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We define the hitting �or absorbing� time for the case of continuous quantum walks by measuring the walk
at random times, according to a Poisson process with measurement rate �. From this definition we derive an
explicit formula for the hitting time, and explore its dependence on the measurement rate. As the measurement
rate goes to either 0 or infinity the hitting time diverges; the first divergence reflects the weakness of the
measurement, while the second limit results from the quantum zeno effect. Continuous-time quantum walks,
like discrete-time quantum walks but unlike classical random walks, can have infinite hitting times. We present
several conditions for existence of infinite hitting times, and discuss the connection between infinite hitting
times and graph symmetry.

DOI: 10.1103/PhysRevA.78.022324 PACS number�s�: 03.67.Lx, 05.40.Fb

I. INTRODUCTION

There are two main types of quantum walks: continuous-
time and discrete-time quantum walks. Discrete-time quan-
tum walks evolve by the application of a unitary evolution
operator at discrete time intervals, and continuous-time
walks evolve under a �usually time-independent� Hamil-
tonian. Continuous-time quantum walks have been defined
by Farhi and Gutmann in �1� as a quantized version of
continuous-time classical random walks. Classical random
walks are used in computer science to design probabilistic
algorithms for computational problems most notably for
3-satisfiability �3-SAT� �2�. In a similar vein, quantum walks
provide a framework for the design of quantum algorithms.
Quantum walks have been used in many quantum algorithms
such as element distinctness �3�, matrix product verification
�4�, triangle finding �5�, and group commutativity testing �6�.
Recently, a quantum algorithm for evaluating NAND trees has
been proposed which uses a quantum walk as a part of the
algorithm �7�. To better understand how to use quantum
walks for algorithms we need to study the properties of these
walks. Many papers have studied the behavior of quantum
walks for particular graphs. For example, quantum walks on
the line have been examined for the continuous-time case in
Refs. �1,8,9� and for the discrete-time case in �10–14�. The N
cycle is treated in �15,16�, and the hypercube in �17–21�.
Quantum walks on general undirected graphs are defined in
�22,23�, and on directed graphs in �24�. Kendon �25� has a
recent review of the work done in this field so far, focusing
mainly on decoherence. Other reviews include an introduc-
tory review by Kempe in �26�, and a review from the per-
spective of algorithms by Ambainis in �23�.

Different quantitative characterizations of quantum walks
have been defined by analogy to classical walks, such as
mixing times, hitting �or absorbing� times, correlation times,
etc. �15�. Often for this purpose the evolution of the quantum
walk must be modified to include not only the unitary evo-
lution, but also a measurement process to extract information
about the current state of the walk. There is a natural way to
introduce such a measurement process in the discrete case:
Namely, a measurement is made after each step of unitary
evolution. The interval between measurements is the same as
the characteristic time scale for the walk in question. In the
case of the continuous-time walk, such a natural definition of
a measured walk does not exist. There is no intrinsic time
step after which we can perform the measurement. Classi-
cally this is not a difficulty, because measurements do not
disturb the state of the system. The quantum case is quite
different. If we choose the measurement times arbitrarily,
they can either be too long or too short with respect to the
unitary evolution of the quantum walk. We can either miss
important details in the evolution by measuring too infre-
quently, or overly distort the unitary evolution by measuring
too often. In the limiting case, we can completely freeze the
evolution by the quantum zeno effect �27�.

Hitting times for discrete-time quantum walks have been
defined and analyzed in �19,20�. The effect of making ran-
dom measurements on mixing times, and its possible algo-
rithmic applications, has been studied in �28–30�. In this pa-
per, we introduce a measurement process for the continuous-
time quantum walk which gives rise to a definition and an
analytical formula for the hitting time as a function of the
measurement rate �or equivalently, measurement strength�.
We explore the limits of measuring too weakly or too
strongly, and show that the hitting time diverges in either
case. This suggests the existence of an optimum rate of mea-
surement, which depends on the unitary dynamics of the par-
ticular walk.
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We also show another difference from hitting times for
classical random walks. In the classical case, a random walk
on a finite connected graph always leads to finite hitting time
for any vertex. This is not true for the quantum case. The
existence of infinite hitting times has been argued for
discrete-time and continuous-time quantum walks in �20�; in
this paper we show this explicitly for the continuous-time
quantum walks based on the definition of hitting time that we
give, and derive conditions for the existence of infinite hit-
ting times. Another sufficient condition that we prove is that
if the complementary graph is not connected, this automati-
cally leads to infinite hitting times for the continuous-time
quantum walk on the original graph.

The paper is organized as follows. In Sec. II, we describe
how to introduce the measurement process, and derive for-
mulas for the hitting time and probability. In Sec. III, we give
a condition for existence of infinite hitting times and prove
that the hitting time diverges when the measurement rate
goes to zero or infinity. In Sec. IV, we give examples for the
hitting times for certain graphs as a function of the measure-
ment rate. In Sec. V, we give another sufficient condition for
infinite hitting times. A discussion follows in Sec. VI.

II. DEFINITION OF THE HITTING TIME FOR THE
CONTINUOUS-TIME QUANTUM WALK

A. Continuous-time measured walks

We want to define hitting time for the continuous unitary
evolution on undirected graph ��V ,E�, where V is the set of
vertices and E is the set of edges. Two vertices v1 ,v2�V are
connected if there exists an edge e= �v1 ,v2��E �here �v1 ,v2�
should be taken as the unordered pair or set of the two ver-
tices v1 and v2�. Corresponding to the graph �, we assign the
Hilbert space H�=�2�V�. The vertex states in that Hilbert
space are just labeled by the vertices of the graph—for v
�V, �v��H. They form an orthonormal basis for H�,
	vn �vm�=�nm.

The hitting time for classical random walks is defined
naturally as the average time to find the walk in a specific
vertex. When we turn to the quantum case, the walk on the
graph is defined not as a stochastic process on the vertices of
the graph but as the unitary evolution of a closed quantum
system with the Hilbert space H� defined above. To deter-
mine when the quantum walk has reached a vertex, we need
to measure the system to gain information about its current
state. There are several reasonable ways to do that in the
continuous-time case. We could perform strong measure-
ments periodically with some fixed but arbitrary period T.
This is not unlike the discrete case, in which the period T is
given naturally by the walk itself: A measurement is per-
formed after each unitary evolution step. This way to per-
form a measurement is not satisfactory in our case. We have
no general way to know how to choose T just from the graph.
If we choose it too small we could introduce too much de-
coherence, effectively masking the unitary evolution of the
walk, or even worse, freezing it. If T is too large then we can
miss the moment when the walk actually reaches the final
vertex. And in general, the unitary transformation between
measurements can be complicated and difficult to work out

�unlike the discrete-time case�, which makes performance
harder to analyze.

Another way to measure the system is through strong
measurements performed at random times. The measurement
times are chosen according to a probability distribution with
some measurement rate. The advantage is that we do not
introduce an artificial periodicity into the dynamics, and it
allows one to calculate averaged effects over different mea-
surement patterns. The disadvantage is that it is still neces-
sary to introduce a time scale for the measurements, this time
given by the rate at which measurements are performed. The
simplest and most natural way to distribute these measure-
ments is as a Poisson process; this is equivalent to having a
small constant rate � to do a measurement. We will see that
using a Poisson process allows us to find an exact analytical
expression for the hitting time and hitting probability.

A third way to measure the system is using “weak” mea-
surements �analogous to the way photodetection is de-
scribed�. In a small time period �t, we perform a measure-
ment which either allows the system to evolve unitarily with
a probability 1−�, or performs a measurement to determine
whether it has reached the final state with a probability �. In
this case, the evolution is unitary for most of the time, with
“jumps” at the random times when a measurement is per-
formed. This case and the previous one are actually
equivalent—the values of �t and � determine the measure-
ment rate �—but they give a somewhat different intuition
about how to look at the measurement procedure.

In �30�, it was argued that the qualitative and even quan-
titative behavior of the system is not too sensitive to the
exact details of the measurement scheme. This suggests that
the first choice above �periodic measurement� might be as
good as the other two in practice, but it still introduces a
discrete structure which is not desirable in dealing with con-
tinuous evolution. For this reason, in the following we ex-
plore the measurement scheme described by the second and
third cases.

B. Poisson-distributed measurements

We perform a measurement to check whether the system
is in the final state �v f�, given by the measurement operators
�Pf ,Qf� where Pf = �v f�	v f�, Qf = I− Pf. We measure the sys-
tem at random times, distributed according to a Poisson pro-
cess Xt with rate ��0. Each time we observe a jump in the
Poisson process we measure the system. Between the mo-
ments at which we perform the measurements the system
evolves unitarily with a Hamiltonian H=−�L, where L is the
discrete version of the continuous Laplacian �2. In our case
it is given by L=A−D, where D is a diagonal matrix in the
basis spanned by the vertex states with the degree of each
vertex along the diagonal, and A is the adjacency matrix of
the graph �1,31�. In this paper we take �=1. If the degree of
the vertex vn is dn then we have the following representation
of D and A:

D = 

n

dn�vn�	vn� , �1�

VARBANOV, KROVI, AND BRUN PHYSICAL REVIEW A 78, 022324 �2008�

022324-2



A = 

n,m

anm�vn�	vm� , �2�

where

anm = �1 if �vn,vm� � E ,

0 if �vn,vm� � E .
� �3�

is the adjacency matrix of the graph ��V ,E�.
This choice of Hamiltonian is not special—any similar

Hamiltonian will lead to qualitatively similar behavior. As
we see below, the important property is that the symmetries
of the graph be reflected in the Hamiltonian; automorphisms
of the graph produce permutations of the basis vectors �v�,
which should in turn be symmetries of the Hamiltonian.

Let �= �t1 , t2 , . . . � be a sequence of random times when
the jumps of the Poisson process are observed, with �tn�R,
0� t1� t2�¯�. For convenience we will take t0=0. The se-
quences � belong to a probability space �	 ,F ,P� on which
the Poisson process Xt is defined,

X:R 
 	 → �0,1,2, . . . � ,

Xt��� = n if t � �tn,tn+1� . �4�

Here 	 is the set of all sequences of random times �, F is
the �-algebra, generated by the Poisson process. The prob-
ability measure P on 	 is the one induced by the Poisson
process. �For reference, see �32,33�.�

For each sequence ��	 we define the hitting time as

�� = 

n=1



tnpn, �5�

where pn is the probability to find the system in the final state
at time tn given that the system was not measured to be in the
final state in any of the previous times tn−1 , . . . , t1. �For ref-
erence, see �20,34�.� Define the intervals between jumps tj−1

and tj as t̄ j = tj − tj−1. We want to average �� over all possible
trajectories � of the Poisson process, and take this as our
definition for the hitting time,

�h = EP���� = 
	

��dP��� . �6�

We would like to find an analytical formula for �h. From
the definition of pn, we have

pn = Tr�Pf �
m=1

n−1

�e−i�tm+1−tm�HQf�e−it1H�ie
it1H

� �
m=1

n−1

�Qfe
i�tm+1−tm�H�� .

←−

−→

�7�

The arrow above the products signify whether the operators
entering the products are ordered from left to right or vice

versa, in other words �m=1
n Ui=UnUn−1¯U1 and �m=1

n Ui
=U1U2¯Un.

←− −→

We now introduce superoperators Ut̄ and Q f, defined by

Ut̄�X� = e−it̄HXeit̄H, �8�

Q f�X� = QfXQf , �9�

and use them to rewrite �7� as

pn = Tr�PfUt̄n
� Q f � Ut̄n−1

� Q f � ¯ � Ut̄1
��i�� . �10�

We want to express the sum in Eq. �5�, as a function of the
�t̄n�. We do that by adding, subtracting, and rearranging terms
in the sum. We discuss convergence issues of the series in the
equations below in the Appendix.

�� = t1p1 + t2p2 + t3p3 + t4p4 + ¯

= t1p1 + t2p2 − t1p2 + t1p2 + t3p3 − t2p3 + t2p3 − t1p3 + t1p3

+ t4p4 − ¯

= t1�p1 + p2 + p3 + ¯ � + �t2 − t1��p2 + p3 + ¯ � + �t3 − t2�


�p3 + p4 + ¯ � + ¯ = 

k=1



t̄k

n=k



pn. �11�

Because the �tn� are the event times of a Poisson process, the
interval times �t̄n� are independent and identical random vari-
ables, exponentially distributed with parameter � and a prob-
ability density function given by

f t̄n
�t̄� = ��e−�t̄, t̄ � 0,

0, t̄ � 0.
� �12�

Knowing that, we reexpress formula �6�,

�h = ��
l=1

 
0



dt̄l�e−�t̄l����� . �13�

Then

�h = 

k=1





n=k

 ��
l=1

 
0



dt̄l�e−�t̄l��t̄kpn� . �14�

In the above expression there are two types of integrals,

A�X� = 
0



dt̄�e−�t̄Ut̄�X� , �15�

B�X� = 
0



dt̄�e−�t̄t̄Ut̄�X� . �16�

Integrating by parts we obtain the following equations for the
operators A and B,

A +
i

�
�H,A� = X , �17�

B +
i

�
�H,B� =

1

�
A�X� , �18�

where A�X� is the solution to the first equation. �We will
prove that this solution exists below.� Defining the superop-
erator
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L��X� = X +
i

�
�H,X� ,

we rewrite these equations as

L��A� = X , �19�

L��B� = �−1A�X� . �20�

We want to prove that the superoperator L� is invertible
when � is a real number. For this we need to know how the
adjoint of a superoperator is defined with respect to the
Hilbert-Schmidt inner product for operators,

	X,Y�HS = Tr�X†Y� . �21�

Using this inner product, we see that if

C�X� = 

n

cnCnXDn
†,

the adjoint of C�X� is given by

C†�X� = 

n

c
n
*Cn

†XDn.

From that it follows that L is a normal superoperator,

L�
† � L� − L� � L�

† = 0. �22�

This means that L� is diagonalizable. If Xn is an eigenvector
of L�, then Xn is an eigenvector of the Hermitian and anti-
Hermitian parts of L� separately, which are given by

L�
H�X� =

1

2
�L� + L�

†��X� = I�X� = X

and

L�
A�X� =

1

2
�L� − L�

†��X� =
i

�
�H,X� ,

respectively. Let us denote the eigenvalue of L�
A correspond-

ing to Xn by ixn �xn�R because L�
A is anti-Hermitian�. Then

L��Xn�= �1+ ixn�Xn�0. This proves that each eigenvalue of
L� is nonzero, and that L� is invertible.

The solutions to Eqs �17� and �18� are

A = L�
−1�X� , �23�

B = �−1L�
−2�X� . �24�

Substituting these in �14� we obtain

�h = 

k=1





n=k



�−1 Tr�Pf�L�
−1 � Q f�n−k � L�

−2 � �Q f � L�
−1�k−1��i��

= 

k=1





n=k



�−1 Tr�PfL�
−1 � �Q f � L�

−1�n−k � L�
−1 � �Q f

� L�
−1�k−1��i�� = 


k=0





l=0



�−1 Tr�PfL�
−1 � �Q f � L�

−1�l � L�
−1

� �Q f � L�
−1�k��i�� . �25�

Note that the eigenvalues of L� are always greater than or
equal to 1 in absolute value, from which it follows that the
eigenvalues of Q f �L�

−1 are all less than or equal to 1 in
absolute value. If all the eigenvalues are strictly less than 1 in
absolute value, the following sum exists:



k=0



�Q f � L�
−1�l = �I − Q f � L�

−1�−1.

Substituting this into �25� and denoting N�=L�−Q f, we ob-
tain the following formula for the hitting time:

�h = �−1 Tr�PfN�
−2��i�� . �26�

This formula is closely analogous to the formula for the hit-
ting time derived in �21,20� for the case of a discrete-time
quantum walk. If Q f �L�

−1 has any eigenvalues equal to 1, the
inverse in the above formula should be thought of as a
pseudoinverse.

Another quantity that may be defined is the total probabil-
ity to ever hit the final vertex �21,34�,

ph = 

n=1



pn. �27�

We can derive a formula similar to �26� for ph,

ph = Tr�PfN�
−1��i�� . �28�

If this quantity is not unity, then it means that there is a
nonzero probability for the particle to never reach the final
vertex. This is when the quantum walk is said to have an
infinite hitting time �21�. It is shown in the next section that
this happens when the superoperator L�−Q f is not invert-
ible, then the walk will have an infinite hitting time for some
starting vertex �or superposition of vertices�. In this case, we
can replace the inverse with a pseudoinverse. When the hit-
ting time is not infinite, or equivalently when the superop-
erator L�−Q f is invertible, ph=1.

C. Jumplike weak measurements

There is another way to derive formulas �26� and �28�: By
looking at this procedure as an iterated weak measurement
�case 3 that we discussed above�. Weak measurements have
been considered in the literature �35,36� and one can think of
them as measurements that disturb the state of the system by
a small amount on average, and thus give little information
on average about the state of the system. There are two types
of weak measurement. The first one leaves the system in a
state close to the initial one no matter what outcome is ob-
served. The second type could change the state of system
dramatically for some outcomes but these outcomes are ob-
served with a very small probability. Below we consider a
measurement of the second type. Instead of summing over
all trajectories of the Poisson process at each time period �t,
we perform a generalized measurement with measurement
operators,

M0 = �1 − �2e−i�tH,

M1 = �Pf ,
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M2 = �Qf . �29�

These operators form a complete measurement as

i=0

2 Mi
†Mi= I. The measurement is weak �in the sense of giv-

ing little information on average, as noted above� when �
�1. Let us define a positive matrix �c describing the state of
the system at time t conditioned on the assumption that out-
come “2” has not occurred up to this time. We measure the
system repeatedly at intervals of time �t, using the same
measurement operators, and if we do not observe outcome
“2” the state of the system is described by the following
matrix:

�c�t + �t� = 

i=0

1

Mi�
c�t�Mi

†. �30�

We expand in powers of the small parameter � and take the
limit �→0 and �t→0, keeping the ratio �2 /�t constant, and
obtain a master equation for �c�t�. This gives the connection
between the strength of the measurement � and the measure-
ment rate �=lim�t→0 �2 /�t. After we expand to second order
of � we obtain

�c�t + �t� = �1 − �2��1 − i�tH��c�1 + i�tH� + �2Qf�
cQf

+ O��3� = �c�t� − i�t�H,�c� − �2��c�t� − Qf�
cQf�

+ O��3� . �31�

Taking the limit �t→0 and using the fact that

lim
�t→0

�c�t + �t� − �c�t�
�t

=
d�c

dt
,

lim
�t→0

�2

�t
= � ,

we arrive at the master equation for �c,

d�c

dt
= − i�H,�c� − ���c − Qf�

cQf� = − �N���c� . �32�

Note that �c is positive but not normalized; Tr��c� is the
probability that measurement result “2” has not been seen up
until time t. The total probability to hit the final vertex ph and
the hitting time �h are given by

ph = �
0



Tr�Pf�
c�t��dt , �33�

�h = �
0



t Tr�Pf�
c�t��dt . �34�

Substituting the solution of �32�,

�c�t� = e−�tN���c�0�� ,

in �33� and �34� and integrating by parts, we obtain formulas
�26� and �28� for the total probability to hit and the hitting
time.

D. Physical implementation

The above discussion has been made very abstractly,
without reference to the physical system which embodies the
quantum walk in question, or how the measurements are
done. This abstraction is deliberate, since our conclusions are
largely independent of the details of physical implementa-
tion.

For relatively small graphs it is possible to build a quan-
tum walk from, e.g., a network of mirrors and beam splitters
�37�. This type of construction can demonstrate qualitative
features of quantum walks. Quantum walks can also be used
to describe the evolution of solid-state systems with “hop-
ping” Hamiltonians, at least for small planar graphs �38�.
Measurements in this case will most easily be done at par-
ticular points in space, to detect the presence or absence of
the walker.

For algorithmic purposes this type of implementation is
too limited. Graphs representing computationally challeng-
ing problems will typically include an exponentially large
number of vertices. They will also in general not be possible
to lay out neatly in three-dimensional space. For quantum
walks on these more general graphs the most likely imple-
mentation is simulation by a quantum computer—either a
general purpose computer �39� or one specifically designed
to simulate quantum walks. Because the Hilbert space grows
exponentially with the number of qubits of the quantum
computer, it can efficiently simulate exponentially large
graphs. Such a simulation also allows more general kinds of
measurements, not necessarily localized at particular vertices
of the graph, though such localized measurements may still
be the most useful.

The physical realization of the quantum walk is not im-
portant for the properties described in this paper. However, it
can make a significant difference in understanding the type
of noise or decoherence that can arise in the system. We do
not address decoherence in this paper, but in general it will
tend to erode the interference effects that give quantum
walks their distinctive properties.

III. CONDITIONS FOR EXISTENCE OF INFINITE
HITTING TIMES

In �20,21�, it was shown that quantum walks on some
graphs have infinite hitting times for some initial states. This
occurs when, starting from the initial state, the total probabil-
ity to ever find the walk at the final vertex is less than 1. It
was shown in �20,21� that infinite hitting times occur when
the unitary evolution operator �for the discrete-time case� or
the Hamiltonian �for the continuous-time case� has nontrivial
symmetry. Since the Hamiltonian is obtained from the graph,
if the graph has symmetry �i.e., a nontrivial automorphism
group�, then the Hamiltonian will inherit this symmetry
group. This symmetry causes the Hamiltonian to be confined
to certain invariant subspaces of the Hilbert space, assuming
it begins in the subspace. This means that if the final vertex
is not in this subspace, then the walk will never reach it and
will have an infinite hitting time.

Infinite hitting times are also related to the spectrum �or
more precisely, the degeneracy� of the Hamiltonian. If the
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Hamiltonian is degenerate, then one can construct an invari-
ant subspace that will confine the walk. This can be related to
the symmetry group through the use of irreducible represen-
tations. Every irreducible representation of the symmetry
group must lie inside an eigenspace of the Hamiltonian. If
the symmetry group has an irreducible representation of di-
mension greater than one, then the Hamiltonian is degener-
ate. Therefore, for the continuous-time quantum walk a suf-
ficient condition for the existence of infinite hitting times is
the presence of an irreducible representation in the symmetry
group of the graph with dimension larger than one.

As Abelian groups have only one-dimensional representa-
tions, we might expect that a symmetry group must be non-
Abelian to have infinite hitting times. However, this is not
always true: Having a non-Abelian symmetry group is a suf-
ficient, but not a necessary condition. In the next section we
provide examples where graphs with Abelian symmetry
groups have infinite hitting times �though in these examples
symmetry still plays a crucial role�.

In this section, we will prove that the existence of infinite
hitting times is equivalent to the noninvertibility of the su-
peroperator L�−Q f. We will need the following definitions
�40,41�.

Definition 1. A matrix pencil A+�B �where A and B are
n
n matrices and � is a complex number� is said to be
regular if there exists at least one complex � for which the
pencil is nonsingular.

Definition 2. A complex number �̄ is a finite eigenvalue of
the regular matrix pencil A+�B if det�A+ �̄B�=0.

Definition 3. The regular matrix pencil A+�B is said to
have an infinite eigenvalue if B is a singular matrix.

Consider all operators X such that �H ,X�=0 and PfX
=XPf =0, and denote the projector on the linear subspace of
all such operators by P. We will prove that P�0 if and only

if N�=L�−Q f is not regular. If P�0 then choose X̄ such

that P�X̄�= X̄�0. Then �H , X̄�=0 and from PfX̄= X̄Pf =0 fol-

lows that Q f�X̄�= X̄. Thus N��X̄�=0 which means that N� is
singular for every � and thus not regular. If N� is not regular
then it is noninvertible for any �. Let us fix � to be real and

different from 0. There exists X̄�0 such that N��X̄�=0. We
have already proved that L� is invertible for real �. Then

N��X̄� = L� � �I − L�
−1 � Q f��X̄� = 0 �35�

and thus

L�
−1 � Q f�X̄� = X̄ . �36�

Taking into account that all eigenvalues of L� are greater or
equal to 1 in absolute value the above equality is true only if

L�
−1�X̄� = X̄ , �37�

Q f�X̄� = X̄ , �38�

which are equivalent to

�H,X̄� = 0, �39�

PfX̄ = X̄Pf = 0. �40�

This means that P is nonzero.
Let us explicitly give the form of the projective superop-

erator P in terms of the projectors on the eigenspaces of the
Hamiltonian H. For this purpose we define the intersection
operation � for orthogonal projections. For any two orthogo-
nal projection operators P1 and P2, P1� P2 will denote the
orthogonal projector on the subspace which is the intersec-
tion of the subspaces onto which P1 and P2 project. Let the
Hamiltonian H have the following decomposition:

H = 

i=1

r

EiPi,

where Ei are the eigenvalues of H �Ei�Ej for i� j�, Pi are
the projectors onto the eigenspaces of H corresponding to
eigenvalues Ei. Since H is Hermitian, PiPj =�ijPi, and
Tr Pi=di is the multiplicity of the Ei eigenvalue. The projec-
tor P is then

P�X� = 

i=1

r

�Pi � Qf�X�Pi � Qf� . �41�

From this form it is easy to see that P is a completely posi-
tive superoperator. As such, if it is different from 0, then
there must exist a density matrix � such that P���=�. If the
walk begins in such a state �, it will never arrive at the final
vertex.

Now we will prove that if N� is regular as a matrix pencil
then all its eigenvalues lie on the imaginary axis. Let us
assume that N� is invertible for some ��0 and N�0

is non-
invertible for some �0�0, �0��. Then N��X��0 for all
X�0 and there exists X0�0 such that N�0

�X0�=0. Then
�N�−N�0

��X0�= i�1 /�−1 /�0��H ,X0��0 and therefore
�H ,X0��0. Analogously ��N�−�0N�0

��X0�= ��−�0��I
−Q f��X0��0 therefore �I−Q f��X0��0. As I−Q f is a pro-
jector, it follows that

	X0,�I − Q f��X0��HS � 0. �42�

Taking into account that I−Q f and H�·�= �H , · � are both
Hermitian superoperators, 	X0 , �I−Q f��X0��HS and

	X0 ,H�X0��HS are both real numbers. Denoting �̄0
r

=Re�1 /�0� and �̄0
i =Im�1 /�0� we have

	X0,�I − Q f − �̄0
i H��X0��HS + i�̄0

r	X0,H�X0��HS = 0.

�43�

This equality is only possible if both the real and imaginary

parts vanish, implying that �̄0
r =0 and hence Re��0�=0.

Using this result, we will now prove that if N� is a regular
matrix pencil, and thus does not have infinite eigenvalues,
then the hitting time �h behaves regularly as a function of �
on the real line: it does not diverge for any real � except
when � goes to 0 or infinity. Physically, this means that when
we measure either very weakly or very strongly we never
find the particle in the final vertex. The first limit is easy to
understand since it expresses the fact that if we never mea-
sure, we will never find the particle anywhere. The second
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limit, �→, corresponds to the quantum zeno effect: The
evolution of the system is restricted to a subspace orthogonal
to the final vertex.

To prove this conclusion, we represent superoperators as
matrices using the following isomorphism:

�:C�·� = 

n

cnCn�·�Dn
† → ��C� = C = 


n

cnCn � D
n
*.

�44�

Now we represent the superoperator pencil N� by the matrix
pencil

N� = ��N�� = I � I − Qf � Q
f
* −

i

�
�H � I − I � H*� .

�45�

By assumption this matrix pencil is regular. Every regular
matrix pencil A+�B has the following canonical form:

A + �B = T diag�N�m1�, . . . ,N�mp�,J�n1���n1
�, . . . ,J�nq���nq

��S ,

�46�

where T and S are invertible matrices, constant with respect
to �, and diag�N�m1� , . . . ,N�mp� ,J�n1� , . . . ,J�nq�� is a block-
diagonal matrix with the matrices
N�m1� , . . . ,N�mp� ,J�n1� , . . . ,J�nq� on the diagonal and zeros ev-
erywhere else. The blocks N�m� and J�n� are square matrices
of order m and n, respectively, of the form

N�m� =�
1 � 0 ¯ 0 0

0 1 � ¯ 0 0

0 0 1 ¯ 0 0

] ] ] � ] ]

0 0 0 ¯ 1 �

0 0 0 ¯ 0 1

� , �47�

J�n���l� =�
� + �l 1 0 ¯ 0 0

0 � + �l 1 ¯ 0 0

0 0 � + �l ¯ 0 0

] ] ] � ] ]

0 0 0 ¯ � + �l 1

0 0 0 ¯ 0 � + �l

� ,

�48�

or more succinctly N�m�= I�k�+�K�m� and J�n���0�= ��
+�0�I�n�+K�n�, where I�m� is the identity matrix of order m
and K�m� is a m
m matrix with “1” immediately above the
diagonal and “0” everywhere else. The N�m� blocks are
present when the matrix pencil has infinite eigenvalues and
the J�n� blocks correspond to finite eigenvalues.

We want to examine the behavior of the inverse of a regu-
lar matrix pencil when � approaches one of its eigenvalues.
Assume that �0 is a finite eigenvalue of the pencil and the
corresponding n
n block to that eigenvalue is J��0�. The
inverse of this block is given by

J−1��0� = 

j=0

n−1
�− K� j

�� + �0� j+1 . �49�

In the above K0= I and K=K�n�. The inverses of all blocks
that do not correspond to the eigenvalue �0 will have regular
behavior when � approaches −�0. We similarly examine the
behavior of N�n� when � goes to infinity. The inverse of this
block is given by

N−1 = 

j=0

n−1

�− �K� j . �50�

The inverses of the blocks corresponding to finite eigenval-
ues will have regular behavior when � approaches infinity.

As the matrix pencil

N̄� � N1/� = I � I − Qf � Q
f
* + i��H � I − I � H*�

�51�

is regular and has both finite ��=0� and infinite eigenvalues
�because both matrices I � I−Qf � Q

f
* and i�H � I− I � H*�

are singular�, both types of blocks N�k� and J�l� are present in
its normal form. If we express formula �26� in terms of ma-
trices and vectors with �=1 /� we obtain an analogous ex-
pression

�h = �Pf
v · N̄�

−2�i
v, �52�

where Pf
v and �i

v are the vectorized versions of the matrices
Pf and �i.

When � goes to 0 we can see from formula �49� with
�0=0 that the asymptotic behavior of �h is given by

�h = �h
r��� +

1

�
Pf

v�S−1P0T−1�2�i
v + O� 1

�2� , �53�

where �h
r��� is a function which is regular in a neighborhood

of �=0, T and S are the invertible matrices in the canonical

form �46� of the matrix pencil N̄�, and P0 is the projector on
the eigenspace with eigenvalue �=0. Now as long as
Pf

v�S−1P0T−1�2�i
v�0, �h will go to infinity when � goes to 0

�� going to infinity� no matter whether terms of higher order,
O� 1

�2 �, are present or not.
Analogously, when � goes to infinity, �h has the

asymptotic behavior

�h = �Pf
v�S−1PT−1�2�i

v + O��2� , �54�

where P is the projector on the eigenspace with infinite
eigenvalue. Here again as long as Pf

v�S−1PT−1�2�i
v�0, �h

will go to infinity when � goes to infinity �� going to 0� no
matter whether terms of higher order, O��2�, are present or
not.

As we shall see in the next section, the hitting time in the
examples that we will give below has the following form as
a function of �:
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�h = ��1�� +
��−1�

�
, �55�

where the constants ��1� and ��−1� depend on the particular
graph. The divergence as �→0 and �→ are thus immedi-
ately apparent.

IV. EXAMPLES

In this section, we will consider as examples the graphs in
Fig. 1, using the labeling of the vertices given in the figure
when necessary. Infinite hitting times �ph�0� exist for the
graphs L3, K3, L4, KL3,1, and S4 for certain choices of initial
and final vertices.

We can describe the probability to hit ph and the hitting
time �h in another way, by specifying two operators
P��� ,v f� and H��� ,v f�, and calculating their expectations in
the initial state,

ph = Tr�P���,v f��i� , �56�

�h = Tr�H���,v f��i� , �57�

where

P���,v f� = ��L� − Q f�−1�†�Pf� , �58�

H���,v f� =
1

�
��L� − Q f�−2�†�Pf� . �59�

Here �i is the density matrix describing the initial state of the
system, and Pf is the projector onto the final vertex. These
equations follow from formulas �26� and �28�, respectively,
by using the definition of the Hilbert-Schmidt inner product.

In the following, we will show the operators P��� ,v f�
and H��� ,v f� in the vertex state basis for the graphs in Fig.
1 and briefly discuss properties of quantum walks on each
graph. It is useful to describe the hitting probability and time
in terms of these matrices, because they give the result for
any starting state.

A. Example 1

The graph K2 has the reflection symmetry group C2. As
this group is Abelian, the Hamiltonian of K2 is nondegener-

ate. The two eigenvectors have nonzero overlap with both
vertex states, and therefore there can be no infinite hitting
times. We can see this from the matrices P and H,

P��K2,v1� = �1 0

0 1
� , �60�

H��K2,v1� =�
2

�

i

�

−
i

�

2

�
+

�

2
� . �61�

The dependence of the hitting time for vertex v1 can include
two terms: The 2 /� term diverges as �→0, which simply
represents the increasing time it takes to find the particle as
the measurement rate goes to zero; if the system starts at
vertex v2 there is also a � /2 term, which diverges as �→
because of the quantum zeno effect: As the measurement rate
increases, we can “freeze” the system’s evolution.

B. Example 2

The situation is different in the case of the L3 graph. The
graph again has symmetry group C2, and the Hamiltonian
has no degeneracies. Despite that, however, one of the three
energy eigenstates has zero overlap with the v2 vertex,
�1 /�2,0 ,−1 /�2�. This means that even without degeneracy,
there is an infinite hitting time if the final vertex is v2. This is
not accidental—the symmetry of the graph is still respon-
sible for the existence of this infinite hitting time. Under the
action of C2 each energy eigenstate �ei� will have to be either
symmetric or antisymmetric. The Hilbert space thus splits
into symmetric and antisymmetric subspaces which are or-
thogonal to each other. As the vertex state �v2� is obviously
symmetric under the action of the group, it will be orthogo-
nal to the antisymmetric subspace, leading to an infinite hit-
ting time for v2 starting from either v1 or v3. This is a general
observation for any graph that has C2 as a symmetry group:
Any vertices that are left invariant under the action of the
group will have infinite hitting times. By contrast, there are
no infinite hitting times to reach vertices v1 and v3. We can
see all of these properties by examining the matrices P� and
H�,

P��L3,v1� = �1 0 0

0 1 0

0 0 1
� , �62�

H��L3,v1� =�
3

�
−

1

2�
+ i

1

2�
−

i

2

−
1

2�
− i � +

4

�

�

2
−

1

2�
+

i

2

1

2�
+

i

2

�

2
−

1

2�
−

i

2

3�

2
+

3

�

� .

�63�

The existence of infinite hitting time for reaching v2 can
easily be seen from the P matrix for v2;

v1 v2

K2

v1 v2 v3

L3

v1

v2

v3

K3

v1 v2 v3 v4

L4

v1 v2

v3

v4
KL3,1

v1 v2

v3

v4S4

FIG. 1. Graph examples �with assigned vertex labels�.
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P��L3,v2� =�
1

2
0

1

2

0 1 0

1

2
0

1

2
� , �64�

H��L3,v2� =�
�

8
+

9

8�

1

4�
−

i

4

�

8
+

9

8�

1

4�
+

i

4

2

�

1

4�
+

i

4

�

8
+

9

8�

1

4�
−

i

4

�

8
+

9

8�

� . �65�

As P��L3 ,v2� is not the identity, there must be initial states
that will result in a probability less than 1 to hit v2. For
example, this will be true for any initial state which is a
superposition of states �v1� and �v3�.

C. Example 3

The graph K3 has symmetry group D3, and its Hamil-
tonian is degenerate. It has infinite hitting times to hit any
vertex. If we calculate P and H for this graph, we discover a
new property of these matrices. The graph K3 is not isomor-
phic to L3, but its P and H matrices for any vertex of K3 are
also given by �64� and �65� �or their appropriate cyclic per-
mutations�, the same as for L3. This is because the Hamilto-
nians of the L3 and K3 graphs commute. We will observe
similar behavior below for other graphs with commuting
Hamiltonians.

D. Example 4

The quantum walk on the graph L4 has the same qualita-
tive behavior as the walk on L2. They both have the same
symmetry group, C2, as does the L3 graph. But in the case of
L4, as in the case of L2, there are no infinite hitting times.

E. Examples 5 and 6

We will examine the graphs KL3,1 and S4 together, be-
cause it turns out that their behavior is closely related. The
graph KL3,1 again has C2 for its symmetry group, this time
representing reflection about the horizontal axis. The Hamil-
tonian is nondegenerate, but there are infinite hitting times
for the vertices v1 and v2, due to the existence of an
eigenvector which vanishes on those two vertices:
�0,0 ,1 /�2,−1 /�2�. This is quite analogous to the case of the
graph L3—graphs with C2 symmetry have infinite hitting
times for vertices that are fixed points under the action of the
symmetry group.

The graph S4 has D3 as a symmetry group. Its Hamil-
tonian is degenerate, and it has infinite hitting times to hit
any vertex. It turns out that the matrices P and H for hitting
vertices v1 and v2 in S4 coincide with the same matrices for
KL3,1,

P��KL3,1,v1� = P��S4,v1� =�
1 0 0 0

0 1 0 0

0 0
1

2

1

2

0 0
1

2

1

2

� , �66�

H��KL3,1,v1�

= H��S4,v1�

=�
3

�
−

1

�
+ i

3

4�
+

i

2

3

4�
+

i

2

−
1

�
− i � +

13

2�

�

2
−

1

�
+

i

4

�

2
−

1

�
+

i

4

3

4�
−

i

2

�

2
−

1

�
−

i

4
� +

15

8�
� +

15

8�

3

4�
−

i

2

�

2
−

1

�
−

i

4
� +

15

8�
� +

15

8�

� ,

�67�

P��KL3,1,v2� = P��S4,v2� =�
1

3
0

1

3

1

3

0 1 0 0

1

3
0

1

3

1

3

1

3
0

1

3

1

3

� , �68�

H��KL3,1,v2� = H��S4,v2�

=�
�

18
+

8

9�

1

3�
−

i

6

�

18
+

8

9�

�

18
+

8

9�

1

3�
+

i

6

2

�

1

3�
+

i

6

1

3�
+

i

6

�

18
+

8

9�

1

3�
−

i

6

�

18
+

8

9�

�

18
+

8

9�

�

18
+

8

9�

1

3�
−

i

6

�

18
+

8

9�

�

18
+

8

9�

� .

�69�

Just as with graphs L3 and K3, KL3,1, and S4 have the same
matrices because the Hamiltonians of the graphs commute;
and, as we can see from the above, this produces similar
dynamics when we measure the walk in the corresponding
final vertices v1 and v2.
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This is not the case, however, when the final vertex is
v3 or v4 for these graphs. For S4, the P and H matrices
for v3 and v4 can be obtained from those above by inter-
changing v1 with v3 or v4. For KL3,1, however the matrices
are

P��KL3,1,v3� =�
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1
� , �70�

H��KL3,1,v3� =�
� +

5

�
−

�

2
−

1

�
−

i

2
0 −

�

2
− i

−
�

2
−

1

�
+

i

2

5

2�
+

7

�
−

1

�
−

3i

2
− � −

1

�
+

i

2

0 −
1

�
+

3i

2

4

�

1

�

�

18
+

8

9�
− � −

1

�
−

i

2

1

�
� +

4

�

� . �71�

The matrices P��KL3,1 ,v4� and H��KL3,1 ,v4� can be found
by interchanging v3 and v4 in the matrices above.

The infinite hitting times for the L3 and KL3,1 graphs can
be understood to arise because the Hamiltonian of those
graphs commutes with the Hamiltonian of a more symmetric
graph. As we shall see in the next section, this fact can lead
to infinite hitting times under certain circumstances.

V. INFINITE HITTING TIMES FOR GRAPHS WITH
NONCONNECTED COMPLEMENTARY GRAPH

We will now look in a little more detail at infinite hitting
times, which are one of the most surprising differences be-
tween classical random walks and quantum walks. In the
classical case, if the graph is finite and connected, the prob-
ability to reach any vertex starting from any other is always
1. That is not the case for quantum walks. A sufficient con-
dition for infinite hitting times was given in �42�: If the
graph’s Hamiltonian is sufficiently degenerate, infinite hit-
ting times will always exist. For continuous-time walks, any
degeneracy at all is sufficient. �This is a sufficient but not a
necessary condition because, as we have shown above, even
graphs with nondegenerate Hamiltonians may have infinite
hitting times.� We will now show that another sufficient con-
dition for a continuous-time quantum walk to have an infinite
hitting time is the nonconnectedness of the complementary
graph. Consider a graph � with n vertices and Hamiltonian
H� given by the usual expressions, Eq. �1� and Eq. �2�. The
complete graph Kn with n vertices has the following Hamil-
tonian �in the basis spanned by the vertex states�:

HKn
=�

n − 1 − 1 ¯ − 1

− 1 n − 1 ¯ − 1

] ] � ]

− 1 − 1 ¯ n − 1
� . �72�

This can be rewritten more succinctly as

HKn
= n�I − ��0�	�0�� = nP̄0, �73�

where ��0�= 1
�n


k=1
n �k� and P0= I− ��0�	�0�.

The complementary graph �c of a graph � is obtained by
connecting vertices that are not connected in the original
graph �, and removing the edges that are present in the origi-
nal graph. Then it is easy to see that the Hamiltonian of �c is

H�c = HKn
− H�. �74�

Another observation is that the Hamiltonian of every graph �
commutes with the Hamiltonian of the complete graph with
the same number of vertices,

�H�,HKn
� = 0. �75�

This follows from the observation that ��0� is always an ei-
genvector of H� with eigenvalue 0. As

H� = P̄0H�P̄0, �76�

�75� is obvious. We can see from �74� that �H� ,H�c�=0.
Let us assume that the graph � is connected but the

complementary graph �c is not, and consider the quantum
walk on �c. Because �c is not connected, there are initial
states that never reach a particular final vertex if the initial
state includes only vertices which are not connected to the
final vertex. Let us consider an initial state ��i� that contains
only vertex states that belong to one of the connected com-
ponents of �c. Let us further assume that

	�0��i� =
1
�n



k=1

n

	k��i� = 0,

which is always possible if the connected component has
more than one vertex. Since ��i� is orthogonal to ��0�, it
immediately follows that it is an eigenstate of HKn

with ei-
genvalue n.
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If the final state �� f� contains only vertices belonging to a
different connected component of �c, the probability to ever
reach the final state is 0,

	� f�e−itH�c��i� = 0 ∀ t . �77�

Setting all of this together, we can see now that

	� f�e−itH���i� = 	� f�e−it�HKn
−H�c���i� = e−itn	� f�eitH�c��i� = 0.

�78�

This proves the existence of infinite hitting time for the origi-
nal graph �.

We note that similar considerations may apply in some
cases if the complete graph is replaced by a symmetric graph
whose Hamiltonian commutes with H�. An example of this
is the similarity of the dynamics of the KL3,1 and S4 graphs.

Finally, we note that this sufficient condition for infinite
hitting times is not particularly strong. For a graph with a
large number of vertices, the complementary graph is almost
always connected. This condition may prove useful for par-
ticular cases, however.

VI. DISCUSSION

We have examined continuous-time quantum walks and
studied natural definitions for the hitting time. After consid-
ering different possibilities for introducing a measurement
scheme, one of them emerges as a natural one for the con-
tinuous case: Measuring the presence or absence of the par-
ticle at the final vertex at Poisson-distributed random times,
with an adjustable rate �. This is exactly equivalent to per-
forming a particular type of weak measurement at frequent
intervals, in the limit yielding continuous monitoring with
time resolution 1 /�. Using this measurement scheme, we
derived an analytical formula for the hitting time which
closely resembles the formula for the discrete-time case.

This formula enables us to find a necessary and sufficient
condition for the existence of quantum walks with infinite
hitting times, namely that a certain superoperator pencil is
not regular. In the case of finite hitting times, the dependance
of the hitting time on the rate of the measurement was stud-
ied, and the intuitive expectation for its behavior in the limits
of weak and strong measurement rate was confirmed. In par-
ticular, as the measurement rate goes to infinity, the hitting
time can diverge due to the quantum zeno effect.

As in the discrete case, the symmetry of the graph plays a
very strong role in the emergence of infinite hitting times.
The graph symmetry group, if large enough, causes degen-
eracies in the eigenspectrum of the Hamiltonian which in
turn leads to the emergence of infinite hitting times for cer-
tain vertices. But this is not the only way in which symmetry
can lead to infinite hitting times. Even when no degeneracy
is present, symmetry can cause some eigenvectors of the
Hamiltonian to have zero overlap with some vertex states, as

in the case of the L3 and KL3,1 graphs examined in Sec. IV.
This can be attributed to the fact that under the action of the
group C2, the Hilbert space splits into symmetric and anti-
symmetric subspaces, and some eigenvectors from the anti-
symmetric subspace could have zero overlap with certain
vertex states. Further study exploring this idea is needed to
see if similar effects occur for other symmetry groups in the
absence of degeneracy.

Finally, in Sec. V we show another condition for infinite
hitting times. The quantum walk on a connected graph can
have infinite hitting times if the complementary graph is dis-
connected. This is in sharp contrast with the classical case,
where every random walk on a connected graph will hit any
vertex with probability 1 at long times. While this new con-
dition is rather specific, it is possible that it can be general-
ized by replacing the completely connected graph with some
other highly symmetric graph, such that the Hamiltonian still
commutes with the Hamiltonian of the original graph. It may
be possible to explain any infinite hitting times on any graph
in this way, giving a unifying view of the whole subject. It is
clear that many questions remain, and that hitting times for
continuous-time quantum walks are a very fruitful area of
research.
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APPENDIX

We will prove that Eq. �11� is valid in the absence of
infinite hitting times. If there are no infinite hitting times,
then formulas �26� and �28� give the values of the hitting
time and probability to hit, respectively, and they are finite
numbers. We used �14� and �13� to derive them, so they need
to converge as well. The integral over the probability space
of the Poisson process will converge only if the integrand
��=
k=1

 t̄k
n=k
 pn converges for almost all sequences ��	.

Thus we can consider only sequences � for which the cor-
responding series converges. In this case the series is abso-
lutely convergent because it consists of positive terms only.
This permits us to rearrange them to get the series on the
second line of Eq. �11�. Canceling terms in that series �we
can do this without endangering its convergence or the value
to which it sums�, we obtain the same series as in the first
line of �11� but with zeros inserted between its terms. More
precisely, we have one zero between the second and third
term, two zeros between the third and fourth term, and so on.
Obviously, if this series is convergent then the one in the first
line of �11� is convergent too, and they both have the same
value. This concludes the proof.
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