhancement in teleportation fidelity via dissipative interactions with the local environment. For
a rather general class of input states, we find that this improvement implies an enhancement in the quantum
discord of some teleported states. We conjecture that an improvement in some quantum property of the
four-qubit mixed states could have resulted from the local interactions. We expect that our analysis will make
an important case study for future investigations on the different aspects of composite quantum systems.
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I. INTRODUCTION

Teleportation �1� is a way to send quantum information
about object�s� to other �distant� object�s� using entangle-
ment, where the spatially separated sender �Alice A� and
receiver �Bob B� are only allowed to perform local quantum
operations and communicate among themselves via a classi-
cal channel. Two-qubit teleportation via two independent,
equally entangled Werner states �2� was first studied by Lee
and Kim �3�. They showed that entanglement of a two-qubit
input state is lost during the teleportation even when the
Werner states have nonzero entanglement, and in order to
teleport any nonzero entanglement the channel states should
possess a critical value of minimum entanglement. Two-
qubit teleportation therefore not only demands more strin-
gent conditions on the channel states, but could also reveal
important aspects of the nature of two-qubit states. It defi-
nitely deserves more detailed studies.

Composite systems of two or more quantum objects
A ,B , . . . have interesting properties that are absent in quan-
tum systems composed of a single object. Specifically, the
principle of quantum superposition gives rise to the phenom-
enon of entanglement—a mysterious connection between
separated quantum objects, which Einstein, Podolsky, and
Rosen �4� pointed out was a feature of quantum mechanics.
It is believed that many of the profound results in quantum
information theory �5� are impossible without the resource of
entanglement. Recent investigations, however, have indi-
cated that there are other important properties associated
with, say, two-qubit states, besides entanglement. For in-
stance, although it is well known that entanglement must
grow with the system size for pure-state quantum computa-
tion to have exponential speedup �6�, it is less evident that
entanglement is responsible for the better performance of
mixed-state quantum computation. This has motivated Datta,
Shaji, and Caves �7� to propose quantum discord �8� as the
figure of merit for characterizing the resources present in
such mixed-state quantum computational model as the
DQC1, introduced by Knill and Laflamme �9�. Clearly, a
complete understanding of these different aspects of compos-

ite quantum systems is both fundamentally and practically
important.

In this paper, we consider the teleportation of two-qubit
states via a class of four-qubit entangled �channel� states
��� ,�� �Eq. �17��. Our analysis of the effects of local noise
on the “usefulness” of ��� ,�� shows that the corresponding
generalized singlet fraction �10� can be enhanced by subject-
ing Alice’s qubits to dissipative interaction with the environ-
ment via a pair of time-correlated amplitude damping chan-
nels �11�. Interestingly, this enhancement implies an
enhancement in the quantum discord of some teleported
states, even though the negativities �12,13� of these states are
actually decreased. Our result thus demonstrates the impor-
tance of studying “quantum correlations” other than en-
tanglement in two-qubit teleportation. It will make an impor-
tant case study for future investigations on the different
aspects of composite quantum systems.

Our paper is organized as follows. In Sec. II, we provide
a short introduction to the negativity �a measure of entangle-
ment� and the quantum discord. To set the stage, we briefly
review how local noise can enhance fidelity of quantum tele-
portation via a certain class of two-qubit entangled states in
Sec. III. We present our results in Sec. V, after a summary of
the two-qubit teleportation scheme E0 �14� in Sec. IV. Fi-
nally, in Sec. VI, we conclude with some remarks.

II. QUANTUM CORRELATIONS

A density operator �AB is separable if it can be written as
a convex sum of separable pure states �2�,

�AB = �
k

pk��k�A��k� � ��k�B��k� , �1�

where 	pk
 is a probability distribution and ��k�A and ��k�B
are vectors belonging to Hilbert spaces HA and HB, respec-
tively. For two-qubit systems, a necessary and sufficient con-
dition for separability is that a matrix, obtained by partial
transposition of �AB, has non-negative eigenvalue�s� �12�.
Here, as a measure of the amount of entanglement associated
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with a given two-qubit state �AB, we consider the negativity
�13�

N��AB� � max�0,− 2�
m

�m
 , �2�

where �m is a negative eigenvalue of �AB
TB , the partial trans-

position of �AB. The locally unitarily equivalent Bell basis
states

��Bell
	 �AB = �uA

	
� uB

0�
1
�2

��00�AB + �11�AB� �3�

are a class of maximally entangled states, with
N���Bell

	 �AB��Bell
	 ��=1. Here, u0 is the 2
2 identity matrix;

u1=�1, u2= i�2, u3=�3, and � j �j=1,2 ,3� are the Pauli ma-
trices.

Recently, Groisman et al. �15� argued that ��Bell
0 �AB con-

tains one bit of “quantum correlation” and one bit of “clas-
sical correlation.” The total amount of correlation in a bipar-
tite quantum state �AB, Ctotal��AB�, is equal to the quantum
mutual information I�A :B��S��A�+S��B�−S��AB�, where
�A=trB��AB�, �B=trA��AB�, and von Neumann entropy S���
=−tr�� log2 ��. It follows that, for ��Bell

0 �AB, we have
Ctotal���Bell

0 �AB�=2. To obtain the amount of classical correla-
tion asociated with ��Bell

0 �AB, they determined Ctotal��AB�,
where �AB= ��00�AB�00�+ �11�AB�11�� /2 is the state resulting
from the erasure of the entanglement between A and B. That
is, Cclassical���Bell

0 �AB�=Ctotal��AB�=1; or Cquantum���Bell
0 �AB�

=Ctotal���Bell
0 �AB�−Cclassical���Bell

0 �AB�=1. Clearly, this one bit
of quantum correlation refers to the quantum entanglement
associated with ��Bell

0 �AB.
Another information-theoretic measure of the quantum

nature or “quantumness” of the correlations between A and B
was introduced by Ollivier and Zurek �8�. It is the quantum
discord

DA�A:B� � �
m=0

1

�mS��A�
B
m� + S��B� − S��AB� , �4�

where the projectors 
B
m= ��m�B��m� �with ��0��cos ��0�

+ei� sin � �1�, ��1�=e−i� sin ��0�−cos ��1�, and −�����,
0���2�� describe perfect measurements of B; �A�
B

m

=trB�
B
m�AB
B

m� /�m is the state of A after the measurement
outcome m has been detected; S��A�
B

m� is the missing infor-
mation about A, and probability �m=tr�
B

m�AB�. In general,
this quantity depends both on �AB and 	
B

m
, and is asymmet-
ric under the change A↔B. And, it may not exactly quantify
the quantum correlation in Ref. �15�. However, we note that
for the density operator we will mostly be concerned with in
this paper,

�AB = t00�00�AB�00� + t01�00�AB�11� + t10�11�AB�00�

+ t11�11�AB�11� ,

the minimum discord

Dmin��AB� = Cquantum��AB� �5�

when ��0�= �0� and ��1�= �1�. t00, t11 are real coefficients
that satisfy t00+ t11=1, while t01, t10 may be complex with

t10= t
01
* . Here, we use the minimum discord to characterize

the nonclassical correlations in a given quantum state. In
addition to its possible role in mixed-state quantum compu-
tation �see Ref. �7��, Zurek �16� has shown that quantum
Maxwell’s demons can extract more work than classical ones
from correlations between a pair of quantum systems and
that the difference is given by the discord.

III. SINGLE-QUBIT TELEPORTATION

A. Singlet fraction

When Alice and Bob share an arbitrary two-qubit mixed
state �AB as a resource, the standard teleportation protocol of
Bennett et al., T0, acts as a generalized depolarizing channel
�B

�,T0, with probabilities given by the maximally entangled
components of the resource �17,18�,

�B
out � �B

�,T0����B���� = �
	=0

3

��Bell
	 ����Bell

	 �uB
	†���B���uB

	.

�6�

Here, ���B=a0�0�B+a1�1�B, with a0 ,a1�C1 and �a0�2+ �a1�2
=1, is an arbitrary “unknown” �input� state of a qubit. Con-
sequently, at Bob’s end, the teleported �output� state �B

out can
only be a distorted copy of the state ���A initially held by
Alice. The reliability for teleportation of a given channel
state �AB is quantitatively measured by the teleportation fi-
delity,

���B
�,T0� � � d�B����B

out���B =
1

3
+

2

3
F��� , �7�

where the singlet fraction

F��� � ��Bell
0 ����Bell

0 � . �8�

The maximum teleportation fidelity depends on the maximal
singlet fraction �18,19�: ���B

�,Topt�=1 /3+2Fmax��� /3, where
Fmax����maxu��Bell

0 � �u0 � u���u0 � u†� ��Bell
0 �. The maxi-

mization is over the set of all unitary operations u on C2.
Clearly, a necessary condition for faithful teleportation is that
Alice and Bob share a priori a maximally entangled channel
state. In order to be useful for T0, �AB must have Fmax���
�1 /2 �19,20�. If the channel state �AB is mixed too much
�Fmax����1 /2�, it will not provide for any better teleporta-
tion fidelity than that of an ordinary classical communication
protocol. Teleportation can indeed serve as a fundamentally
important operational test of not only the presence but also
the “quality of entanglement.”

B. Local environment can enhance fidelity
of single-qubit teleportation

Interactions with the environment and imperfections
of preparation result in noisy or mixed states described
by density operators. For instance, ��Bell

	 �AB��Bell
	 �→�AB

=E���Bell
	 �AB��Bell

	 ��=��EAB
� ��Bell

	 �AB��Bell
	 �EAB

�† , where E is a
quantum operation or channel �EAB

� ’s are the corresponding
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Kraus operators� �21�, which mathematically describes the
noise and the resulting decoherence. In general, the dissipa-
tive effects of noise degrade quantum entanglement and �AB
may become separable. It is thus rather surprising when Bad-
ziag et al. �22� presented an interesting class of two-qubit
entangled states, which may be made useful or “more useful”
for single-qubit teleportation by subjecting one of the qubits
to dissipative interaction with the environment via an ampli-
tude damping channel. They considered the following one-
parameter family of two-qubit mixed states:

�AB � �
�=0

1

�uA
0

� KB
����Bell

0 �AB��Bell
0 ��uA

0
� KB

�†� , �9�

where

K0 = ��q 0

0 1
�, K1 = � 0 0

�1 − q 0
� �10�

with 0�q�1, are Kraus operators that define an amplitude
damping channel. Hereafter, �0� and �1� denote the excited
and ground states, respectively. The amplitude damping
channel is characterized by the parameter q, with 1−q de-
noting the dissipation strength when a qubit interacts with
the environment via this channel. Badziag et al. �22� �see
also Bandyopadhyay �23�� showed that subjecting �AB to lo-
cal noise at Alice’s site

�AB → �AB� = �
	=0

1

�KA
	

� uB
0��AB�KA

	†
� uB

0� �11�

may improve the maximal singlet fraction. That is, there ex-
ist values of q such that though Fmax����1 /2 we can have
Fmax�����1 /2, and also 1 /2�Fmax����Fmax����. This is
intriguing because the dissipative interaction with qubit B,
which degrades entanglement in the first place is utilized to
improve the quality of �AB by applying it to qubit A. Ban-
dyopadhyay reasoned qualitatively that given any mixed
channel state �AB, the corresponding maximal teleportation
fidelity is determined by both the amount of entanglement
N���, and the “classical correlations” between Alice’s qubit
A and Bob’s qubit B; and since N��� cannot be increased by
Alice’s local operations �in fact, N�����N����, her action,
Eq. �11�, would only have enhanced the “classical correla-
tions.” According to Bandyopadhyay, the enhancement in the
maximal singlet fraction is thus due to improved classical
correlations. In the context of single-qubit teleportation, it
seems that this issue cannot be pursued further.

IV. TWO-QUBIT TELEPORTATION AND THE
GENERALIZED SINGLET FRACTION

In Ref. �14�, we gave an explicit protocol E0 for faithfully
teleporting arbitrary two-qubit states, ���A1A2
=�i,j=0

1 aij�ij�A1A2
with aij �C1 and �i,j=0

1 �aij�2=1, employing
genuine four-qubit entangled states

��00��12,�12��A3A4B1B2
�

1

2�
J=0

3

�J�A3A4
� �J��B1B2

. �12�

	�J�=S�ij�
 and 	�J��=T�ij�
 are orthonormal bases, with

S��1,�1� � �
cos �1 0 0 − sin �1

0 cos �1 − sin �1 0

0 sin �1 cos �1 0

sin �1 0 0 cos �1

� ,

T��2,�2� � �
cos �2 0 0 − sin �2

0 sin �2 cos �2 0

0 cos �2 − sin �2 0

sin �2 0 0 cos �2

� .

�13�

Here, −� /2��12��1−�2�� /2 and −� /2��12��1−�2
�� /2, since 0��1 ,�2 ,�1 ,�2�� /2. Whenever �12=�12
=0, ��00� is reducible to a tensor product of two Bell states:
��00�A3A4B1B2

= ��Bell
0 �A3B2

� ��Bell
0 �A4B1

. Alice performs a com-
plete projective measurement jointly on A1A2A3A4 in the fol-
lowing basis of 16 orthonormal states:

�
	���12,�12��A1A2A3A4
� �UA1A2

	�
� UA3A4

00 �


�
00��12,�12��A1A2A3A4
, �14�

with �
00��12,�12��A1A2A3A4
� 1

2�K=0
3 �K��A1A2

� �K�A3A4
and

U	��u	 � u�. Upon receiving classical information of her
measurement result, Bob can always succeed in recovering
an exact replica of the original state of Alice’s particles A1A2,
by applying the appropriate recovery unitary operations to
his particles B1B2. If Alice and Bob share a priori two pairs
of particles, A3A4 and B1B2, in an arbitrary four-qubit
mixed state �A3A4B1B2

as a resource, E0 acts as a generalized
depolarizing bichannel �10�: �B1B2

�,E0����B1B2
����

=�	,�=0
3 ��	� �� ��	��UB1B2

	�† ���B1B2
���UB1B2

	� , where we de-
fine ��	����U00 � U	�†���00�. The fidelity of teleportation

���B1B2

�,E0� � � d�B1B2
����B1B2

�,E0����B1B2
�������B1B2

=
1

5
+

4

5
G��� , �15�

where the generalized singlet fraction

G��� � max
�12,�12

	��00��12,�12�����00��12,�12��
 , �16�

in contrast to Eqs. �7� and �8�. We note that the �12 and �12,
which give G���, determine Alice’s measurement, Eq. �14�.
This is in contrast to the teleportation scheme of Lee and
Kim, where Alice’s joint measurement is decomposable into
two independent Bell measurements and which is really a
straightforward generalization of T0. � is useful for E0 if
G����1 /2 and ���B1B2

�,E0��3 /5.
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V. RESULTS

A. Local environment can enhance the fidelity of two-qubit
teleportation

Consider the four-qubit state

�A1A2B1B2
��,�� = �

�=0

1

�UA1A2

00
� KB1B2

�� �


��00��,���A1A2B1B2
��00��,����UA1A2

00

� KB1B2

��† � , �17�

which can be obtained in the following way: Alice prepares
the four-qubit state ��00�� ,��� �Eq. �12�� locally in her labo-
ratory and sends qubits B1 and B2 to Bob simultaneously
across a pair of time-correlated amplitude damping channels
described by the Kraus operators �11�

K00 =�
�q 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1
�, K11 =�

0 0 0 0

0 0 0 0

0 0 0 0

�1 − q 0 0 0
� .

�18�

Quantum channels with correlated noise was defined in Ref.
�24�, where the problem of quantum channels with memory
was first introduced. In particular, they considered the corre-
lated depolarizing channels described by the Kraus opera-
tors: �1− p�u0 � u0� and �p /3�uj � uj� �j=1,2 ,3�, with 0
� p�1. Using the method described in Ref. �25�, these op-
erators can be derived by solving the quantum master equa-
tion with the Lindblad operators describing correlated Pauli
rotations. The Kraus operators for the time-correlated damp-
ing channels, Eq. �18�, are similarly derived by solving the
quantum master equation with the Lindblad operators de-
scribing correlated decays �11�.

The generalized singlet fraction of �A1A2B1B2
�� ,��,

G����,��� = max
�12,�12

	 1
16�3 + �q + ��q + q�cos 2��12 − ��

+ 4�1 + �q�cos��12 − ��cos��12 − ��

+ 2 cos 2��12 − ���
 = 1
16�3 + �q�2, �19�

is independent of both � and �, and is a simple function of q.
Clearly, the noisy channels have a detrimental effect even
though when q=0, ��� ,�� is still useful for E0 �since
G���� ,���=9 /16�1 /2�. In addition, we note that as far as
the generalized singlet fraction is concerned, this effect is the
same regardless of if ��00�� ,��� is a tensor product of two
Bell states. Lastly, we emphasize that the time-correlated am-
plitude damping channels are not decomposable into a tensor
product of amplitude damping channels.

Now, applying the prescription, similar to that in Refs.
�22,23�: Alice allows her pair of qubits A1 and A2 to interact
with the local environment via a pair of time-correlated am-
plitude damping channels of the same strength as above; we
obtain

�A1A2B1B2
� ��,�� = �

	=0

1

�KA1A2

		
� UB1B2

00 ��A1A2B1B2
��,��


�KA1A2

		†
� UB1B2

00 � . �20�

To determine the corresponding generalized singlet fraction,
we demand that �12=� and �12 satisfies

0 = 2�1 − q�2 sin 2�12 + q�1 + �q�2 sin 2��12 − ��

+ 2�1 + �q�2 sin��12 − �� + 2�1 − �q�2 sin��12 + ��

+ q�1 − �q�2 sin 2��12 + �� . �21�

�12 is therefore, in general, a very complicated function of
both � and q. Note that Alice’s joint measurement is now not
only dictated by � and �, but also by q. However, for �
=�=0, we have

G����0,0�� = max
�12,�12

	 1
16�3 + q + �1 − q + 2q2�cos 2�12

+ 4�1 + q�cos �12 cos �12 + 2 cos 2�12�

= 1

8 �5 + 2q + q2� . �22�

Both G���0,0�� and G����0,0�� are always strictly greater
than 1 /2, and we have G����0,0���G���0,0�� if 0�q
�qcrit�0.033 845 4. qcrit is the critical value of q beyond
which G����0,0���G���0,0��.

Suppose �12=� is the solution to Eq. �21�, then

G�����,��� =
5 + q

16
+

�1 − q�2

16
cos 2� +

q�1 + �q�2

32


cos 2�� − �� +
�1 + �q�2

8


cos�� − �� +
�1 − �q�2

8
cos�� + ��

+
q�1 − �q�2

32
cos 2�� + �� . �23�

Equation �23� reduces to Eq. �22� if �=�=0. In contrast to
Eq. �19�, G����� ,��� depends on �, but not on �. Hence,
Eq. �22� also holds for arbitrary � when �=�=0 and �12
=�. Furthermore, from Eqs. �21� and �23�, we deduce that
the range of values of q for which G����� ,���
�G���� ,��� shrinks as � differs more and more from zero
�see Table I�. In fact, when �=�max=cos−1 3 /4, qcrit=0.
That is, beyond �max, G����� ,����G���� ,���. So, as

TABLE I. qcrit decreases with increasing �.

� 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

qcrit 0.034 0.032 0.028 0.022 0.015 0.0079 0.0027 0.000099
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��00�� ,��� differs more and more from a tensor product of
two Bell states, enhancement in teleportation fidelity is pos-
sible only with noisier channels. An interesting question is
what exactly does this improvement in generalized singlet
fraction mean physically?

B. Enhancement does not imply better teleportation
of entanglement

In order to answer the above question, we consider input
states

���B1B2
= cos ��00� + sin ��11� �24�

with 0���� /4. For ��� ,��, the output states are
�B1B2

�,E0����B1B2
����=�B1B2

, with t00=�+, t01= t10=1 /4�1
+�q�sin 2�, t11=�−, and ��=1 /2�1 /4��1+q�cos 2��.
Straightforward calculations yield

N��B1B2

�,E0����B1B2
����� =

1

2
�1 + �q�sin 2� . �25�

We note that the negativity of the output state decreases as
the channels become more noisy, i.e., q→0, and when q
=0, we have the smallest N��B1B2

�,E0����B1B2
�����=0.5 sin 2�.

For �=�=0, we have

N��B1B2

��,E0����B1B2
����� =

1

2
�1 + q�sin 2� �

1

2
�1 + �q�sin 2�

�26�

for 0�q�1. Note that we have equality when q=0. That is,
at maximum dissipation strength, addition of noise does not
further decrease the amount of teleported entanglement. Oth-
erwise, the addition of noise decreases the amount of tele-
ported entanglement further. For a given 0���� /4, this
decrease grows with q increasing from zero and reaching a
maximum at q=1 /4. And, for a fixed 0�q�1, input states
with less entanglement is affected less by the addition of
noise.

Now, suppose �=0.1� and q=0.02�qcrit. We derive,

from ���0.1� ,��, �B1B2

��,E0����B1B2
����=�B1B2

, but with

t00 � 0.989215 cos2 � + 0.0107852 sin2 � ,

t01 = t10 � 0.508132 cos � sin � ,

t11 � 0.0107852 sin2 � + 0.989215 cos2 � .

This gives

N��B1B2

��,E0����B1B2
����� � 0.508132 sin 2� � 0.570711 sin 2�

� N��B1B2

�,E0����B1B2
����� .

In general, we can numerically verify that

N��B1B2

��,E0����B1B2
������N��B1B2

�,E0����B1B2
����� �see, for in-

stance, Table II�. This is not unexpected since with the addi-
tion of further noise to the channel state �, the resulting

generalized depolarizing bichannel �B1B2

��,E0 becomes noisier,
which degrades the teleported entanglement more. It is con-
sistent with the results of Ref. �3�.

C. Enhancement in generalized singlet fraction implies
improved quantum discord

One may conclude that, as in the case of single-qubit
teleportation, the enhancement in the generalized singlet
fraction is solely due to an improvement in the classical cor-
relations and hence would not bring about an enhancement in
any quantum property, such as entanglement, of the output
states. Surprisingly, we can show that there is enhancement
in the quantum discord �Eq. �5�� of some output states when-
ever there is an enhancement in the generalized singlet frac-
tion. To this end, we calculate

Dmin��B1B2

�,E0����B1B2
����� = − �+ log2 �+ − �− log2 �−

+ �− log2 �− + �+ log2 �+,

�27�

where �� is as given above and ��=1 /2��2 /8�2+2�q
+3q+q2− �2�q−q−q2�cos 4��1/2. Like negativity,
N��B1B2

�,E0����B1B2
����� �Eq. �25��, the quantum discord of the

output state for an input state with nonzero � decreases as
q→0, and remains nonzero even at q=0.
Dmin��B1B2

�,E0����B1B2
����� is zero only if �=0, when the input

state has zero quantum correlations and zero entanglement.
These are consistent with the understanding that quantum
discord describes quantum correlations including but not
limited to entanglement.

For �=�=0, we have

Dmin��B1B2

��,E0����B1B2
����� = − �+ log2 �+ − �− log2 �−

+ �− log2 �− + �+ log2 �+,

�28�

where

�� =
1

2
�1 � �1 − q + q2�cos 2�� ,

TABLE II. q=0.01 and N��B1B2

�,E0����B1B2
�����=0.55 sin 2�. For each �, we obtain the corresponding �

from Eq. �21�.

� 0 0.1 0.2 0.3 0.4

� 0 0.010 108 1 0.020 270 9 0.030 544 5 0.040 987 2

N��B1B2

��,E0����B1B2
����� 0.5050 sin 2� 0.5049 sin 2� 0.5046 sin 2� 0.5041 sin 2� 0.5035 sin 2�
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�� =
1

8
�4 � �2�5 − 6q + 13q2 − 8q3 + 4q4 + �3 − 10q + 11q2 − 8q3 + 4q4�cos 4�� .

We note that when q=0, we have

Dmin��B1B2

��,E0����B1B2
����� � Dmin��B1B2

�,E0����B1B2
�����

�29�

for 0���� /4. This, together with Eqs. �19�, �22�, and �26�,
shows that enhancement in generalized singlet fraction im-
plies better teleportation of quantum discord. If 0�q�qcrit
�0.033 845 4, then the inequality in Eq. �29� holds for 0
����thres, where �thres is some threshold value of � beyond
which the inequality is reversed. �thres decreases with increas-
ing q �see Table III�. Lastly, we note that this is a necessary
but not sufficient condition, since when qcrit�q�0.1153
there are values of � such that the above inequality still
holds.

The above phenomenon is not specific to the case when
�=�=0. For definiteness, we consider �=0.1� and q
=0.02�qcrit, which from Eq. �21� we derive �
�0.045 735 0. Straightforward calculations then yield

Dmin��B1B2

��,E0����B1B2
����� as a function of �,

Dmin��B1B2

��,E0����B1B2
����� = − �+ log2 �+ − �− log2 �−

+ �− log2 �− + �+ log2 �+,

�30�

where

�+ � 0.989215 cos2 � + 0.0107852 sin2 � ,

�− � 0.0107852 sin2 � + 0.989215 cos2 � ,

�� � 0.5 � 0.489215�0.634854 + 0.365146 cos 4� .

Obviously, for 0���0.336 138, we have Eq. �29�.

D. Uncorrelated amplitude damping channels

We end with showing that by subjecting her qubits A1 and
A2 to a pair of uncorrelated amplitude damping channels,
Alice does not improve the fidelity of two-qubit teleporta-
tion. The resulting state is

�A1A2B1B2
� ��,�� = �

�,	=0

1

�KA1

�
� KA2

	
� UB1B2

00 ��A1A2B1B2
��,��


�KA1

�†
� KA2

	†
� UB1B2

00 � . �31�

For simplicity, we assume the channels �Eq. �10�� to have the

same q as �A1A2B1B2
�� ,�� in Eq. �17�. From here on, we

focus on the �=�=0 case. The corresponding generalized
singlet fraction is then

G����0,0�� =
1

16
�2 + 4�q + q + 2�q3 + 7q2� . �32�

Obviously, it is smaller than G���� ,��� in Eq. �19�. Consid-
ering again input states given in Eq. �24�, we obtain

�B1B2

��,E0����B1B2
���� = 1/4�1 + q2 + �1 − q + 2q2�cos 2��


�00�B1B2
�00� + q/4�1 + �q�


sin 2���00�B1B2
�11� + �11�B1B2

�00��

+ 1/4�1 − q2���01�B1B2
�01�

+ �10�B1B2
�10�� + 1/4�1 + q2 − �1 − q

+ 2q2�cos 2���11�B1B2
�11�

. As a result of the additional diagonal terms, the minimum
discord is no longer given by Eq. �5� and its computation is
more involved. However, our numerical results clearly indi-
cate that the amount of teleported quantum discord always
decreases if Alice subjects her qubits to a pair of uncorrelated
amplitude damping channels. This is not surprising since the
quantum channels are not correlated. More importantly, they
are a tensor product of two channels in contrast to Eq. �18�.
In fact, it can also be shown that the generalized singlet
fraction of the pair of channel states �A1B1

� �A2B2
�Eq. �9�� is

greater than that of �A1B1
� � �A2B2

� �Eq. �11�� for 0.194146
�q�1 �26�. That is, enhancement in the maximal singlet
fraction of individual channel state � is not sufficient to result
in an improvement of the generalized singlet fraction. It is
not difficult to see that, in this case, we do not have better
teleportation of quantum discord too. In other words, en-
hanced classical correlations in the individual channel state �
do not yield output states with improved quantum correla-
tions. We, therefore, conjecture that an improvement in some
quantum property of the four-qubit mixed states
�A1A2B1B2

�� ,�� �Eq. �17�� could have resulted from the local
interactions via a pair of time-correlated amplitude damping
channels, Eq. �18�.

TABLE III. �thres decreases with increasing q.

q 0 0.01 0.02 0.03 0.04 0.05 0.06

�thres � /4 0.402162 0.344089 0.305542 0.274645 0.247371 0.221728
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VI. REMARKS AND CONCLUSION

In conclusion, we have shown that a dissipative interac-
tion with the local environment via a pair of time-correlated
amplitude damping channels can enhance the generalized
singlet fraction of a class of entangled four-qubit mixed
states �Eq. �17��. Predictably, the introduction of noise does
not increase the entanglement of output states. However, sur-
prisingly, we demonstrate that this enhancement implies an
improvement in the quantum discord of some output states.
Quantum discord describes quantum correlations. Hence, the

enhancement in generalized singlet fraction could corre-
spond to an improvement in quantum correlations of the
four-qubit channel state. This is in contrast to the case of
single-qubit teleportation, where the enhancement in the
maximal singlet fraction is thought to be due to improved
classical correlations in the two-qubit channel state. While
there is no doubt that further work needs to be done to verify
the above conjecture, our results certainly reveal interesting
aspects of bipartite as well as multipartite entanglement. It is
hoped that they will lead to a better understanding of multi-
partite entanglement in the future.
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