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In this paper, several proposals of optically simulating Yang-Baxter equations have been presented. Moti-
vated by the recent development of anyon theory, we apply Temperley-Lieb algebra as a bridge to recast a
four-dimensional Yang-Baxter equation into its two-dimensional counterpart. In accordance with both repre-
sentations, we find the corresponding linear-optical simulations, based on the highly efficient optical elements.
Both the degrees of freedom of photon polarization and location are utilized as the qubit basis, in which the
unitary Yang-Baxter matrices are decomposed into a combination of actions of basic optical elements.
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I. INTRODUCTION

The Yang-Baxter equation �YBE� originated in solving
the one-dimensional �-interacting models �1� and the statis-
tical models on lattices �2,3�. The importance of the YBE
was further realized as a starting point for the quantum in-
verse scattering method �4�. It is well-known that YBE plays
an important role in solving the integrable models in quan-
tum field theory and exactly solvable models in statistical
mechanics ��3� and references therein�. In quantum field
theory, the YBE describes the scattering of particles in �1
+1� dimensions. The essence of the YBE is to factorize the
scattering of three particles into successive two-body scatter-
ing processes. The YBE also plays an important role in com-
pletely integrable statistical models, whose solutions can be
found by means of the nested Bethe ansatz �5�.

Due to its importance, the YBE deserves thus to be tested
experimentally. Measuring the spectrum of spin chain, which
is at the root of the YBE, one can learn the structure of
spinon and thus check the factorization of the YBE. For in-
stance, Heisenberg spin-1/2 chain model has been probed
experimentally through neutron scattering experiments and
the spectrum coincides with the calculation based on the
YBE �6�. However, the YBE only provides sufficient condi-
tion for the prediction of spectrum. So these experiments
should be viewed as indirect check of the YBE. The direct
verification is still an open question.

In order to keep the paper self-contained, we first explain

the basic formula of the YBE. The Yang-Baxter matrix R̆ is a
N2�N2 matrix acting on the tensor product space V � V,

where N is the dimension of V. Such a matrix R̆ satisfies the
YBE

R̆12�u�R̆23� u + v
1 + �2uv

�R̆12�v� = R̆23�v�R̆12� u + v
1 + �2uv

�R̆23�u� ,

�1�

where R̆12= R̆ � 1, R̆23=1 � R̆, u and v are spectral param-
eters, and �−1= ic �c is light velocity�. Take the two spin-1/2

particles as an example. Acting on such a system, R̆ is a 22

�22 matrix whose matrix elements are R̆ab,cd, a ,b ,c ,d=↑
�spin up�, ↓ �spin down�. If spin is conserved, some matrix

elements may vanish. The physical meaning of R̆�u� is two-
particle scattering matrix depending on the relative rapidity
tanh−1��u�. When we change the spectral parameters as �u
= �1−x� / �1+x� , �v= �1−y� / �1+y� and ��u+v� / �1+�2uv�
= �1−xy� / �1+xy�, we obtain another ordinary form of the
YBE,

R̆12�x�R̆23�xy�R̆12�y� = R̆23�y�R̆12�xy�R̆23�x� , �2�

i.e., the spectral parameter in the middle R̆�xy� matrix being
the product of the neighborhoods’ spectral parameters. The

asymptotic limit R̆�x→0�=b satisfies the braid relation

b12b23b12 = b23b12b23. �3�

This relation is diagrammatically represented in Fig. 1. For a
given matrix b satisfying Eq. �3� we can retrieve the corre-

sponding R̆�x� matrix via the procedure of Baxterization or
Yang-Baxterization �7�. This procedure depends on the num-
bers of independent eigenvalues of matrix b. In particular,
when a braid matrix b has two independent eigenvalues �1
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FIG. 1. �a� Diagrammatical interpretation of braid operators The
labeled particle world lines, orienting from bottom to ceiling, are
unaffected by smooth deformations in which the lines do not inter-
sect. Each crossing means a scattering of two particles, including
permutation process as the special case. �b� The braid relation �3�
b12b23b12=b23b12b23. �c� Skein relation. �d� The unknotted loop. By
skein relation we can eliminate all the crossings and get linear com-
binations of the Kauffman brackets for various disjoint unions of
unknotted loops.
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and �2, the corresponding R̆�x� matrix obtained via Yang-
Baxterization takes the form

R̆�x� = ��x��b + x�1�2b−1� , �4�

where ��x� is a normalization factor. For statistical models

on lattice, the elements of R̆�x� should be positive-definite,
since they are related to the Boltzmann weights. However, as
we will see below, there is no such restriction for the appli-
cation to quantum entangled states.

In the recent years there is a new development to connect
the braid matrix, as well as the YBE, with the entangled state
�8–15�. The basic idea comes from the Bell states having the
maximal entanglement degree. For a two-qubit system, Bell
states are defined by

���� =
1
	2

��↑↑� � �↓↓�� ,

�	�� =
1
	2

��↑↓� � �↓↑�� . �5�

The Bell states are connected to the natural basis �	0�
= ��↑↑� , �↑↓� , �↓↑� , �↓↓�� by a unitary transformation matrix
W,

���−�, �	+�, �	−�, ��+�� = W��↑↑�, �↑↓�, �↓↑�, �↓↓�� ,

W =
1
	2


1 0 0 1

0 1 − 1 0

0 1 1 0

− 1 0 0 1
� . �6�

�We refer the reader to �13� for more details about the short
notation in the first line equation.� Kauffman et al. have
shown that the matrix W is nothing but a braid matrix satis-
fying Eq. �3� by recognizing V as a two-dimensional com-
plex vector space to hold a single qubit of information �9�.
Further, it was found that W can be extended to matrix b
such that �13�

b�q� =
1
	2


1 0 0 q

0 1 − 1 0

0 1 1 0

− q−1 0 0 1
� =

1
	2

�1 + M� ,

M2 = − 1, q = ei
, �7�

where real parameter 
 is time-dependent flux. Yang-
Baxterizing this braid matrix b, one can define a new state
with arbitrary entanglement degree, as follows:

�	�x,q�� = R̆�x,q��	0� ,

R̆�x,q� =
1

	1 + x2
�b�q� + xb�q�−1� , �8�

where R̆�x ,q� matrix satisfies YBE �2� and meanwhile deter-
mines the evolution of the initial state �	0� to �	�x ,q�� given

the time-dependent q=q�t�. In terms of the new variable

cos �= �1+x� / �	2�1+x2��, R̆�x ,q� can be recast to

R̆��,
� =

cos � 0 0 e−i
 sin �

0 cos � − sin � 0

0 sin � cos � 0

− ei
 sin � 0 0 cos �
� .

�9�

It is interesting to observe that R̆�� ,
� satisfies to the rela-
tion

R̆��,
� = cos �1 + sin �M, M2 = − 1 , �10�

i.e., as the extension of the Euler formula. When �=� /4,

R̆�� ,
� reduces to b in Eq. �7�, i.e., yielding the maximum
of entangled states. When � takes other values the state

�	�� ,
��= R̆�� ,
��	0� processes a continuous entangle-
ment degree determined by � which is usually less than the
maximum �13�. Suppose only the flux 
 depends on t and
under the adiabatic approximation, then we can obtain the
Berry phase related to the YBE �13�.

The theory sounds reasonable, but why we prefer to

choose a Yang-Baxterized matrix R̆�� ,
� as the unitary evo-
lution is just an assumption. Especially, one may doubt the
necessity of introducing the third particle to describe two-
particle entanglement. We have to present a practical scheme
to test the YBE in the framework of quantum information.
Fortunately, there have been popular optical operations for
the quantum gates �16� that are available to experimentally
test the validity of such a YBE. The motivation of this paper
is to propose a linear optical simulation of the YBE based on
the highly efficient optical elements.

Both the braid matrix B in Eq. �7� and the R̆�x� matrix in
Eq. �9� act on the tensor product space V � V and thus have
the four-dimensional �4D� representation. The entangled
state in Eq. �8� requires that the optical simulation of the

corresponding R̆ matrix involves the universal entangled
gate, i.e., CNOT �controlled-NOT� gate. In principle CNOT

gates make use of measurement-induced nonlinearity and are
still of low efficiency by means of optics �16,17�. The situa-
tion becomes worse when several sequent CNOT gates are
involved. We have to find alternative ways to avoid this dif-
ficulty. Fortunately, as we will see in Sec. II, the 4D Yang-
Baxter matrices have two-dimensional �2D� counterparts
which are unitary and have much simpler realization by
means of linear optics.

The paper is organized as follows. In Sec. II, we first
prove the equivalence between 4D braid matrix and 2D braid
matrix, then find the Yang-Baxterization procedure for the
2D braid matrix. Based on this theoretical assertion the op-
tical test of the 2D YBE will be presented in Sec. III. A direct
test of the 4D YBE is shown in Sec. IV. The conclusion is
made in the Sec. V. The relationship between the basic for
2D braid matrices and 4D ones will be given in Appendix A.
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II. TWO TYPES OF YBES

In the topological quantum computation theory, the 2D
braid behavior under the exchange of anyons �18� has been
investigated based on the �=5 /2 fractional quantum Hall
effect �FQHE� �15�. Motivated by this interesting application
of braid relation in anyon theory, we will nest Temperley-
Lieb algebra �19� into the 4D YBE and reduce it to a 2D
YBE. Here we briefly present such an equivalence between
these types of YBEs.

Let us first recall the braid behavior in �=5 /2 FQHE.
Quasiparticles in such a system are often called Ising anyons
or SU�2�2 states, which satisfy non-Abelian fractional statis-
tics. There are three types of anyons, which can be called 0,
1
2 , 1. When two anyons become close together while other
anyons are much farther away, these two anyons can be
treated as a single particle whose quantum numbers are ob-
tained by combining the original quantum numbers. For
SU�2�2 states, such a formation of new anyons obeys the
following fusion rules:

1

2
�

1

2
= 0 + 1,

1

2
� 1 =

1

2
, 1 � 1 = 0,

0 � 0 = 0, 0 �
1

2
=

1

2
, 0 � 1 = 1. �11�

�These fusion rules are analogous to the decomposition rules
for tensor products of irreducible SU�2� representations, but
have an important difference that 1 is the maximum spin.�
Note that there are two different fusion channels for two 1

2
anyons. As a result, when four 1

2 anyons fuse together to give
0, there is a two-dimensional space of such states. This can
be done by dividing the four 1

2 anyons into two pairs. Both
pairs either fuse to 0 or to 1 then fuse the resulting anyons
together to form 0. The orthogonal basis states read �15�

,

.

�12�

In the middle fusion chains �called conformal block�, the
internal edges are subject to the fusion rules at each trivalent
vertex. In such conformal block basis, exchanging anyons is
identified as braiding in Fig. 1. From the conformal basis to
the Kauffman graph in the right-hand sides, Jones-Wenzl
projector operators have been applied, i.e.

Π1 = − 1
dΠ0 = 1

d , , �13�

where d=	2 in present case. By means of skein relation in
Fig. 1, one can introduce the braid operators A and B which
have nontrivial action on �e1� and �e2�,

.�14�

Thus their matrix representations in the basis ��e1� , �e2�� are
given by

A = e−i�/8�1 0

0 i
� ,

B =
e−i�/8

2
�1 + i 1 − i

1 − i 1 + i
� , �15�

and they satisfy the two-dimensional braid relation

ABA = BAB . �16�

We emphasize that Eq. �16� acts on the basis ��e1� , �e2��. It
is worthy of noting that the “crossing” in Eq. �14� means the
usual 4�4 braid matrix, satisfying Eq. �3�. These braid ma-
trices A and B are unitary and have a natural realization by
linear optics, as we will see in Sec. III.

In order to generalize the above procedure from braid
relation to YBE, we nest Temperley-Lieb algebra �19� into
the 4D YBE and surprisingly reduce it to a 2D YBE. De-
tailed calculations will be given later �see Appendix A�.
Briefly, acting on the subspace spanned by �e1� and �e2�, the
4D YBE �1� will reduce to the corresponding 2D YBE,

A�u�B� u + v
1 + �2uv

�A�v� = B�v�A� u + v
1 + �2uv

�B�u� ,

A�u� = ��u�
1 + �2u2 + 2i��u

1 + �2u2 − 2i��u
0

0 1
� ,

B�u� =
��u�

1 + �2u2 − 2i��u
�1 + �2u2 2i��u

2i��u 1 + �2u2 � , �17�

where ��u� is the normalization factor and �= �1. Since
these matrices A�u� and B�u� are unitary, it is obviously
easier to optically simulate this 2D equation than the previ-
ous 4D edition. For the convenience of experimental check,
we further introduce the transformation

1 + �2u2 + 2i��u

1 + �2u2 − 2i��u
� e−2i�, ��u� � ei�, �18�

then we obtain the following form of SU�2� matrices:

A�u� = �e−i� 0

0 ei� � � A��� ,

B�u� = � cos � − i sin �

− i sin � cos �
� � B��� . �19�

In terms of this new parameter, the solution of the R̆��� ma-
trix takes the form
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R̆��,
� =

cos � 0 0 e−i
 sin �

0 cos � − sin � 0

0 sin � cos � 0

− ei
 sin � 0 0 cos �
� .

�20�

Though it takes the similar form with Eq. �9�, the parameter
� has different meaning from the parameter �. One may
wonder where is the missing parameter 
 in the 2D YBE. It
actually survives in the basis �e1� and �e2� which the 2D YBE
should act on �see the explicit form of the basis in Appendix
A�.

These two unitary matrices can be optically realized with
the aid of the “polarization qubit” or “location qubit” of a
single photon. In the following we present two experimental
setups to simulate the YBE by means of these two ways.

III. OPTICAL SIMULATION OF 2D YBE

The single-photon representation of qubits plays an im-
portant role in linear optical computation �20–22�. The key is
that a single photon can be utilized to act both as polarization
qubit and as location qubit. For the former one encodes the
qubit in the photon’s polarization with the corresponding
transformations simulated by wave plates, such as half-wave
plates �HWPs� and quarter-wave plates �QWPs�. For the lat-
ter, one encodes the qubit in the single-photon paths with the
corresponding transformations simulated by beam splitters
�BSs�, phase shifters �PSs�, and mirrors. As a result, univer-
sal unitary gates �1-qubit or 2-qubit� can be realized by
means of either of these two kinds of qubit transformation, or
by combining both �20,21�.

The two unitary matrices in Eq. �19� can be optically
realized with the aid of the ”polarization qubit” or ”location
qubit” of a single photon. In the following we present two
experimental setups to simulate the YBE by means of these
two ways.

A. Using polarization qubit to simulate 2D YBE

We first recall the action of a QWP upon the basis states
of the polarization qubit �22�

UQ��� = e−i��2e−i��/4��3ei��2

=
1
	2

�1 − i cos �2�� − i sin �2��
− i sin �2�� 1 + i cos �2��

� , �21�

where �i are Pauli matrices and � is the angle between the
QWP axis and the vertical direction. Then the action of a
HWP upon the basis states of the polarization qubit is given
by

UH��� = UQ
2 ��� = − i�cos �2�� sin �2��

sin �2�� − cos �2��
� . �22�

As an analog with Euler rotation, the sandwich configu-
ration of one HWP and two QWPs enables one to perform
any unitary changes of the photons polarization state �23�.
Particularly, for the case in Eq. �19�, we obtain

A��� = UQ��

4
�UH�−

�

4
+

�

2
�UQ��

4
� ,

B��� = UQ��

2
�UH��

2
�UQ��

2
� . �23�

By this decomposition it is straightforward to design the ex-
perimental setup for simulation of a two-dimensional YBE
�17�. As Fig. 2 shows, a suitable series of QWPs and HWPs
with different direction angles in succession will simulate the
left-hand side �LHS� of YBE while another series will do the
right-hand side �RHS�. In Fig. 2, the relation �18� requires
the angle parameters �i in the LHS satisfy

1 − �2u2 + 2i��u

1 − �2u2 − 2i��u
= e−2i�1,

1 − �2� u+v
1+�2uv�2 + 2i�� u+v

1+�2uv

1 − �2� u+v
1+�2uv�2 − 2i�� u+v

1+�2uv

= e−2i�2,

1 − �2v2 + 2i��v
1 − �2v2 − 2i��v

= e−2i�3. �24�

Thus we have

�e−2i�2 + 1��i − sec��1 − �3�sin��1 + �3�� = 2i . �25�

This also holds for the angle parameters appearing in the
RHS of YBE �17�. What we should measure in experiment is
the actions of transformation of both sides given the input
states with the same angle parameters, for example, by
means of quantum state tomography �24�.

B. Using location qubit to simulate 2D YBE

When we take photon location paths as qubit basis, the
unitary transformations can be achieved by means of BSs
and PSs. We follows the notations in �20� which are different
from those in �21�, especially the opposite definitions of lo-
cation qubit lead to distinct actions of mirror. First, we list
the actions of several elementary gates on the location qubit
basis �see Fig. 3�

FIG. 2. Schematic setup for simulating either side of 2D YBE
�17� by means of a polarization qubit. The angle parameters �i are
determined by Eq. �25� while the relations between �i and u , v are
determined by Eq. �24�.
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UBS =
1
	2

�1 i

i 1
� ,

Umirr = 12,

UPS
0 ��� = �ei� 0

0 1
� ,

UPS
1 ��� = �1 0

0 ei� � ,

H = UPS
1 �−

�

2
�UBSUPS

1 �−
�

2
� =

1
	2

�1 1

1 − 1
� . �26�

Based on these gates, a Mach-Zehnder interferometer �Fig.
3�d�� can realize arbitrary U�2� group element �20,21�. Note
that in Fig. 3�d� each pair of −� /2 phase shifters accompa-
nied with every beam splitter is not shown for simplicity. We
hold this convention hereafter, so each BS should be taken as
a Hadamard gate. The unitary action of Mach-Zehnder inter-
ferometer is given by

UMZ = UPS
1 �
1�HUmirrUPS

1 ��2�UPS
0 ��1�HUPS

0 �
2�

= ei�/2
e−i
1−
2/2 cos
�

2
iei
1−
2/2 sin

�

2

ie−i
1−
2/2 sin
�

2
ei
1−
2/2 cos

�

2
� , �27�

where the total phase �=
1+
2+�1+�2 and phase differ-
ence �=�2−�1. Through Mach-Zehnder interferometer, we
can perform the action of operators A and B in Eq. �23� with
angles correspondences as

A��� = UMZ��2 = �1 = 0, 
1 = − 
2 = �� = UPS
0 �− ��UPS

1 ��� ,

B��� = UMZ��2 = − �1 = �, 
1 = 
2 = 0� . �28�

Then we come to the whole optical setup to simulate both
sides of the 2D YBE, Eq. �17�, as shown in Fig. 4. The angle
parameters obey the same relation in Eq. �25�.

IV. OPTICAL SIMULATION OF FOUR-DIMENSIONAL
YBE

The YBE in four dimension representation �1� is equiva-
lent to

�R̆��1� � 12� · �12 � R̆��2�� · �R̆��3� � 12�

= �12 � R̆��3�� · �R̆��2� � 12� · �12 � R̆��1�� , �29�

where �i satisfy the relation �25� and R̆��� takes the form in

Eq. �20�. The R̆��� matrix can be decomposed into the com-
bination of elementary gates �25�. The case �=0 is trivial.

When �=� /4 or 3� /4 �we restrict �� �0,2���, R̆��� reduces
to the braid matrix �7� and thus equivalent to one CNOT gate,
as Kauffman et al. first pointed out �9�. When � takes other
values, it can decomposed as follows:

R̆��� = �V1 � V2� · CNOT2 · �V3 � V4� · CNOT2 · �V5 � V6� ,

�30�

where Vi�U�2� and CNOT2 gate is given by

CNOT2 =

1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0
� . �31�

Below we focus on the general case, i.e., ��0, � /4, or
3� /4. Recently, Bullock and his coauthors �26� have devel-
oped a criterion for determining the number of CNOT �or
equivalently CNOT2� gates to simulate a given transforma-
tion. By this criterion, one can check that the decomposition

�30� is optimal, i.e., the R̆��� matrix admits a quantum circuit
using 2 CNOT gates �see Appendix C�.

Detailed calculation �see Appendix C� further shows Vi
�SU�2� for the present case. More explicitly, we have

V1 =
1
	2

� e−i�+
/4 e−i�+
/4

− ei�+
/4 ei�+
/4 � ,

FIG. 3. Gates acting on location qubit basis: �a� Beam splitter
UBS. �b� Phase shifters UPS

0 ��� �left� and UPS
1 ��� �right�. �c� Had-

amard gate H by a 50:50 BS and two −� /2 PS. �d� Mach-Zehnder
interferometer UMZ as a universal 1-qubit gate. For simplicity, each
pair of −� /2 phase shifters accompanied with every beam splitter
as in �c� is not shown in �d�.

FIG. 4. Schematic setup for simulating either side of 2D YBE
�17� by means of location qubit. �a� Simulation of LHS. �b� Simu-
lation of RHS. Each pair of −� /2 phase shifters accompanied with
every beam splitter is not shown. The relations of different param-
eters are refereed to Eq. �25�.
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V2 =
1
	2

�e−i
/4 − e−i
/4

ei
/4 ei
/4 � ,

V3 = �e−i� 0

0 ei� � ,

V4 = 12, V5 = V1
†, V6 = V2

†. �32�

By this explicit decomposition �30�, the design of the circuit
to simulate YBE is straightforward, as shown in Fig. 5. The
difficulty lies in realization of the CNOT gates. As is de-
scribed in a previous section, a photon can carry either “po-
larization qubit” or “location qubit.” If we only use the
former, CNOT gates are possible for photons in principle us-
ing measurement-induced nonlinearity �27�. However, cur-
rently they are still low-efficient and experimentally expen-
sive �16,17�. For the present status of linear optics
experiments, it was shown that the success probability of an
array of n CNOT gates can be made to operate with a prob-

ability of p= � 1
3 �n+1 �28�. The above decomposition of R̆���

takes 2 CNOT2 gates. For each side of YBE �5�, we have to
deal with 6 CNOT gates at the same time. Thus the success
probability is p= � 1

3 �74.57�10−4, which makes the practi-
cal simulation extremely difficult. This is the reason why we
did map the 4D YBE to 2D YBE.

A photon used as a location qubit will help reduce the
above difficulty when we do a small-scale quantum calcula-
tion. The key lies in the high efficiency of BSs, PSs, and
wave plates. In Fig. 5 we have to deal with three qubit, then
two schemes are available: one polarization qubit channel
plus two location qubit channels, or all location qubit chan-
nels. We focus on the former since it saves one optical way
and uses a less number of beam splitters.

In Fig. 5�a�, three channels are designed to be location �s�,
location �s�, and polarization �p� qubits from top to floor. For
polarization qubit, using the QWPs and HWPs, the unitary
matrices Vi can be decomposed into

V1 = UQ��

4
�UH�


8
�UQ��

2
� ,

V2 = UQ�−
�

4
�UH�� − 


8
�UQ��

2
� ,

V2
† = UQ�0�UH�5� − 


8
�UQ��

4
� ,

V3 = UQ��

4
�UH�2� − �

4
�UQ��

4
� . �33�

For the location qubit, as the previous section shows, a
Mach-Zehnder interferometer can simulate these Vi matrices.
We summarize the results in Figs. 6�a� and 6�b�.

The rest come to two types of CNOT2 gates: one is be-
tween location qubit and polarization qubit, the other is be-
tween two location qubits. For the former, it can be achieved
by a polarizing beam splitter where the location qubit is
flipped or not conditionally on its state of polarization, as
shown in Fig. 6�c� �20�. For the latter, the two location qubits
in Fig. 6�d� correspond to the first and second number of the
binary representation of the location of a single photon, re-
spectively. Thus the corresponding CNOT2 is simulated by
simply swapping the labels of path �10� and �11� �see Fig.
6�d��.

Gathering all the elementary gates, we finally arrive at the
whole scheme for optically simulating the LHS of the 4D
YBE, as shown in Fig. 7. In order to get the optical setup to
simulate the RHS of the 4D YBE, we can apply the formal
equivalence between two hand sides in the YBE �1� by cy-
cling the indices 1→2, 2→3, 3→1 and exchanging the pa-
rameters u↔v. The equality will be confirmed by means of
tomography given the same input on each sides.

V. CONCLUSION

We have presented several proposals to optically simulate
Yang-Baxter equations. According to the development of
theoretical analysis, a Yang-Baxter equation in two-
dimensional representation and in four-dimensional repre-
sentation can be uniformed with the aid of Temperley-Lieb
algebra. In both representations, we have found the corre-
sponding linear-optical realizations, based on the highly ef-
ficient optical elements, i.e., half-wave plates, quarter-wave
plates, beam splitters, phase shifters, and mirrors. Both the
degrees of freedom of photon polarization and location have
been utilized as the qubit basis. In each kind of basis, the
unitary Yang-Baxter matrices have been decomposed into
combination of actions of basic optical elements. The devel-
oped proposals, in principle, are able to be used to directly

FIG. 5. �a� A circuit for simulating the left-hand side of four-
dimensional YBE �1�, with s and p denoting location and polariza-

tion qubit channels, respectively. �b� The decomposition of R̆���
matrix, see Eq. �30�.

FIG. 6. �a� The realization of U1 acting on location qubit with

1=− �+


4 and 
2= 5�+

4 . �b� The realization of U2 acting on loca-

tion qubit with 
1= �

2 , 
2= �−

2 , �1= 
−�

4 , and �2= 
−3�
4 . �c� CNOT2

gate using a polarizing beam splitter with the polarization and lo-
cation being the control and target qubit, respectively. �d� CNOT2

gate between location qubits, which is achieved by swapping the
labels of output paths �01� and �11�.
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check the Yang-Baxter equation. We remark that the test of
the 2D YBE is, in fact, to provide an optical simulation of
two-component anyons associated with FQHE. The anyon
behavior is now a hot topic �15�, but to our knowledge there
has not been a scheme to test by using an optical simulation.

ACKNOWLEDGMENTS

The authors would like to thank Professor J. L. Chen,
Professor X. Wan, M. G. Hu, B. X. Xie, and M. S. Li for
their useful discussions. This work was supported in part by
NSF of China �Grant No. 10575053� and Liu Hui Center of
Nankai and Tianjin Universities.

APPENDIX A: REDUCTION OF 4D YBE

Analog with the mapping from 4D braid relation to 2D
braid relation in Sec. II, we here give the calculation of their
Yang-Baxterized edition. This is equivalent to Yang-
Baxterize �16�. First we recall the involved YBE,

R̆12�u�R̆23� u + v
1 + �2uv

�R̆12�v� = R̆23�v�R̆12� u + v
1 + �2uv

�R̆23�u� .

�A1�

What is interesting is that this four-dimensional YBE �A1�
admits the celebrated Temperley-Lieb algebra �TLA�. Actu-
ally set

R̆12�u� = a1�u�16 + b1�u�U12,

R̆23�u� = a2�u�16 + b2�u�U23, �A2�

and suppose U satisfying TLA �19�

U2 = dU, U12U23U12 = U12, U23U12U23 = U23, �A3�

where d is the loop in Fig. 1, taking the value of 	2 in our
case. The coefficient functions ai�u� and bj�u� in Eq. �A2� are
determined by the associated YBE �A1�. Consider one
simple but important case: a1�u�=a2�u�=a�u� and b1�u�
=b2�u�=b�u�. We easily get

�a�u�b�v� + b�u�a�v� + db�u�b�v��a� u + v
1 + uv

�
= �a�v�a�u� − b�v�a�u��b� u + v

1 + uv
� . �A4�

Equation �A4� has the solution

a�u� = ��u�, b�u� = ��u�G�u� ,

G�u� =
4i��u

	2�1 + �2u2 − 2i��u�
�� = � 1� . �A5�

On the other hand, in accordance with Eqs. �13� and �14�, the
new basis �ei��i=1,2� is introduced from the definition of the
operator U,

U12�e1� = U34�e1� = d�e1� ,

U12�e2� = U34�e2� = 0,

U23�e1� = U14�e1� =
1

d
��e1� + 	d2 − 1�e2�� ,

U23�e2� = U14�e2� =
	d2 − 1

d
��e1� + 	d2 − 1�e2�� . �A6�

Thus we have

R̆12�u��e1� = �a1�u� + d b1�u���e1� ,

R̆12�u��e2� = a1�u��e2� ,

R̆23�u��e1� = �a2�u� +
b2�u�

d
��e1� +

	d2 − 1

d
b2�u��e2� ,

R̆23�u��e2� =
	d2 − 1

d
b2�u��e1� + �a2�u� +

d2 − 1

d
b2�u���e2� .

�A7�

So �e1� and �e2� span the R̆-invariant subspace. Then it is

natural to define the matrix elements A�u�ij = �ei�R̆12�u��ej�
and B�u�ij = �ei�R̆23�u��ej�.

Combing the above results we obtain the explicit form of
A�u� and B�u�,

FIG. 7. The whole optical setup of simulating the LHS of the 4D
YBE shown in Fig. 5. The binary numbers indicate location qubit
basis. Each pair of −� /2 phase shifters accompanied with every
beam splitter is not shown. The phase shifts of other PSs, from a to
f, are −��+
� /4, �5�+
� /4, � /2, �
−�� /4, �
−3�� /4, and ��
−
� /2, respectively. The angles of wave plates to form U2 and U2

†,
from g to l, are � /2, ��−
� /8, −� /4, � /4, �5�−
� /8, and 0,
respectively �see Eq. �33��. Mirrors are placed on every corner.
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A�u� = ��u�
1 + �2u2 + 2i��u

1 + �2u2 − 2i��u
0

0 1
� ,

B�u� =
��u�

1 + �2u2 − 2i��2u
�1 + �2u2 2i��u

2i��u 1 + �2u2 � , �A8�

and importantly, in accord with the braid relation �16�, they
satisfy the two-dimensional �2D� YBE

A�u�B� u + v
1 + uv

�A�v� = B�v�A� u + v
1 + uv

�B�u� . �A9�

The corresponding unitary matrix U with d=	2, which sat-
isfies TLA in Eq. �A3�, takes the representation

U =
1
	2


1 0 0 iq−1

0 1 i� 0

0 − i� 1 0

− iq 0 0 1
� =

1
	2

�1 + iM� ,

M2 = − 1, q = ei
, 
 � R . �A10�

Here the important factor i before matrix M distinguishes U
from the braid operator in Eq. �7�. In terms of new param-

eters as in Eq. �18�, the explicit form of R̆��� takes

R̆��� = a�u� + b�u�U = ��u��14 + G�u�U�

=

cos � 0 0 e−i
sin �

0 cos � − sin � 0

0 sin � cos � 0

− ei
 sin � 0 0 cos �
� .

�A11�

By setting a=� and b=�p, where p= 1
2 �−d�	d2−4� with d

=	2, i.e., p=−exp��i� /4�, we regain A and B matrices as in
Eq. �15�, which satisfy the braid relation �16�. This result can
be also obtained through the “light-cone” limit of Eq. �A1�
by setting three arguments in R̆-matrices to be equal, i.e.,

u = v =
u + v

1 + �2uv
, �A12�

which is satisfied by either u=v=0 or u=v=�−1. Under the
limit in Eq. �A12�, A�u� and B�u� reduce to Eq. �15�.

We know that by taking Q� iq−1= i �i.e., Q4=1�, the U
matrix given by Eq. �A10� becomes

U�Q = i� =
1
	2


1 0 0 i

0 1 i 0

0 − i 1 0

− i 0 0 1
� , �A13�

which is the transformation matrix for the Bell states �10�.
We thus conclude that the four-dimensional entangling braid
matrix �A13� and the two-dimensional braid matrix �15� can
be uniformed by acting the TLA operator on different dimen-
sional basis. The four-dimensional basis can be

��↑↑� , �↑↓� , �↓↑� , �↓↓��, whereas the logic qubit basis reads
��e1� , �e2��. Conversely, the latter can be expanded in terms of
four-spin states and thus relate with the four-dimensional ba-
sis. In order to find this correspondence, we first rewrite Uij
as a form of projectors

Uij = 	2���ij���ij� + ��ij���ij�� , �A14�

where

��ij� =
1
	2

��↑↑�ij + e−i
��↓↓�ij� ,

��ij� =
1
	2

��↑↓�ij − i�↓↑�ij� ,


� = − �
 +
3�

2
� . �A15�

It is interesting that both ��ij� and ��ij� are maximally en-
tangled states for two spins, i.e., Bell states. With the aid of
Eq. �A6�, we arrive at

�e1� =
1

	1 + ���2
���12���34� + ���12���34�� ,

�e2� =
1

	1 + ���2
��1 − i�ei
����23���41�

− ��1 − i�−1e−i
����23���41�� − �e1� , �A16�

with � an arbitrary coefficient. A detailed calculation is
shown in Appendix B.

Briefly, in the invariant subspace spanned by �e1� and �e2�,
the R̆ matrices satisfying the 4D YBE �A1� will reduce to the
2D representation, A�u� and B�u�, with the corresponding 2D
YBE �17�.

APPENDIX B: CALCULATION FOR �ei‹

Here we give the details of calculation for �ei� �i=1,2�.
We start from

U12�e1� = U34�e1� = d�e1� , �B1�

U12�e2� = U34�e2� = 0, �B2�

U23�e1� = U14�e1� =
1

d
��e1� + 	d2 − 1�e2�� , �B3�

U23�e2� = U14�e2� =
	d2 − 1

d
��e1� + 	d2 − 1�e2�� . �B4�

Generally, �ei� can be expanded into the linear combination
of Bell states

��ij
�� =

1
	2

��↑↑�ij � e−i
��↓↓�ij� ,
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��ij
�� =

1
	2

��↑↓�ij � i�↓↑�ij� . �B5�

Due to the project form of Uij

Uij = 	2���ij
+���ij

+ � + ��ij
+���ij

+ �� , �B6�

one can get the general expression of �ei� from Eqs. �B1� and
�B2�,

�e1� = a1��12
+ ���34

+ � + a2��12
+ ���34

+ �

+ a3��12
+ ���34

+ � + a4��12
+ ���34

+ � ,

�e2� = a5��12
− ���34

− � + a6��12
− ���34

− �

+ a7��12
− ���34

− � + a8��12
− ���34

− � . �B7�

We further notice that Eqs. �B3� and �B4� indicate the sym-
metry of exchanging pair indices 23↔14 for �ei�. Taking of
this symmetry and noticing the minus sign in the expression
of �ij

− and �ij
+, we further simplify �ei� into

�e1� = a1��12
+ ���34

+ � + a4��12
+ ���34

+ � ,

�e2� = a5��12
− ���34

− � + a8��12
− ���34

− � . �B8�

Now we set d=	2 in Eqs. �B3� and �B4�, which means
U23�e1�=U14�e2�. This is the only one condition that further
determines the coefficients ai�i=1,4 ,5 ,8�. What we proceed
with is a detailed expansion:

U23�e1� = 	2�1

2
��↑↑� + e−i
��↓↓����↑↑� + ei
��↓↓�� +

1

2
��↑↓� − i�↓↑����↑↓� + i�↓↑���

23
�a1

2
��↑↑� + e−i
��↓↓��12��↑↑�

+ e−i
��↓↓��34 +
a4

2
��↑↓� − i�↓↑��12��↑↓� − i�↓↑��34�

= ��23
+ ��a1

2
��↑↑� + e−i
��↓↓��14 +

a4

2
�− i�↓↓� − iei
��↑↑��14�

+ ��23
+ ��a1

2
�e−i
��↑↓� + ie−i
��↓↑��14 +

a4

2
�− �↓↑� + i�↑↓��14�

=
1

2
�a1 − iei
�a4���23

+ ���14
+ � +

1

2
�a1e−i
� + ia4���23

+ ���14
− � ,

U14�e2� = 	2�1

2
��↑↑� + e−i
��↓↓����↑↑� + ei
��↓↓�� +

1

2
��↑↓� − i�↓↑����↑↓� + i�↓↑���

23
�a5

2
��↑↑� − e−i
��↓↓��12��↑↑�

− e−i
��↓↓��34 +
a8

2
��↑↓� + i�↓↑��12��↑↓� + i�↓↑��34�

= ��23
+ ��a5

2
��↑↑� + e−i
��↓↓��14 +

a8

2
�i�↓↓� + iei
��↑↑��14�

+ ��23
+ ��a5

2
�− e−i
��↑↓� − ie−i
��↓↑��14 +

a8

2
�− �↓↑� + i�↑↓��14�

=
1

2
�a5 + iei
�a8���23

+ ���14
+ � +

1

2
�− a5e−i
� + ia8���23

+ ���14
− � . �B9�

Because of the orthogonality of Bell states, we get the rela-
tion between coefficients

a1 − iei
�a4 = a5 + iei
�a8,

a1e−i
� + ia4 = − a5e−i
� + ia8,

⇒a5 = − iei
�a4, a8 = − ie−i
�a1. �B10�

Setting a1= 1
	1+���2

and a4= �
	1+���2

, we finally arrive at

�e1� =
1

	1 + ���2
���12

+ ���34
+ � + ���12

+ ���34
+ �� ,
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�e2� =
− i

	1 + ���2
��ei
���12

− ���34
− � + e−i
���12

− ���34
− �� .

�B11�

They are indeed equivalent to Eq. �A16�. The arbitrary pa-
rameter � represents a certain degeneracy between the com-
ponents of �ei� with respect to the actions of Uij. From the
process of calculation, we can view U23 and U14 as the en-
tanglement swapping operators on the pair-entangled states
�ei�, in accord with the results in �13�.

APPENDIX C: DECOMPOSITION OF R̆(�)

Here we give the proof of the decomposition �30� based
on the work of Bullock and his coauthors �25,26�. They have
developed the following criterion.

Proposition 1. An operator u�SU�4� can be simulated

using no CNOT gates and arbitrary one-qubit gates from
SU�2� if and only if ����u��= �x�1�4. Here ��u�=u��y
� �y�uT��y � �y�, uT denotes the transpose, and ��g�
=det�xI−g� denotes the characteristic polynomial of g.

Proposition 2. An operator u�SU�4� can be simulated
using one CNOT gate and arbitrary one-qubit gates from
SU�2� if and only if ����u��= �x+ i�2�x− i�2.

Proposition 3. An operator u�SU�4� can be simulated
using two CNOT gates and arbitrary one-qubit gates from
SU�2� if and only if tr���u��= is real.

Direct calculation shows that the case �=0 satisfies
proposition 1 while the case �=� /4 or 3� /4 satisfies propo-

sition 2. Since ����R̆�����= �1+x2−2x cos 2�� and

tr���R̆�����=4 cos 2�, proposition 3 confirms that R̆��� gen-
erally admits a quantum circuit using two CNOT gates. The
explicit form of Vi in Eq. �32� is calculated by the algorism
in �25�.
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