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We investigate the most general conditions under which a finite ferromagnetic long-range interacting spin
chain achieves unitary fidelity and the shortest transfer time in transmitting an unknown input qubit. A deeper
insight into system dynamics, allows us to identify an ideal system involving sender and receiver only.
However, this two-spin ideal chain is unpractical due to the rapid decrease of the coupling strength with the
distance. Therefore, we propose an optimization scheme for approaching the ideal behavior, while keeping the
interaction strength still reasonably high. The procedure is scalable with the size of the system and straight-
forward to implement.

DOI: 10.1103/PhysRevA.78.022325 PACS number�s�: 03.67.Hk, 05.50.�q, 75.10.Dg

I. INTRODUCTION

The majority of protocols for quantum communication re-
lies on photons �1�, because of their weak interaction with
the environment and of the well-developed optical fiber tech-
nology. However, it is not always convenient to use photons
to exchange information. In fact, when dealing with quantum
processors, it is not straightforward to convert a stationary
qubit into a flying one and vice versa. An alternative scheme
is based on repeated swapping operations which, however,
require a carefully designed and controlled sequence of
pulses. Therefore, it is highly desirable to achieve state trans-
fer by just letting a system evolve. Indeed, this is the case of
interacting spin chains which can serve as quantum channels
for short-range or mid-range quantum communication �2–6�.
Moreover, trapped particles, such as ions or electrons, not
only are suitable to implement a scalable quantum processor
�7,8�, but are also able to reproduce an effective spin-spin
coupling which exhibits dipolar decay �9,10�.

In this paper, we show a simple way to attain perfect state
transfer with a finite spin chain exhibiting the most general
long-range �LR� interaction. Previous theoretical work con-
centrated mostly on the idealized case of nearest-neighbor
interactions, with a few exceptions �11,12�, and often even
restricted to XY spin chains �13,14�. Our procedure consists
in removing sender and receiver nearest neighbors, thus ex-
ploiting a peculiar feature of the LR coupling, and selec-
tively acting on the system eigenvectors. The resulting quan-
tum channel exhibits optimal performances when compared
to the ideal system with sender and receiver only. Moreover,
the fidelity becomes practically invariant under system scal-
ing and the transfer time independent of the number of spins.

The paper is organized as follows. In Sec. II we analyti-
cally derive the most general conditions, under which a finite
ferromagnetic system of interacting spins achieves unitary
fidelity in the transmission of an unknown qubit state from a
sender to a receiver site. We then apply our analysis to the
case of a long-range interacting spin chain �Sec. III� and
propose our strategy to optimize the system performances in
terms of fidelity and transfer time �Sec. IV�. Finally, we sum-
marize our results and discuss possible experimental imple-
mentations for our scheme �Sec. V�.

II. CONDITIONS FOR PERFECT STATE TRANSFER

Given a generic ferromagnetic system of N spins, we as-
sume that its Hamiltonian H preserves the total magnetiza-
tion M ��i=1

N Si
z such that �H ,M�=0, with Si

z being the z
component of the total spin operator Si of the ith spin. This
implies that the initial state evolves only into states with the
same number of excitations. As a basis for the N�N single
excitation subspace, which is relevant for the qubit transfer,
we adopt the set of vectors �j�= �k=1;k�j

N �0�k � �1� j, where j
indicates the site where the spin has been flipped from 0 to 1
�15�. Moreover, we denote with �0�= �k=1

N �0�k the ground
state of the system, with all the spins facing down parallel to
the external magnetic field. Our task is to transmit an un-
known input state from a sender site s to a receiver site r.
The performance of the quantum channel is measured by the
fidelity �2�

F�t� =
�f�t��2

6
+

�f�t��
3

+
1

2
, �1�

where

f�t� = 	r�e−iHt�s� �2�

is the propagator of the excitation from sender to receiver
with � equal to 1. From Eq. �1�, it is clear that the fidelity
reaches its maximum value, 1, if and only if �f�t��2=1.
Hence, we investigate under which conditions �f�t��2 takes on
the unitary value. Given the set of eigenvectors 
�� j�� with
eigenvalues 
Ej�, such that H�� j�=Ej�� j�, we can expand
�f�t��2 in terms of the system eigenstates

�f�t��2 = ��
j=1

N

e−iEjt	r�� j�	� j�s��2

, �3�

in order to obtain

�f�t��2 = fm + f t, �4�

with

fm � �
j=1

N

�� j�2�� j�2, �5�
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f t � 2�
k�l

N

��k���l���k���l�cos��k,lt + 	k,l� , �6�

where �� j�e
j ��� j�e�j� is the projection of the eigenvector �� j�
on the initial �final� state, when the excitation is located at
site s �r� and 	k,l�
k−
l−�k+�l. From Eq. �4� we note that
�f�t��2 consists of two terms. The first one, fm, is time inde-
pendent, whereas the second one, f t, oscillates with frequen-
cies �k,l�Ek−El. Besides very specific cases of mirror-
periodic systems, or locally approximable as such �4,5�,
these frequencies are uncorrelated. Hence, in a generic case,
the time-dependent term, f t, oscillates almost symmetrically
around its average value which is approximately zero. Since
�f�t��2� �0,1�, the allowed minimum value for f t is −fm.
Therefore, up to fast oscillations with very narrow peaks, it
seems reasonable to approximate the upper bound of f t with
fm. This implies that 2fm is an accurate estimate for the maxi-
mum value of �f�t��2. Hence, we investigate when fm reaches
its maximum value. This search is bounded by the normal-
ization constraints

�
j=1

N

�� j�2 = �
j=1

N

�� j�2 � 1, �7�

�� j�2 + �� j�2 + �� j�2 � 1, ∀ j . �8�

We interpret �� j�2 as the overlap of the jth eigenvector with all
the basis states besides �s� and �r�,

�� j�2 = �
i��s,r�

�	� j�i��2. �9�

Keeping �� j�2 fixed, we look for the extremal points of fm.
Necessary condition for extremes is the spatial symmetry
between the projections of the eigenvectors on initial and
final states. Thus, the local maximum is reached for,

�� j�2 = �� j�2 =
1 − �� j�2

2
. �10�

Indeed, given a number N of spins, the fidelity is maximized
if and only if sender and receiver are located symmetrically
with respect to the midpoint of their joining axis. Now, the
absolute maximum of fm depends on �� j�2. Given the con-
straint � j=1

N �� j�2=N−2, the global extremal point fm=1 /N is
reached when �� j�2= �N−2� /N, for each j. Due to its decreas-
ing monotonicity as a function of N, fm reaches its absolute
maximum on the lower border of its domain, i.e., for N=2.
Thus, to achieve perfect state transfer when N
2, only two
eigenvectors ���

id� must have finite projections on initial and
final states and zero projections on the other basis states

�� j�2 = �� j�2 =
1

2
, �� j�2 = 0, j = + ,− , �11�

�� j�2 = �� j�2 = 0, �� j�2 = 1, otherwise. �12�

The global maximum conditions in Eqs. �11� and �12� state
that unitary fidelity can be attained if and only if the Hilbert
space of the system is the direct sum of two disjoint

subspaces, i.e., Hsystem
N�N �Hs,r

2�2
� Hchannel

�N−2���N−2�, pertaining, re-
spectively, to the sender-receiver pair and to the rest of the
chain. The mixing between these two subspaces is measured
by the quantity ����2, which, in fact, must be zero to satisfy
the maximum conditions. In other words, only two spins, at
the sender and receiver sites, and two eigenvectors, the sym-
metric and antisymmetric combination of the initial and final
states, must play a role in the communication. Hence, we
obtain an ideal �id� system, whose eigenvectors are

���
id� =

1

2

��s� � �r�� . �13�

III. LONG-RANGE INTERACTING SPIN CHAIN

We now focus on linear long-range interacting spin chains
represented by the most general XYZ Heisenberg Hamil-
tonian

H = �
i,j;i�j

N

Ji,j�Si · S j − 3Si
zSj

z� with Ji,j =
C

�a�i − j��� ,

�14�

where �
0, a is the fixed interspin distance and C is a
model depending constant. In particular, the case �=3 corre-
sponds to the dipolar coupling. Hence, the energy between
nearest neighbors is 	i�H�i+1�=C / �2a��. We choose the en-
ergy, length, and time units by setting this last quantity and a
equal to unity �12�. In the ideal case, where the sender-
receiver subspace is completely detached from the rest of the
chain, the eigenenergies corresponding to the eigenvectors in
Eq. �13� read as

E+
id = 0, E−

id = −
2

�N − 1�� , �15�

where N−1 is the number of length units between sender and
receiver. In this case, Eq. �4� gives �f�t��2=sin2��E+

id

−E−
id�t /2�, which leads to perfect state transfer, i.e., unitary

fidelity, for

tid =
�

2
�N − 1��. �16�

As expected, the transfer time, tid, increases with the trans-
mission distance according to a power law depending on the
specific LR interaction.

In a realistic case the eigenvectors tend to have nonzero
projections on all the basis states. However, two of them,
��1� and ��2�, corresponding to the lowest eigenvalues, show
a significant overlap with �1� and �N�. This is due to the
linear topology, where the outermost spins are easier to flip,
being less bound to the rest of the chain. Hence, the external
sites represent the optimal sender-receiver pair. As an ex-
ample we plot in Fig. 1 �left-hand column� the spatial distri-
bution of the first couple of eigenvectors for a dipolar ��
=3� chain of 10 spins. We note that the overlap �� j�2 �j
=1,2�, with the other basis states, is non-negligible only with
�2� , �N−1�. Thus, we approximate the system dynamics tak-
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ing into account only the two low-lying eigenvectors. There-
fore, in analogy to the ideal case, we can estimate the trans-
fer time of a finite linear chain as

t �
�

�12
, �17�

where �12 is the energy difference between the two lowest
eigenvalues. Equation �17� is in agreement with the value of
the transfer time provided in Ref. �12� for the dipolelike
interaction. However, our result is more general, since it ap-
plies to any finite linear ferromagnetic system of interacting
spins.

IV. DOUBLE-HOLE CHAIN

To reduce the mixing between the sender-receiver sub-
space and the rest of the chain, we remove the symmetric
couple of spins located at the sites 2 and N−1. Therefore, in
the Hamiltonian Eq. �14�, we set to zero the coupling con-
stants J2,i and JN−1,i, for each i. Sender and receiver are still
found at the two ends of the chain, but now their nearest
neighboring sites are empty. This implies that the coupling
strength, between sender and receiver and their new respec-
tive nearest neighbor, is decreased, in the case of the double-
hole �DH� chain, by a factor 2� with respect to the original
complete chain. This procedure preserves the overall system

symmetry, while it increases the energy separation between
the sender-receiver subspace and the rest of the chain. In-
deed, we observe, right-hand column of Fig. 1, a more pro-
nounced localization of the two eigenvectors that makes the
DH chain more closely resembling the ideal case.

Let us now characterize the DH system performances, as
a quantum channel, in terms of fidelity and transfer time. To
this end, we compute the fidelity according to Eq. �1�, for a
dipolelike ��=3� interacting spin chain. In Fig. 2, for a given
sender-receiver distance, we compare the performances of
the complete chain and of the DH chain. Three major fea-
tures emerge: �i� the DH chain attains unitary fidelity,
whereas the complete chain barely reaches 0.9; �ii� the DH
chain is about 3 times faster in transferring the qubit state;
�iii� the DH fidelity is a smooth function of time, well ap-
proximated by a sinusoidal behavior. This dramatic improve-
ment of the chain performances is due to the reduced mixing
between the sender-receiver subspace and the rest of the
chain, achieved in the DH configuration ��� j�DH

2 � �� j�2, with
j=1,2�. From Fig. 3, it is apparent that the DH system man-
tains a practically perfect fidelity for at least 100 sites. We
did not investigate longer chains just because of computa-
tional time restrictions. Not only the DH chain outperforms
the full chain, but also the maximum fidelity is almost insen-
sitive to both the distance and the number of spins between
sender and receiver. Moreover given a fixed transmission
distance, both fidelity and transfer time become invariant un-
der system rescaling in the limit �� j�2→0, with j=1,2. In-
deed, as it appears in Fig. 4, the ratio between the ideal
transfer time tid and the DH transfer time approaches the
asymptotical value of tid / t=0.883, whereas for the complete
chain this ratio tends to 0.326. Despite the increased distance
between sender and receiver and the rest of the chain, the
message transmission is qualitatively �higher fidelity� and
quantitatively �shorter transfer time� enhanced in the DH
setup. We can regard the spins interposed between sender
and receiver as repeaters, whose reflectance is proportional
to the overlap of the corresponding basis states with the low-
est eigenvectors. Hence, we are led to interpret �� j�2, with j
=1,2, as the channel opacity. Indeed for the ideal system,
Eq. �11�, this quantity is zero. Therefore tid, Eq. �16�, pro-
vides the lowest bound to the transfer time. The DH transfer
time nearly approaches this minimum, thus marking a great
improvement over the complete chain. The transfer time is
also a measure of the stability of the system against small
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FIG. 2. �Color online� The fidelity as a function of time for a
transmission distance of N−1=49 length units. The red line corre-
sponds to the complete chain, whereas the blue line corresponds to
the DH chain.
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FIG. 3. �Color online� Maximum values of fidelity as a function
of the number of sites N in the complete chain �red circles� and in
the DH case �blue diamonds�.
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FIG. 1. �Color online� Numerically calculated components � j,i

�	� j � i�, with j=1,2, of the first two low-lying eigenvectors for a
dipolar chain of 10 sites. Left-hand column: The complete chain
with 10 spins. Right-hand column: The DH chain �i.e., the same
chain without the spins located at sites 2 and 9�.
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perturbations affecting the channel between sender and re-
ceiver �variations of the coupling, nonuniform filling, vari-
able interspin spacing, etc.�. Indeed, the transfer time de-
creases proportionally to how much the system approximates
the ideal two-spin dynamics. This goal is achieved by sepa-
rating the two lowest eigenvalues from the rest of the spec-
trum, i.e., by confining the system in a well-defined portion
of its phase space, which is energetically expensive to leave.
From this point of view, the DH system is stabler than its
complete counterpart. The diagonal terms 	i�H�i� of the
Hamiltonian, Eq. �14�, represent the configuration energy
when the spin at the ith site has been flipped from 0 to 1.
From Fig. 5, we see that the lowest energy pertains to the
configurations where the excitation is localized at the ex-
tremes of the chain. Moving from the complete to the DH
chain, the energy difference between these configurations
and the rest of the chain increases, thus improving the exci-
tation confinement to this region. Therefore, we expect that
perturbations in the channel are less likely to affect the sys-
tem dynamics and, in this respect, the DH performances are
more robust than their complete counterpart.

V. CONCLUSIONS

We envisage possible implementations of this scheme
based on trapped particles, such as electrons or ions. Indeed,
these systems realize an effective spin-spin dipolelike cou-
pling with the experimental control over the interaction
strength �9,10�. Microtrap arrays allow for a more accurate
design of the interspin distance, whereas, for ions in linear
Paul traps, one must devise a strategy to switch-off the inter-
action between sender-receiver and their nearest neighbors.
Thanks to the single particle addressability with a laser
beam, this could be accomplished by putting out of reso-
nance the ions sitting at sites �2,N−1� with respect to the

driving field used to establish the spin-spin interaction. We
emphasize that not only the DH chain requires the same
technology as the complete chain, but also, due to the negli-
gible overlap of the relevant eigenvectors with the other ba-
sis states corresponding to the rest of the chain, its perfor-
mances are definitely more robust against experimental
defects. Moreover, the smooth time behavior of the DH fi-
delity greatly relaxes the necessary time resolution for the
accomplishment of the communication protocol.

Summarizing, in this paper we have proved that perfect
state transfer takes place when the sender-receiver subspace
is detached from the rest of the chain. This condition implies
that ideally only two eigenvectors are essential for the com-
munication. A similar state transfer protocol has been pro-
posed for antiferromagnetic spin chains �16�, exploiting their
peculiar SU�2� global invariance. Therefore, it is quite sur-
prising to see that unitary fidelity can be achieved also with
ferromagnetic systems. We have outlined a scalable proce-
dure, without neither additional resources, nor demanding
preengineering or dynamical control of the couplings. In the
case of dipolar interaction, our numerical estimates show
that, given a fixed transmission distance, fidelity and transfer
time approach the ideal values and, most notably, are invari-
ant under system rescaling. This procedure can be extended
to all LR interacting systems, simply by adjusting the num-
ber of neighboring spins to be removed, in order to obtain
optimal performances.
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�	i�H�i� of the Hamiltonian equation �14�, as a function of the
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FIG. 4. �Color online� The ratio between the ideal transfer time
tid and the computed transfer time t as a function of the number of
sites N for the complete chain �red circles� and the DH system �blue
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