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A two-sphere (“Bloch” or “Poincare”) is familiar for describing the dynamics of a spin-1/2 particle or light
polarization. Analogous objects are derived for unitary groups larger than SU(2) through an iterative procedure
that constructs evolution operators for higher-dimensional SU(N) in terms of lower-dimensional ones. We
focus, in particular, on the SU(4) of two qubits which describes all possible logic gates in quantum computa-
tion and entangled states in quantum-information sciences. For a general Hamiltonian of SU(4) with 15
parameters, and for Hamiltonians of its various subgroups so that fewer parameters suffice, we derive Bloch-
like rotation of unit vectors analogous to the one familiar for a single spin in a magnetic field. The unitary
evolution of a quantal spin pair is thereby expressed as rotations of real, many-dimensional vectors. Corre-
spondingly, the manifolds involved are Bloch two-spheres along with higher dimensional manifolds such as a
four-sphere for the SO(5) subgroup and an eight-dimensional Grassmannian manifold for the general SU(4).
The latter may also be viewed as two, mutually orthogonal, real six-dimensional unit vectors moving on a
five-sphere with an additional phase constraint. This geometrical picture for two spins provides the extension
and generalization of the Bloch sphere that has proved invaluable for the understanding of the dynamics of a

single spin.
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I. INTRODUCTION: BLOCH SPHERE
AND ITS EXTENSION

In the study of the dynamics of a spin-1/2 particle, a
visual metaphor that has played a powerful role is that of the
“Bloch sphere” [1]. Pure states of the system are represented
by the tip of a vector from the origin to the surface of such a
unit sphere S. In the field of nuclear magnetic resonance
(NMR) [2] and elsewhere, transformations between states are
then viewed as rotations of that vector, described by the

Bloch equation of motion, m=-2B X m, for a magnetic mo-

ment in a magnetic field B. Thus various sequences of NMR
manipulations can be pictured in a nice geometrical way as
successive rotations of three-dimensional vectors, and this
has now become central to our intuition of spin dynamics.
The relevant group of unitary transformations is SU(2), a
rank-one, three-parameter group that is the double covering
group of the three-dimensional rotation group SO(3) [3]. The
three operators of angular momentum, (Jx,Jy,JZ), are the
generators of these groups. A canonical set of parameters of
SO(3) are the Euler angles. Integer values j=0,1,... provide
various (2j+1)-dimensional representations, while for
SU(2), the half-odd integers occur as well.

While the Bloch sphere S? is familiar, the full SU(2) has
three parameters, the third being a phase at each point of the
sphere. Representing this one-dimensional U(1) parameter
by a line or spike, the complete picture is of a spiked sphere
shown in Fig. 1 that is somewhat less familiar. Mathemati-
cians refer to this as the “fiber bundle,” SU(2)=5%X U(1)
[4]. This latter phase is often not accessible as, for instance,
when dealing with the density matrix p but the general state
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of spin-1/2 and the unitary evolution operator depend on all
three parameters. The S? sphere is referred to as a “base
manifold” and the U(1) phase as a “fiber.”

Mixed states also are naturally accommodated in this geo-
metrical picture. Their density matrices are represented by
points inside the Bloch sphere so that the vector is of length
less than unity. Correspondingly, Tr p><Tr p, which consti-
tutes a definition of a mixed state [5]. States of light polar-
ization, also a two-valued object, map onto the same math-
ematics and geometry through the “Poincare” sphere [6].

It would be of interest to have analogous geometrical pic-
tures for multiple spins, especially in today’s fields of quan-
tum computation, cryptography, and teleportation, because
the fundamental elements of these subjects are built up of a
few qubits [7]. Thus all logic gates for quantum computation
can be built up from qubit pairs, while teleporting one qubit
state requires an entangled pair held by the sender and re-

FIG. 1. The fiber bundle for SU(2), with the Bloch sphere as a
base manifold, and spikes at each point representing a phase. The
three parameters defining a point on the sphere and a phase value
there provide the complete description of the dynamics of a
spin-1/2 system.
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FIG. 2. Analogous to Fig. 1, for a two-qubit system that in-
volves an so(5) subalgebra of the full SU(4). The base manifold
now is a four-sphere S*, at each point of which is a fiber consisting
of two spiked-spheres of SU(2) as in Fig. 1. See Sec. III for a full
derivation and discussion.

ceiver, for a total of three qubits. With SU(2”) being the
relevant group for p qubits, this calls for a similar geometri-
cal description of higher SU(N). In this paper, we develop
such a picture, through an easily accessible procedure which
iteratively descends from N to N—n, with n <N, in a manner
that closely follows the description of SU(2). While the num-
ber of parameters, N2-1,is larger and, therefore, the dimen-
sions of the geometrical objects correspondingly larger and
more complex than a globelike sphere, a geometrical de-
scription still has merit. In some cases, it is also rather easily
accessible; for example, in two-qubit problems that involve a
subset of 10 of the full set of 15 parameters of SU(4), Fig. 2
shows a base manifold of a S* sphere and a “fiber” of two
SU(2) spiked-spheres at each point on its surface as the ana-
log of Fig. 1 for such problems. Rotations of a unit five-
dimensional vector on S*, together with two single-spin
SU(2) dynamics, provide a geometrical picture of two-spin
dynamics. We will return in Sec. III to a full discussion and
derivation of this figure, and consider the more complex
manifold describing the full SU(4) in Sec. IV.

Our procedure also applies when N is odd, a situation that
does not arise with qubits but elsewhere widely in physics
[for example, qutrits [8], neutrino oscillations [9], the quark
model, and quantum chromodynamics (QCD), etc.]. The N
X N matrices of Hamiltonians and evolution operators are
viewed as built up of 2 X2 block matrices through this N
=(N-n)+n decomposition, the block matrices then de-
scribed in terms of the Pauli spinors of SU(2). Each step of
this iterative reduction introduces an analog of the Bloch
sphere, albeit of higher dimension and more complex struc-
ture, and constructs the effective Hamiltonians of dimension
(N-n) and n for the next step. In this manner, using no more
than the operations familiar from the SU(2) case, the full
construction for SU(N) is achieved.

The philosophy behind such a construction may be seen
as generalizing Schwinger’s philosophy for representations
of SU(2) or SO(3), where higher j representations are con-
structed from those of the fundamental, j=1/2 [10]. We now
do the analogous step of using SU(2) as the template for
solving larger SU(N). In particular, for the important case of
SU(4) for two qubits, we give a complete description of the
manifolds and phases involved and analytical expressions for
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them. Note again, as with light polarization and spin-1/2,
that the mathematics of N-level systems in quantum optics,
atomic and molecular physics, and elsewhere, is the same as
that we describe in the language of multiple qubits. This
provides an even wider context for our results.

The arrangement of this paper is as follows. Section II
describes the basic iterative decomposition of the evolution
operator for SU(N), mimicking the familiar procedure for
spin-1/2. With N=4, and n=2, Sec. Il specializes the results
to SU(4), the case of two qubits, when all the manipulations
involved are in terms of Pauli spinors. It also applies these
results to Hamiltonians involving a restricted set of operators
of the full group. An interesting one is SO(5), which can be
described by a 5 X5 antisymmetric matrix that is the analog

of the 3 X 3 antisymmetric one for the magnetic field B in the
Bloch equation. Section IV then considers Hamiltonians re-
quiring the full SU(4) group for their description. Linear
equations, analogous to the Bloch equation, are derived in
terms of vectors m, five- and six-dimensional vectors, re-
spectively, for the SO(5) and full SU(4) cases. The latter also
correspond to so-called “Pliicker coordinates™ [11] which are
also presented. Appendix A deals with the generalization to
non-Hermitian Hamiltonians, and Appendix B presents the
isomorphism between SU(4) and the groups Spin(6) and
SO(6) which we exploit.

II. ITERATIVE CONSTRUCTION OF EVOLUTION
OPERATOR IN N DIMENSIONS

We wish to obtain the evolution operator UMN(r) for the
N-dimensional time-dependent Hamiltonian H™):

H(N‘”)(t) V() ) W

N (4) =
H"™(r) = ( V%(t) H(")(t)
We have blocked the Hamiltonian into (N-n)- and
n-dimensional blocks, the diagonal blocks being square ma-
trices while the off-diagonal V is (N-n)Xn and V' is n
X (N—n). Although our discussion is for Hermitian H), the
procedure can also apply more generally, in which case the
off-diagonal blocks will not be simply related as adjoints
(see Appendix A). We will also assume H™ to be traceless,
again a restriction that can be easily relaxed, the time integral
of the trace becoming an overall phase of UV

To solve the evolution equation, with an overdot denoting
derivative with respect to time,

iU =HM (UM (1), UM(0) =1, (2)

we similarly block the unitary matrix, writing it as a product
of three factors, the first two further grouped as le and the
second, I~J2, block-diagonal in form:

U(N)(t) = ﬁ]ﬁz, fjl = eZ(Z)AJrewT(z)A_’

~ IV g\ IV 0
U=l gt 10 \wip 1)
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FIG. 3. Structure of the 2 X2 matrix evolution operator in Eq.
(3) for SU(2). The three factors involve, respectively, the Pauli
spinors o, o_, and 0. A single complex number z provides the first
two matrices, shown schematically as the Bloch sphere obtained
through inverse stereographic projection. The third factor is a diag-
onal matrix, defined through a single number or phase, which enters
with opposite signs in the two entries. The complete fiber bundle,
SU(2): §2x U(1), in Fig. 1 may be viewed in the above factorized
form. The same form of three factors can be generalized, as dis-
cussed in later sections, to any SU(N), with the first two factors
providing the base manifold and the third the fiber.

- UM 0
U2 = . _ 5 (3)
0 U(”)(t)

where A . are matrix generalizations of the Pauli spin step-up
and step-down o, and z and w' are rectangular matrices of
complex parameters. A remark about notation: we will use
the symbol tilde when the corresponding Hamiltonians may
not be Hermitian or evolution operators unitary.

The above structure, with I~Jl having blocks of zero in the
lower and upper off-diagonal blocks of its matrix factors, is
crucial in our method. For the case of spin-1/2 and SU(2),
the form of a product of three factors, each an exponentiation
of one of the Pauli spinors, is well-known [3]. Their Carte-
sian form, with Euler angles in the exponents, is the familiar
choice but we choose instead the triplet, (o, o-z), when the
first two factors have zero off-diagonal entries. This intro-
duces complex numbers z and w' in place of the Euler
angles, and makes the individual factors in Eq. (3) not sepa-
rately unitary although our construction ensures unitarity of
the full UMN)(7). The unitarity implies a simple relationship
between w and z, so that only one is independent. In turn,
this complex number z maps through an inverse stereo-

graphic transformation into the Bloch sphere, so that U 1 de-

scribes the base manifold and the diagonal I~Jz the fiber
phase. This is schematically represented in Fig. 3. The sepa-
ration into base and fiber through these two factors carries
over to the case of general SU(N), the matrix z describing
the former. The last factor in Eq. (3) is block diagonal, with
equal and opposite phase factors of exp(—iuno,) for a single
spin-1/2. For larger SU problems, the diagonal blocks in-
volve more than just a number but, nevertheless, this last
factor is diagonal, each block being a lower-dimensional SU
problem and both together providing the fiber in describing
SU(N). This form in Eq. (3) proves most convenient for de-
composing the evolution operator for any SU(N) into its base
and fiber manifolds.

Interestingly, for non-Hermitian H when U is nonunitary,
our construction still applies. The specific structure of an
upper and lower triangular matrix and a diagonal one proves
fruitful, giving simpler equations for z and w', which will
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have at most quadratic nonlinearity in these parameters and
not more complicated trigonometric dependences as with the
Euler angle decomposition [12,13]. In this nonunitary case, z
and w' are independent, our construction providing the req-
uisite equations for both of them (see Appendix A); but, for
the unitary case, unitarity of the full U(N)(t) leads to relations
between z and w':

L=—WY=—V"W,
v, = ﬁ(N—n)fJ(N—n)T — I(N—n) + ZZT,

y, = UMW = (1™ + 272)7" (4)

With U=U,U,, Eq. (2) formally reduces to the evolution
of sz alone with an effective Hamiltonian [13,14],

iﬁz = ﬁeffﬁZa ﬁeff = fJIleJl - iﬁ;lﬁl . (5)

A key element of our construction lies in this effective
Hamiltonian and corresponding evolution for the reduced

problem. Since sz and this equation are block diagonal, the
off-diagonal blocks in H on the right-hand side must van-
ish. This condition leads to the defining equation for z,

iz=H""z+V —z(Viz+H"). (6)

For SU(2), when N=2, n=1, all the matrices above re-
duce to single numbers and Eq. (6) is a Riccati equation for
the complex z. More generally, it is a matrix Riccati equation
[15], and its solutions are involved in the subsequent con-
struction. With the off-diagonal blocks of Eq. (5) accounted
for, the diagonal ones defining the Hamiltonians for the (N
—n) and n problems remain, and are given by (H™-"
—zV) and (H" +V'z), respectively. Although the overall
trace is preserved in our construction and remains zero, these
individual Hamiltonians are neither traceless nor Hermitian.
The equations for z need to be solved numerically in general
but form a smaller set than the N? elements in the original
Eq. (2).

To set up the process for iteration, the above individual
Hamiltonians in (N-n)- and n-dimensional subspaces must
be rendered Hermitian and traceless. The latter is easily
achieved by subtracting Tr(H™"-zV™) and Tr(H"+V'z)
from them. These traces being equal and opposite, this trans-
lates into the introduction of a phase, the integral of the trace,
in UM, representing a relative phase between the two sub-
spaces.

There are alternative methods for rendering the Hamilto-
nians Hermitian, the most accessible one being through

-1 T -1
. 0 0
UJ{UI _ (‘)’1)r ) _ (glfl -1-) . %
0 » 0" 22
The first part of this equation is the observation that fﬂfjl is
block diagonal. This suggests the second part of the equa-
tion, namely, the definition of an inverse through two ‘“Her-

mitian square-root”” matrices g;. Together, they serve as a
gauge factor to unitarize according to
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~ (g 0 )

U,=U ( . (8)
1 1 07 g
With that, the second factor, INJZ, in Eq. (3) is also unitarized,
-1

g, 0 >~
U,= Us. 9
2 <0T ggl 2 ( )

After some algebra, the explicitly Hermitian forms of the
two diagonal block Hamiltonians of dimension (N—n) and n
are

ila L e
H™ )=E[Z;gll,gl]+§[gll(H<N '~2Vi)g, +Hel,
1O = Ly g |+ [ (Y 42 V)g, + Hel
2[dr™? 22 ’

(10)

with commutator brackets in the first term, and H.c. in the
second term denoting the Hermitian conjugate of the preced-
ing expression. Again, the trace of each Hamiltonian in Eq.
(10) can be subtracted to render them traceless; as clear by
inspection, this is the same trace discussed just above. These
Hamiltonians in Eq. (10) can now be treated further as
SU(N-n) and SU(n) problems.

The y matrices in Eq. (4) are Hermitian with non-negative

eigenvalues because of their origin from fJIle This permits
their decomposition into g as shown in Eq. (7). The g matri-
ces and their inverses in Egs. (7)—(10) are square roots of
them, and because any power, including fractional ones, are
Hermitian term by term in a formal power-series expansion,
we can choose g also as Hermitian. The use of identities such
as

ZT%[) = szzT» r'z=zy," (11)

serves to express all g in terms of the linearly independent
set of matrices of dimension (N-n) or n, whichever is
smaller. With n=2, this means that all the algebra of calcu-
lating such square-root matrices and the subsequent evalua-
tion of the effective Hamiltonian in Eq. (10) reduces to ma-
nipulation of Pauli matrices.

A count of the parameters is instructive. The original
SU(N) evolution involves (N>-1) elements and, therefore,
grows quadratically with N. These are divided in the above
construction into the 2n(N—n) elements in z, which for small
n grows only linearly with N. The rest are contained in the
elements of the SU(N-n) and SU(n) and the single phase
between those two subspaces. Our construction of higher
SU(N) evolution in terms of smaller ones, with the template
in Eq. (3) of three factors as in SU(2), resembles the
Schwinger scheme of generating higher j representations of
SU(2) or SO(3) from the fundamental one of j=1/2 [10].
Whereas that scheme was for higher representations but of
the same group, SU(2), our procedure extends in the direc-
tion of larger groups SU(N).

In mathematical language of base manifolds and fiber
bundles [4], the SU(2) and its Bloch sphere are seen as the
bundle [SU(2)/U(1)] X U(1), the former the two-sphere S”
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base and the latter U(1) phase the fiber. Likewise, our con-
struction is in terms of the base manifold {SU(N)/[SU(N
-n)XSU(n)XU(1)]} and the fiber [SU(N-n)XSU(n)
X U(1)]. For SU(2), there is a single complex z that defines
the base manifold. The Bloch sphere of a unit three-
dimensional vector 7 corresponding to z is then constructed
by inverse stereographic projection from R? to S%. Similar
structures of a m associated with the larger z will be consid-
ered in the next sections.

III. CASE OF SU4), WITH APPLICATION
TO ITS SUBGROUPS

An important case is of N=4. Four-level systems are com-
monly considered in quantum optics and molecular systems
and, of course, in today’s quantum computation where they
describe two qubits [7]. Since all logic gates can be built up
from such qubit pairs, the study of the evolution operator for
such N=4 problems is of current interest. As a combined
description of spin and isospin, SU(4) also has central im-
portance in the study of nuclei and particles [16]. The group
also occurs in the description of unusual magnetic phases of
f electron states in CeBg [17]. Both choices n=1,2 in the
general procedure of Sec. II lead to interesting decomposi-
tions, with the latter the more natural for qubit applications.
We now turn to this case.

In physics terms, a four-level Hamiltonian has three real
parameters along the diagonal to fix the energy positions of
the levels. (One overall element, represented by the trace,
can be subsumed as an uninteresting definition of the zero
energy reference level, leading also to an irrelevant overall
phase in the evolution operator.) In addition, six off-diagonal
couplings, which are complex, make for a total of 15 param-
eters to describe the full Hamiltonian. Symmetries often re-
duce this number so that the Hamiltonian involves only a
smaller number as a closed subalgebra. For two identical
qubits, there are indeed such symmetries which reduce the
number of independent energies and couplings of a four-
level system.

With N=4,n=2, all the matrices involved in the previous
section can be rendered in terms of Pauli spinors and the unit
2 X 2 matrix. A general Hamiltonian of SU(4) has 15 inde-
pendent operators and time-dependent parameters multiply-
ing them. A standard, explicit rendering of the fifteen 4 X4
matrices is given in [18,19]. z comprises four complex quan-
tities, (z4,z;), and the matrix Riccati equation reduces to
coupled first-order equations in them with quadratic nonlin-
earity. Deferring this general case to the next section, we
consider first the smaller sets of operators of various sub-
groups of SU(4).

su(2) X su(2) subalgebra. Consider first a Hamiltonian
consisting of only six of the 15 operators. Since our con-
struction is representation independent, in a suitable repre-
sentation, the six may be viewed as two independent, mutu-
ally commuting, triplets that obey su(2) algebra. Clearly,
each then may be expected to have its own geometrical de-
scription in terms of a Bloch sphere and phase. In our above,
general formulation, this result is realized as follows. Thus,
consider two independent magnetic moments, characterized
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by the standard Pauli matrices o, in time-varying magnetic
fields A(r) and B(f) which may also be independent, with
Hamiltonian H=¢'"-A+¢®.B. Using a standard set of 4
X 4 matrices [18] to cast this Hamiltonian in the form of Eq.
(1), we have V=(A,~iA,)T and H!?=G-B+ AL

The z in Eq. (3) also reduces, as with V, to a unit operator
with a single complex coefficient z4 obeying a Riccati equa-
tion in Eq. (6). The gamma matrices in Eq. (4) are also
proportional to the unit operator, thus simplifying Eq. (10),
the g dropping out. As a result, the Hermitian matrices in the
block-diagonal effective Hamiltonian take the form of the

same & B plus or minus a term proportional to a unit matrix.
The first term is viewed as for a single spin with a Bloch
sphere and a phase, the second represents a phase between
the two 2 X2 spaces. The complex z4 can again be inverse
stereographically projected into another two-sphere as in the
Bloch construction. We arrive, therefore, at the same initial
expectation, that a simultaneous viewing in terms of two
Bloch vectors in individual two-spheres, along with their fi-
bers, provides the geometrical picture for all such qubit-pair
systems. A specific physical example occurs in the construc-
tion of optimal quantum NOT operations [20].

su(2) X su(2) Xu(1) subalgebra: Another subalgebra, in-
volving seven of the 15 operators, has been considered be-
fore [18,21]. It has the symmetry of SU(2) X SU(2) X U(1).
In a suitable representation, such a Hamiltonian can be cast
as a diagonal form in Eq. (1) plus a term which is propor-
tional to the unit operator in both diagonal blocks but with
equal and opposite sign. Such an operator commutes with all
the other six, themselves comprised of two mutually com-
muting triplets of 4 X 4 matrices [18]. With V=0, z in Eq. (6)
also vanishes and we reduce trivially to the two independent
SU(2) and a phase between the two spaces, together account-
ing for the seven parameters of this problem. An example is
provided by the controlled-NOT gate constructed with two
Josephson junctions [22]. Many such sets of seven operators,
one of which commutes with all the remaining six, have been
identified through a general procedure in footnote 11 of [21].

so(5) subalgebra. Proceeding further to other subgroups,
a nontrivial example is provided by an H that involves ten
operators satisfying an so(5) subalgebra of su(4). Again,
there are many such sets of ten operators and matrices which
close under commutation within the full set of 15 as noted in
footnote 11 of [21]. As a physical example, a four-level sys-
tem of two symmetric pairs, as naturally so with two identi-
cal qubits, has only two real parameters along the diagonal in
its H. Selection rules often restrict the off-diagonal coupling
between the levels from six to four, thus introducing four
complex, or eight real, parameters. The net result of such
symmetric four-level systems is a ten-parameter problem
[23] and is sketched in Fig. 4.

Such H fall into this so(5) subalgebra. The corresponding
group is the so-called spin group Spin(5) which is the
double-covering group of SO(5), the group of five-
dimensional rotations, much as Spin(3), isomorphic to
SU(2), is the covering group of SO(3) [24]. All such Spin(5)
or SO(5) will themselves have a Spin(4) or SO(4) subgroup,
which in turn has the two mutually commuting SU(2) or
SO(3) discussed above so that the ten matrices can be con-
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4
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FIG. 4. A four-level system consisting of two like-pairs of en-
ergy levels, and couplings as shown. Many systems of two-qubits
and elsewhere in atomic and molecular physics [23] have such a
description, two real numbers providing the energy positions and
four complex numbers the couplings, for a resulting so(5)
subalgebra.

veniently viewed as two sets of commuting triplets plus four
more which transform like a four-dimensional vector under
SO(4). For completeness here in this paper, we briefly sum-
marize results on this so(5) subalgebra that were published
elsewhere [13]; see also [25].

Ina convenient representation that uses Pauli matrices for
two 1ns [18], we have H(t) 10'52)—F310';2)+F320'i2)
- Fy0, 0(2)+F flop (1) (2) -Fs, ), Where\' the ten arbitrarily
time- dependent coefﬁ01ents F (t) form a 5 X5 antisymmet-
ric real matrix. (We will use ,u v=1-5and i,j,k=1-3 and
summation over repeated indices.) Several quantum optics
and multiphoton problems of four levels driven by time-
dependent electric fields have such a Hamiltonian. It has also
been considered extensively in coherent population transfer
in many molecular and solid state systems [23]. Casting this
Hamiltonian in the form of Eq. (1), we have

1
Hi = (IF%_ Efi.ikFij)‘Tk’ V=iFsI? + Fy0,

(12)

With the matrix Riccati equation in Eq. (6) cast in terms
of Pauli spinors together with coefficients z,=2z4,7;: 2
=7,J®—iz,0,, it takes the form

Zu=Fs,(1 -7,) +2F 0, + 2F5,20,2,,. (13)

[As an alternative, V and z can also be rendered in terms of
quaternions (1,—io;).] v, and ¥, in Eq. (4) become equal and
proportional to a unit matrix, (1+z,z #)I(2>. The structure of
Eq. (13) admits to the four quantities z being real. The effec-
tive Hamiltonian in Eq. (10) in terms of these z becomes

Hgfz) = H(l’z) - iijiFSjO.k + F5jZ40-j * F54Zi0-i~ (14)
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FIG. 5. Analogous to Fig. 3, schematic of the evolution operator
for so(5). z, consisting of four real parameters, is inverse stereo-
graphically as per Eq. (15) rendered as a four-sphere S*, and the
third factor has two SU(2) blocks along the diagonal. Together,
these factors provide the description shown in Fig. 2.

We can now construct a five-dimensional unit vector m
out of the four z’s,

m o 2w m —(1_Z'2}) v=1-4 (15)
S T as P '

The nonlinear Eq. (6), or Eq. (13) in z, becomes of simple,
linear Bloch-like form,

n, =2F,m,, w,v=1-5. (16)

As in the single spin case, this represents an inverse ste-
reographic projection, now from the four-dimensional plane
z € R* to the four-sphere S*. It provides a higher-dimensional
polarization vector for describing such two spin problems.
With z so described, the two effective SU(2) Hamiltonians in
Eq. (14), when solved in turn, give the complete solution. In
all, such Hamiltonians possessing Spin(5) symmetry are,
therefore, described by the geometrical picture of one $* and
two S? spheres along with two phases, as shown in Fig. 2 and
the unitary evolution operator depicted as in Fig. 5.

su(3) subalgebra. Four-level systems with only two inde-
pendent energy parameters along the Hamiltonian’s diagonal
and three complex off-diagonal couplings constitute a su(3)
sub-algebra with eight parameters. A general three-level sys-
tem, embedded into four with the fourth level completely
uncoupled, constitutes a trivial example of such an su(3) sub-
algebra but less trivial examples can also occur. The z now
has two nonzero complex z for a total of four parameters.
The description of this four-dimensional manifold, as well as
the remaining SU(2) and a U(1) phase, parallel the discus-
sion of the general SU(4) in the next section, and will be
presented elsewhere [26]. Therefore we omit details except
to note that setting z,=—iz; and z3=—iz, in Sec. IV reduces to
such a SU(3) symmetry.

IV. GENERAL SU(4) HAMILTONIAN INVOLVING
ALL FIFTEEN OPERATORS

Instead of the Hamiltonians considered in Sec. III which
involve subalgebras of the full two-qubit system, consider an
arbitrary 4 X 4 Hamiltonian with its entire complement of 15
operators and matrices. Such an H is obtained by adding to
the previous Spin(5) Hamiltonian considered above the five
additional terms, F650'il)+F640'§C1)+F6icr§,1)(rl(»2). In Fig. 4, this
corresponds to the energy levels being arbitrarily positioned
and the two other couplings restored. Correspondingly, Eq.
(12) gets an additional term *FgI® in the diagonal H!-?)
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while in V, the Fs5, are replaced by F’s,,—iFg,. Thus the full
SU(4) amounts to a simple modification of the previously
considered Spin(5) by adding a term proportional to the unit
operator to the diagonal blocks and making the four Fs,
complex, with Fg, absorbed as their imaginary parts.

The Riccati Eq. (13), now for complex z, becomes

2= Fs,(1=22) = iFg, (1 +22) + 2F .2, + 2(Fs, + iFg,)2,2,,

—2iFesz,, M.v=1-4. (17)

The two gammas in Eq. (4) are given by

1
2 2 % * . ® *
Via=(1+ )P +i(2 2y - 2 z)o; = Eleijk(zizj - 22, )0y

(18)

Their square-root matrices g, , can also be evaluated in terms
of the Pauli matrices and the two SU(2) effective Hamilto-
nians then constructed in explicitly traceless and Hermitian
form.

Just as the very structure of Eq. (13) suggests that z,, and
(1 —zi) with suitable normalization define a five-dimensional
unit vector m in Eq. (15), the occurrence of z#,(l—zi),(l
+z%) in Eq. (17) suggests now the introduction of six quan-
tities according to

~22 (1-2)) (1+2)
—— 22 I P .
M= De'?’ "= De'¢ ’ Mo="t De'¢ (19)
with
D= (1+2|z,)*+ zizjz)m,
$p=—2Fgs+iFs,(z,—2,) + Feu(z, +2,).  (20)

As with the so(5) case in Sec. III, with such a set of six
complex quantities 1, the nonlinear Riccati equation for the
four complex z, in Eq. (17) becomes a linear Bloch-like
equation as before,

ny,=2F m,, uv=1-6. (21)

Once again, the m,, obey a first-order equation with an anti-
symmetric matrix which describes rotations. Since the 15
F,, are real, the real and imaginary parts of the six m,, each
obey such a rotational transformation. These six-dimensional
rotations reflect the isomorphism between the groups SU(4)
and SO(6) [more accurately, its covering group Spin(6)] and
suggest a mapping between their generators (see Appendix

To get a geometrical picture of the manifold m, we note
first the relations,

mi=0, Im,[*=2, (22)

which amount to three constraints. In addition, only the de-
rivative, not the value, of ¢ is determined in Eq. (20).
Thereby, the number of independent parameters in m,, is
eight just as in the complex z,,, themselves built from z. The
description of such an eight-dimensional manifold will be
taken up in the next subsection but we note here the reduc-
tion to the previous so(5) example. This follows upon setting
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FIG. 6. Analogous to Fig. 5, schematic of the evolution operator
for a SU(4) problem. Four complex parameters z are rendered as
two orthogonal unit vectors on a five-sphere S°; the third factor has
two SU(2) blocks along the diagonal with a mutual phase between
the two spaces.

F¢s=0, Fg,=0 which makes ¢=0 and D=(1+7%) in Eq.
(20), and reduces m, and ms to the values in Eq. (15)
whereas mg=—i. This, of course, makes m a five-dimensional
unit vector and its manifold the four-sphere S*. The first re-
lation in Eq. (22), of the vanishing of a square, hints at
Grassmannian elements, to be discussed further below.

A. Nature of the manifold describing (z,m) for general SU(4)

Our construction of the evolution operator for (N=4, n

=2) in Eq. (3) is in terms of the eight-dimensional base
manifold z and a fiber consisting of two residual SU(2) along
its diagonal blocks and a U(1) phase between them,
SU4):[SU4)/SU(2) X SU(2) X U(1)] X [SU(2) X SU(2)
X U(1)]. To describe the former base manifold, consider first
[SU(4)/SU(2) X SU(2)], which is a nine-dimensional mani-
fold. It can also be described in terms of spin-groups as
Spin(6)/Spin(4). The six complex m,, in Eq. (19) with the
three constraints in Eq. (22) constitute such a manifold called
a Stiefel manifold St(6,2,R)=fR°, this name being given to
manifolds consisting of n orthogonal vectors from an
N-dimensional space RN [27].

Geometrically, the second relation in Eq. (22) states that
the real and imaginary parts of m are six-dimensional unit
vectors while the first relation expresses their mutual or-
thogonality. Therefore one can view the manifold as a five-
sphere S5 with another four-sphere S* attached at each point
on it. The absolute value of the phase parameter ¢ in Eqs.
(19) and (20) being undefined, reduces such a manifold by
one dimension to [SU(4)/SU(2) X SU(2) X U(1)], which is
equivalent to the reduction from the Stiefel to a Grassman-
nian manifold Gr(4,2,C) according to St(6,2,R)
=Gr(4,2,C) X U(1). Such a Grassmannian manifold, which
has eight dimensions, thereby describes the z in Eq. (3) or its
equivalent z,, in Eq. (17) or m, in Eq. (19).

A more accessible geometrical picture is to consider a
single five-sphere S and two six-dimensional unit vectors
from the origin to the surface to represent the real and imagi-
nary parts of m,. The two vectors are orthogonal, and one
views such an orthogonally coupled pair rotating within the
sphere [28]. This nine-dimensional object, combined with
the zero reference of ¢ being undefined, is our eight-
dimensional manifold of interest. It is sketched in Fig. 6.

B. Description in Pliicker coordinates

An alternative view of these manifolds is provided in
terms of what are termed Pliicker coordinates, defined as a
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set of six COmpleX parameters (Plz,P13,P14,P23,P24,P34)
formed as minors of the 2 X4 submatrix of the last two col-
umns of an arbitrary, unitary SU(4) matrix [11],
Uy Uy Uiz Uy
Upp Upy Upz Uy
U= . (23)
Uzl U3y U3z U3y
Ugp Ugy Uz Ugy

They obey the relations
P1oPyy— P3Py + PuPyu =0, 2 [Py=1. (24)

They are combinations of the m,, according to

Py ime = ms

Py imy +m,

Py =1 —imz+nmy (25)
Py 21 —imy—my

Py —imy+my

Py img + ms

The linear equations for m,, in Eq. (21) translate into a simi-
lar linear equation

iP:HP, P= (Plz,—Pl3,P14,P23,P24,P34), (26)

with
Hy5 Hy Hy —Hyp Hyp 0
Hy Hyz —-Hy -Hp 0 —-Hyp
H,- Hyy —-Hp Hyg O Hy,  Hyp ’
-Hy -Hy 0  Hyi Hy —Hj
Hpy; 0 Hyy  Hy Hyy —Hy
0 -Hy Hy -Hjy —Hy Hygy

(27)

where we have adopted the notation for the diagonal entries:
Hj;jj=H;i+Hj;.

Actually, the above equations for P can be arrived at di-
rectly from the evolution equation {U=HU because the ele-
ments of P are quadratic in the elements of U in Eq. (23):
Pijzisijk,u,(f)u;“), and iu,(f):ijuf). Also, z can be defined in
terms of the two minors on the right in Eq. (23):

Uiz u Usz U
z=< 13 14>/< 3 34)’ 08)
Ur3z Uy Ugz Ugy
the matrix in the denominator assumed to be nonsingular.
Writing U in Eq. (23) in the form in Eq. (3), the first factor

U, involving z is a map of the Grassmannian manifold
Gr(4,2,C) onto C*, and provides a partial coordinization of
that manifold. Elements of Gr(4,2,C) are two-dimensional
complex  hyperplanes  spanned by  vectors  uj
= (u13 sUpz, U3z, u43)T and uy= (M14, Uy, U3y, M44)T. The Pliicker
coordinates provide a unique identification of such planes.
They are an analog of the coordinization of the
n-dimensional sphere S” by an (n+ 1)-dimensional unit vec-
tor m as in Sec. III.
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The matrix Hp in Eq. (27) being Hermitian, PTP=const
=1. This can be verified by the relation between P’s and m’s
in Eq. (25) which involves a unitary matrix so that PTP
=%m+m, and combining with Eq. (22). Further, a symplectic
structure can be introduced. Defining a 6 X6 matrix
= §,7_; with nonzero entries of 1 only along the antidiagonal,
the first relation in Eq. (24) can be rendered as PTQP=0, and
the matrix Hp, a generator of the symplectic group Sp(6,C),

H,Q + QHL=Tr(H,)Q =0. (29)

Any two vectors P;, evolving according to Eq. (26), satisfy
P/(1)QP,(1)=const. If P,QP,=0, then the two hyperplanes
defined by P; intersect, and if [P;QP,|=1, they do not.

Geometrically, the set P'P=1 is a sphere S'!, the alge-
braic relation PQP=0 determining a nine-dimensional sub-
manifold, an intersection between S!!, and the affine variety
of roots of the polynomial equation PQP=0. This manifold
may be denoted 9R°. Multiplication by a phase acts as a trans-
formation group on this manifold, that is, if P e MY, then
Pe'® e R°. Therefore Gr(4,2,C) is a quotient space
M?/U(1) and has eight dimensions. The connection to
SU(4) is, as noted before, JR%=SU(4)/[SU(2)XSU(2)]
= Spin(6)/Spin(4). The stability subgroup of a vector P
e R’ is SU(2)XSU(2) while the stability subgroup of
M/U(1) is SU(2) X SU(2) X U(1). Since Spin(6)/Spin(5)
=S and Spin(5)/Spin(4) =S*, we can identify the fibration
of R? with S3XS*.

V. SUMMARY

We have presented a complete analysis of the evolution
operator for SU(N), setting up its construction in a hierarchi-
cal way in terms of those for smaller SU(N-n) and SU(n),
with n <N and arbitrary. The evolution operator is written as
a product of two N XN matrices, the second of which is
block diagonal in (N—n) X (N-n) and nXn of the smaller
groups. The first factor is obtained through a (N—n) X n com-
plex matrix z obeying a matrix Riccati equation. Its solutions
determine both the first factor as well as the Hermitian ma-
trices for the subsequent N—n and n evolution problems. z is
the base manifold. For SU(2), when z is a single complex
number plane, its inverse stereographic projection is the fa-
miliar Bloch sphere. For larger SU(N), z is a matrix of com-
plex numbers and the corresponding base manifold is more
complicated.

This general constructive method is applied especially to
a four-level system with special emphasis on two qubits. The
general symmetry is of SU(4), a 15-parameter group. Our
procedure expresses the evolution operator as a product of
two 4 X 4 matrices, the second of which is block diagonal,
each block an SU(2) problem. The z is also a 2 X2 matrix
with complex entries in general and obeys a matrix Riccati
equation. Alternatively, we transform z into a six-
dimensional complex vector 72, whose real and imaginary
parts both separately undergo linear, six-dimensional rota-
tional transformations. This is exactly analogous to the linear
Bloch equation for real three-dimensional rotations of a vec-
tor to represent the evolution operator for a single spin in a
magnetic field.
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Just as a Bloch sphere describes the three-dimensional
vector m for a single spin [and, together with a phase, the
complete SU(2)], we also present the geometrical manifold
describing z or its equivalent six-dimensional complex vec-
tor m. Together with two residual SU(2) problems and a
phase, this provides a complete description of the quantum
evolution operator for SU(4). For certain subalgebras of
SU(4), the manifold is an analogous higher-dimensional
sphere; a four-sphere, for example, for an so(5) subalgebra as
in Fig. 2. For the most general SU(4), we have an eight-
dimensional Grassmannian manifold. We provide a picture
of it in Fig. 6 as two five-spheres with an orthogonality and
phase constraint. These geometrical objects may serve for all
possible four-level and two qubit systems the useful purpose
that the Bloch sphere has for two-level and single qubit prob-
lems in physics.

APPENDIX A: EXTENSION TO NONUNITARY
EVOLUTION FOR A NON-HERMITIAN
HAMILTONIAN

The iterative method of Sec. II for the evolution operator
in Eq. (2) through writing it as in Eq. (3) applies also when
H in Eq. (1) is not Hermitian and, therefore, the evolution
not unitary. However, z and w in Eq. (3) are no longer sim-
ply related as in Eq. (4) but obey independent equations, the
former still in Riccati form but the latter given in terms of z.
Thus, instead of Eq. (1), consider

AV V() )

Al
Y H"() Ay

HM(r) = (

where we have again indicated by tildes non-Hermiticity, and
V and Y are not equal but independent.

Writing uM(r) again as in Eq. (3), Eq. (6) now becomes

iz=HV"Vz - zH™ — 7Yz + V,

iw' = wi Y - YD)+ (HY - Y)w + Y. (A2)

The residual problems of (N—n) and n dimension then be-

come
. (A%t 0
iU2:

B U,. (A3)
0 H" +Y'z ) ’

APPENDIX B: DESCRIPTION OF EVOLUTION
AS SIX-DIMENSIONAL ROTATIONS

For a single spin or qubit, the rewriting of the quantum
evolution operator, which is complex, as rotational transfor-
mations of a real, unit vector in three dimensions given by
the Bloch equation, rests on the isomorphism of the group
SU(2) to SO(3) [or its double covering Spin(3)]. A similar
isomorphism between the groups SU(4) and SO(6) [or its
extension Spin(6)] underlies the construction in Secs. III and
IV of the complex evolution operator for two qubits in terms
of rotations of a vector in six dimensions. Both groups are
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described by 15 real parameters through an antisymmetric
FW,,u,V=1,2,...,6. In Secs. III and IV, explicit expres-
sions are given for the Hamiltonian with each of these pa-
rameters multiplying one of the 15 complex generators of

SU(4) in a standard representation of Pauli matrices, ol

|
(2)

0 (ng)

- of
—0'22) 0 0')((2)
of)  -a? 0
0_21) U)((z) 0_21) 0_;2) 021) ng)
—o6® — g g6
(1) (2) (1) +2) (1) ,(2)
-o,'0,” —o,07 —0,0,
which is explicitly antisymmetric. We thus have H

=2F,,L,,. Analogous to the familiar triplet of angular mo-
mentum generators, six-dimensional generators of SO(6) are
given by L,,=—il,,, where the [ are 15 real antisymmetric
6 X 6 matrices with only two nonzero entries, +1 in the (uv)
and -1 in the (vu) position:

(l,u,v)ptr = 6/.Lp5110' - 5;1,0'51/,3' (Bz)
Their commutators close:
[l,uwlpv] = Supluo + Suolup = Suolp = Ouplves (B3)

so that L, form an so(6) algebra.

The array in Eq. (B1) is also a convenient display of the
generators of the various subgroups of SO(6) of lower-
dimensional rotations. Either upper left or lower right corner
2 X 2 blocks describe the SO(2) generator of one of the qu-
bits. Adding a third row and column gives the full triplet of
SO(3) generators. To this can be added a next row and col-
umn of three nonzero entries to give the six generators of
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®7I?@ 1Wes? ¢V d?. An alternative rendering in
terms of the 15 generators of SO(6) is useful and recorded
here.

The Hamiltonian in Sec. IV, apart from a factor of l, can
be cast in terms of a matrix array

— oo g1 GG

Z X O-X O-X O-y O-X
- o.il)gf) Uil)O.;Z) 0.;_1)0;2)
P RPN o)
0 - 0';1) O'il) '
0';1) 0 0'21)
- ofcl) - o’il) 0

SO(4). For this purpose, any of the three remaining rows and
columns can be employed, each giving an SO(4), the three
added entries transforming as a vector under SO(3). This
continues. Adding another row and column’s four new en-
tries, which transform as a vector under SO(4) [further sub-
dividing into three components that transform as a vector and
one as a scalar under the previous SO(3)], gives the ten
SO(5) generators. The final sixth row and column adds five
entries, an SO(5) vector, to give the full 15 generators of
SO(6).

This hierarchical nesting of SO subgroups, together with
the corresponding Clifford structure with Pauli matrices in
Eq. (B1), accounts for the richness of the structures in the
isomorphic groups SU(4) and SO(6), one we have exploited
in Secs. III and IV. Note that the linear Bloch-like equation
for m in Eq. (21) for a general SU(4) Hamiltonian reduces to
the same antisymmetric form for its subgroups such as in Eq.
(16), all the way down to the standard Bloch equation for a
single qubit, whose SO(3) antisymmetric F;; is usually writ-
ten as a vector product with a magnetic field.
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