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We study the class of discrete Wigner functions proposed by Gibbons et al. �Phys. Rev. A 70, 062101
�2004�� to describe quantum states using a discrete phase space based on finite fields. We find the extrema of
such functions for small Hilbert-space dimensions and present a quantum-information application: a construc-
tion of quantum random-access codes. These are constructed using the complete set of phase-space point
operators to find encoding states and to obtain the codes’ average success rates for Hilbert-space dimensions 2,
3, 4, 5, 7, and 8.
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I. INTRODUCTION

The Wigner function W�q , p� was introduced by Wigner
in 1932 �1� as a way to represent quantum states of one or
more particles in phase space. It is a quasiprobability distri-
bution, which means it retains some of the properties of a
true probability distribution, while having some surprising
properties due to quantum effects. For example, it can be
negative in some regions in phase space.

There were many proposals of analogs of W�q , p� to rep-
resent quantum systems with discrete degrees of freedom
such as spins �see �2� and references therein for a review�.
These discrete Wigner functions have been applied to visu-
alize quantum states and operations in the context of quan-
tum information and computation �3–5�.

In this paper we study properties and applications of the
class of discrete Wigner functions defined by Gibbons et al.
�2�, which take values on a discrete phase space built with
finite fields. We start in Secs. II and III by reviewing the
definition of this class of functions. In Sec. IV we calculate
the spectra of the phase-space point operators used to define
the discrete Wigner functions. In Sec. V we describe how to
use the calculated spectra to find the extremal values for the
discrete Wigner function for some small Hilbert-space di-
mensions. We also describe how the phase-space point op-
erators can be used in a quantum information application
known as quantum random-access codes. In Sec. VI we in-
troduce these codes with a simple example and present a
quantum random-access code construction based on states
that maximize the discrete Wigner function.

II. DEFINING A CLASS OF DISCRETE WIGNER
FUNCTIONS

The discrete phase space is a d�d grid in which we iden-
tify some particular sets of d points called lines. Parallel
lines are lines sharing no points in common. Following Gib-
bons et al. �2�, a partition of the d2 phase-space points into d
parallel lines of d points each will be called a striation. The
definition of lines and striations is done in such a way as to
ensure, in this discrete geometry, some geometrical proper-

ties akin to the properties of lines in the usual geometry as
follows.

�i� Given any two points, exactly one line contains both
points.

�ii� Given a point � and a line � not containing �, there is
exactly one line parallel to � that contains �.

�iii� Two nonparallel lines intersect at exactly one point.
Gibbons et al. described how to define d�d+1� lines, par-

titioned into d+1 striations of d lines each, satisfying the
requirements above. The construction is based on consider-
ing the discrete phase space as a two-dimensional vector
space labeled by finite fields �for details, see �2��. In �6�
Wootters discusses different geometrical problems associated
with this construction.

To define a discrete Wigner function, we need to associate
a projector onto a quantum state to each line in discrete
phase space. These will be projectors onto a set of d+1 mu-
tually unbiased bases �MUB�. Consider two different ortho-
normal bases B1 and B2:

B1 = ��v1,1�, �v1,2�, . . . , �v1,d��, �	v1,i�v1,j��2 = �i,j , �1�

B2 = ��v2,1�, �v2,2�, . . . , �v2,d��, �	v2,i�v2,j��2 = �i,j . �2�

These two bases B1 and B2 are mutually unbiased if

�	vi,j�vk,l��2 =
1

d
if i � k . �3�

Wootters and Fields showed that one can define d+1 such
mutually unbiased bases for power-of-prime dimension d
�7�. Mutually unbiased bases have been studied because of
their use in a number of quantum-information applications—
for example, quantum cryptography �8� and quantum-state
and -process tomography �9�—and in the construction of
quantum t designs �10�, used to estimate averages of func-
tions over quantum states.

To define a discrete Wigner function �DWF� we pick a
one-to-one map between the lines in discrete phase space and
the projectors onto a complete set of MUB in the following
way: �a� each basis set Bi is associated with one striation Si
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and �b� each basis vector projector Qi,j 
�vi,j�	vi,j� is associ-
ated with a line �i,j �the jth line of the ith striation�.

These maps define uniquely the values of the DWF W�

for all points � if we impose the following constraints:

Tr�Qi,j�� = �
���i,j

W�, �4�

where � is the system’s density matrix and the sum is over
phase-space points � in the line � associated with projector
Qi,j. These requirements amount to demanding that the sum
of the Wigner function over each line must be equal to the
probability of projecting onto the basis vector associated
with that line.

Note that there are multiple ways of making these asso-
ciations. In general, this will lead to different definitions of
the DWF using the same fixed set of MUB. The procedure
outlined above then leads not to a single definition of W, but
to a class of Wigner functions instead.

We now define the phase-space point operator A� associ-
ated with phase-space point �:

A� 
 �
���

Q� − I , �5�

where the sum is over projectors Q� associated with lines �
containing point � and I represents identity. The operators A�

appear naturally when we invert Eq. �4� to write an expres-
sion for W� in terms of the MUB projectors:

W� =
1

d
Tr��A�� , �6�

We see that the expectation value of A� �multiplied by 1 /d�
gives the value of the DWF at the phase-space point �.

The A operators form a complete basis in the space of d
�d matrices. It can be shown that the DWF value at point �
is simply the expansion coefficient of � corresponding to the
A� operator:

� = �
�

W�A�. �7�

The multiple ways of associating projectors with lines in
phase space result in multiple definitions for A�. While a
single definition of W requires d2 operators A� �one for each
phase-space point�, the full set of A� one can define with the
same fixed complete set of MUB has dd+1 elements. In Sec.
VI we will make use of the full set of phase-space point
operators to obtain a construction for a quantum-information
application known as quantum random-access codes.

Negativity and nonclassicality

Cormick et al. �11� have characterized the set of states
which have non-negative Wigner functions. These states turn
out to have some interesting properties, which we will re-
view here, as they motivate the work reported in the remain-
der of this paper.

For a d-dimensional quantum system, one can find com-
plete sets of d+1 mutually unbiased bases using the finite-
field construction introduced in Ref. �2�. This construction is

only valid for power-of-prime d, since this is the necessary
condition for a finite field to exist. One can then define the
set Cd of d-dimensional states which have non-negative
DWF in all definitions—that is, whose expectation values for
all phase-space point operators are non-negative.

In �11� it was shown that the only pure states in Cd are the
MUB projectors, which can always be chosen to be stabilizer
states. The stabilizer formalism �12� provides a way to rep-
resent pure states in Cd using a number of bits which is
polynomial in the number of qubits. Since general pure states
require a description which is of exponential size, the set Cd
is classical in the sense of having a short description.

For systems of prime dimensions, the two notions of clas-
sicality exactly coincide: the only pure states with non-
negative DWF are exactly the stabilizer states. In this con-
text, negativity of any DWF �as witnessed by negativity of
one of the A� operators� indicates nonclassicality in the sense
of the absence of an efficient description using the stabilizer
formalism. These results motivated us to investigate the ex-
trema of the discrete Wigner functions.

Before proceeding, we need to review some constructions
of complete sets of MUB for d-dimensional systems, as these
are necessary to define DWF using Eqs. �5� and �6�.

III. COMPLETE SETS OF MUTUALLY UNBIASED BASES

For prime dimension d there is a canonical construction of
a complete set of d+1 MUB first proposed by Ivanovic �13�.
To review this construction, let �vr,k� j denote the jth compo-
nent of the kth vector in the rth basis, r=0,1 , . . . ,d. The
vectors in the complete set of d+1 MUB are then

�v0,k� j = � jk, �8�

�v1,k� j =
1
�d

e�2�i/d��j2+jk�, �9�

] �10�

�vr,k� j =
1
�d

e�2�i/d��rj2+jk�, �11�

] �12�

�v�d−1�,k� j =
1
�d

e�2�i/d���d−1�j2+jk�, �13�

�vd,k� j =
1
�d

e�2�i/d�jk. �14�

When the Hilbert-space dimension is a prime power, there
are different constructions of complete sets of MUB. Let us
now review a simple construction of a complete set of MUB
for n qubits �Hilbert-space dimension d=2n� consisting
solely of stabilizer states �14�. We start by considering the 4n

Pauli operators for n qubits, which are the tensor products of
single-qubit Pauli operators X ,Y ,Z and identity. From this
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set, remove the identity operator. The remaining 4n−1 Pauli
operators can be partitioned into 2n+1 sets, each containing
2n−1 mutually commuting Pauli operators. It was proven in
�14� that the common eigenstates of the operators in each
such set form a basis and, moreover, that the 2n+1 bases thus
defined are mutually unbiased.

We will now provide two examples of this construction,
which will be useful to us later on. The first example is a set
of five MUB for two qubits, each basis being formed by the
common eigenstates of each row of operators in Table I. In
the table, operator XY, for example, stands for the tensor
product of X on the first qubit by Y on the second.

The second example is a set of nine MUB for three qubits,
comprising the common eigenstates of the operators in each
row of Table II.

IV. SPECTRA OF PHASE-SPACE POINT OPERATORS

As we have seen in the previous sections, the DWF is
defined by Eq. �6� using the phase-space point operators A.
In this section we calculate the spectra of A for the construc-
tions of complete sets of MUB we reviewed in Sec. III. The
spectra we tabulate in Table III agree with the spectra calcu-
lated independently by Appleby et al. �15� for Hilbert-space
dimensions d=3, 4, 5, and 7. In Table III we also report the
number of phase-space point operators with each spectrum,
information which will be necessary for the quantum-
information application described in Sec. VI.

We have calculated the full spectra of all dd+1 phase-space
point operators for d=2, 3, 4, 5, 7, and 8, but the latter two
cases have too many different spectra for us to reproduce
here. We would like to point out only one piece of informa-
tion about these cases: the extremal eigenvalues found over
all the A�. For d=7 the largest eigenvalue is �max=2.4178
and the smallest is �min=−1, whereas for d=8 the largest is
�max=2.5490 and the smallest is �min=−0.9979.

For the case of two qubits �d=4� we calculated the spectra
for all six different stabilizer MUB constructions of the kind
described in �14�, and the spectra found are identical to those
of the MUB set in Table I. We have also established that for
three qubits �d=8�, one can find 960 different stabilizer con-
structions of this kind. Testing a few of those we found ex-
actly the same spectra as for the example in Table II. Based
on this, we conjecture that the phase-space point operator
spectra is independent of which MUB set construction one
uses.

V. EXTREMA OF DISCRETE WIGNER FUNCTIONS

Unlike probability distributions, we have seen that the
discrete Wigner function can assume negative values. What
are the extremal values that it can attain? Wootters conjec-
tured that the minimal value min�W� that the discrete Wigner
function could assume would be −1 /d for odd-prime Hilbert-
space dimension d �16�. He also showed that min
�W�=−0.183 for d=2 �17� and, together with Sussman �18�,
found a maximum value of max�W�=0.319 for some particu-
lar definitions of discrete Wigner functions for d=8. In this
section we describe a general method for finding the extrema

TABLE I. Set of five MUB for two qubits.

1 XX X1 1X

2 ZZ Z1 1Z

3 YY Y1 1Y

4 XY YZ ZX

5 XZ YX ZY

TABLE II. Set of nine MUB for three qubits.

1 XXX XX1 X1X X11 1XX 1X1 11X

2 XXY XYX YXX YYY ZZ1 Z1Z 1ZZ

3 XXZ XYY YZ1 Y1X ZXY ZYZ 1ZX

4 XYZ XZX YX1 Y1Y ZYX ZZZ 1XY

5 XY1 X1Z YXY YZX ZXX ZZY 1YZ

6 XZY X1Y YZZ Y1Z ZZX Z1X 1Z1

7 XZZ XZ1 YYZ XY1 ZXZ ZX1 11Z

8 YXZ YYX YZY Y11 1XZ 1YX 1ZY

9 ZYY ZY1 Z1Y Z11 1YY 1Y1 11Y

TABLE III. Spectra of phase-space point operators.

d Number Spectrum

2 8 ���1 /2+�3 /2� , �1 /2−�3 /2���
3 9 �−1,1 ,1�

72 ��0, �1 /2+�5 /2� , �1 /2−�5 /2���
4 320 �−0.50000,−0.50000,0.13397,1.86603�

320 �−0.86603,−0.50000,0.86603,1.50000�
384 �−0.89680,−0.14204,0.27877,1.76007�

5 1000 �−0.70281,−0.61803,−0.13294,0.48666,1.96712�
2000 �−0.79859,−0.36221,0.00000,0.10661,2.05419�
2000 �−0.83607,−0.81000,0.00000,1.05469,1.59139�
3000 �−0.83726,−0.58152,−0.09576,0.62870,1.88584�
1000 �−0.90039,−0.64018,−0.14531,1.06785,1.61803�
3000 �−0.90932,−0.48701,0.00000,0.46853,1.92780�
3000 �−0.94658,−0.51690,−0.18438,0.93842,1.70944�
600 �−1.00000,−0.61803,0.00000,1.00000,1.61803�
25 �−1.00000,−1.00000,1.00000,1.00000,1.00000�

EXTREMA OF DISCRETE WIGNER FUNCTIONS AND… PHYSICAL REVIEW A 78, 022310 �2008�

022310-3



among all discrete Wigner functions definable with a fixed
complete set of MUB and use it to explicitly calculate the
extrema for d=2, 3, 4, 5, 7, and 8.

Recall that the phase-space point operator A� associated
with the phase-space point � is given as the sum over MUB
projectors associated with all phase-space lines that contain
�:

A� = �
���

Q� − I , �15�

where the sum is over projectors associated with lines �
containing point � and I represents identity.

Given a phase-space point operator A�, we want to find
the minimum of its expectation value:

min	A�� = minTr� �
���

Q����	���� − 1. �16�

The minimum results when ��� is the eigenvector associated
with the smallest eigenvalue �min of A� �see the Appendix for
a proof�. We can evaluate the spectrum of A� to find its
smallest eigenvalue �min

� . Then, using Eq. �6�, the most nega-
tive value for the discrete WF at point � will be given by

min�W�� =
1

d
min	A�� =

1

d
�min

� . �17�

To find the most negative value for the function, one
needs to find all eigenvalues of all possible phase-space point
operators. For a d-dimensional system there are dd+1 differ-
ent phase-space point operators, only d2 of which appear in
any single definition of a DWF. Minimizing over �, we can
use Eq. �17� to obtain the smallest value that the function can
attain.

The same reasoning can be used to obtain the maxima of
the DWF, using the largest eigenvalue of any of the A�.
Using the spectra tabulated in Sec. IV we obtained the ex-
tremal values of the DWF for small dimensions d, listed in
Table IV. The results support Wootters’ conjecture for odd-
prime d.

VI. APPLICATION: QUANTUM
RANDOM-ACCESS CODES

In this section we review the quantum-information proto-
col known as quantum random-access codes and present a
code construction that relies on states maximizing the dis-
crete Wigner function. Let us start by recalling what these
codes are using a simple example.

Imagine a situation in which Alice encodes m classical
bits into n bits �m	n�, which she sends to Bob, who will
need to know that value of a single bit �out of the m possible
ones� with a probability of at least p. We may represent such
an encoding-decoding scheme by the notation m→n.

Prior to sending the n-bit message, however, Alice does
not know which of the m bits Bob will need to read out. To
maximize the least probability of success, p, Alice and Bob
need to agree on the use of a particular, efficient m→n
encoding.

We can consider the quantum generalization of this situ-
ation, in which Alice can send Bob n qubits of communica-

tion, instead of n bits. The idea behind these so-called quan-
tum random-access codes �QRACs� is very old by quantum-
information standards; it appeared in a paper written circa
1970 and published in 1983 by Wiesner �19�.

These codes were rediscovered in �20�, where the explicit
comparison with classical codes was made.

A. Example: 3\1 QRAC with a qubit

Let us illustrate the idea with a 3→1 QRAC that encodes
three bits into a single qubit. This QRAC was attributed to
Chuang in Ref. �20�.

Instead of concerning ourselves with the least decoding
probability of success p, we will use as a figure of merit the
average probability of success, pq. With three bits, Alice has
23=8 possible bit strings b0b1b2. For each possibility she will
prepare one particular state from the set depicted in Fig. 1.
These states lie on the vertices of a cube inscribed within the
Bloch sphere, which is the representation of one-qubit pure
states using spherical-coordinate angles 
 and �:

���
,��� = cos�
/2��0� + exp�i��sin�
/2��1� . �18�

TABLE IV. Extremal values for the DWF.

d Wmax Wmin

2 �1 /4��1+�3��0.683 �1 /4��1−�3��−0.183

3 �1 /6��1+�5��0.539 −�1 /3�
4 0.4665 −0.2242

5 0.411 −�1 /5�
7 0.3454 −�1 /7�
8 0.3186 −0.1247

y

x

z

000

100
110

010

111

011 001

101

θ

FIG. 1. Encoding states for the 3→1 QRAC using a single
qubit. Alice prepares one out of eight states on the vertices of a cube
inscribed within the Bloch sphere, depending on her three-bit string.
The angle 
 is such that cos2�
 /2�=1 /2+��3� /6�0.79, which is
the probability of Bob correctly decoding a single bit out of the
three.
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If Bob wants to read out bit b0, he measures along the x
axis and associates a positive result with b0=0. To read bits
b1 �b2� he measures along the y axis �z axis� and again asso-
ciates a positive result with b1=0 �b2=0�. It is easy to see
that Bob’s average probability of success is given by pq
=cos2�
 /2�=1 /2+��3� /6�0.79, where the angle 
 is given
in the caption to Fig. 1. The optimal classical 3→1 random-
access code succeeds only with average probability pc
=0.75, as can be checked easily through a search over all
deterministic protocols.

Note that the QRAC just presented uses decoding mea-
surements which are projections onto the canonical set of
MUB for a qubit—that is, the X, Y, and Z bases. The encod-
ing states are found by optimizing the probability of cor-
rectly decoding each coding state.

B. QRAC construction from A�

The full set of dd+1 phase-space point operators A� can be
used to build a particularly symmetric set of quantum
random-access codes. The encoding states will be those
maximizing each 	A��. Our results from Sec. V showed that
those are the largest-eigenvalue eigenstates of each A�.

Our goal is to construct a QRAC that encodes d+1 mes-
sages with d possible values each using a single quantum
d-level system that will be sent by Alice and measured by
Bob. As in the case with qubits, our strategy will be for Bob
to decode by performing projective measurements onto one
out of the d+1 MUB that exist for this d-dimensional system
�for power-of-prime d�. Alice has to find dd+1 different en-
coding states, each of which will decode correctly with the
highest possible probability.

As we have shown in Sec. V, the pure quantum state ����
that maximizes 	A�� is the eigenvector with largest eigen-
value �max

� of 	A��. Bob’s decoding procedure involves mea-
suring the encoding state ���� onto one of the d+1 MUB.
His average probability of successfully decoding will be the
average 1

d+1����	Q��. To maximize this decoding probabil-
ity for encoding state ����, we need to maximize

max� 1

d + 1 �
���

	Q��� =
1

d + 1
max�	A�� + 1� �19�

=
1

d + 1
��max

� + 1� . �20�

The average performance of this QRAC protocol can be
found by averaging the probability of success of the dd+1

encoding states, each corresponding to one phase-space point
operator A�:

pq =
1

dd+1

1

d + 1�
�

��max
� + 1� . �21�

We see that the protocol’s average success rate pq depends on
the value of the sum of the largest eigenvalues of each of the
dd+1 possible phase-space point operators A�.

Using the MUB constructions described in Sec. III and
the point operator spectra calculated in Sec. IV, we were able
to compute pq for a �d+1�→d QRAC using systems of di-

mension d=2, 3, 4, 5, 7, and 8. The results are summarized
in Table V. The construction recovers the known success rate
of the 3→1 QRAC with a qubit.

It is clear that this construction can be extended to higher-
dimensional systems, provided a DWF can be defined for
them. This will be the case for power-of-prime dimensions d
using, for example, the finite-field construction given in Ref.
�2�.

It would be interesting to investigate how these protocols
fare against the optimal classical protocols. This would re-
quire evaluating the optimal probability of success for a
�d+1�→d d-level classical random-access code, something
that to our knowledge has not been done for d	2. In �20�
some asymptotic results were obtained for large d, indicating
that while there may be an advantage of quantum over clas-
sical for small dimensions d, this advantage practically dis-
appears in the asymptotic regime.

VII. CONCLUSION

We have reviewed the definition of discrete Wigner func-
tions given in �2� used to describe quantum systems in a
discrete phase space. We calculated the spectra of phase-
space point operators for small dimensions and used them to
obtain the extrema of the discrete Wigner function for sys-
tems in Hilbert-space dimensions d=2, 3, 4, 5, 7, and 8. We
then described the protocol known as quantum random-
access codes and used the phase-space point operators to find
encoding states and to obtain the efficiency of a QRAC con-
struction whose encoding states maximize the discrete
Wigner function at each phase-space point.
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APPENDIX

Let � be a density matrix, hence positive semidefinite,
Hermitian, and with unit trace. Let ��� be a pure state. In this
appendix we prove that the extrema of

TABLE V. QRAC success rate pq.

Dimension pq

d=2 �1 /6��3+�3��0.789

d=3 �7 /18�+ ��5 /2��0.637

d=4 0.5424

d=5 0.4700

d=7 0.3720

d=8 0.3372
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	������ �A1�

are obtained when ��� is an eigenstate corresponding to ex-
tremal eigenvalues of �.

We start by showing that the state that maximizes this
expression is the eigenstate ��max� corresponding to the larg-
est eigenvalue �max of �. It is easy to evaluate Eq. �A1� for
���= ��max�:

	�max����max� = �max	�max��max� = �max. �A2�

Let us now consider the expansion of a general state ���
=�idi�i� in the basis that diagonalizes �. For ���, the expres-
sion we are trying to maximize takes the value

	������ = �
i

�i�di�2 = �max�1 − �� + �
j��max

�i�di�2, �A3�

where �i are the eigenvalues of �. We have rewritten the sum
to single out the term corresponding to �max and defined �

	0 such that �1−��= �dmax�2. Now, because all �i�max �by
definition of �max�, we have

	������ = �max�1 − �� + �
j��max

�i�di�2  �max. �A4�

So we have proven that any set of coefficients different from
those of ��max� leads to a smaller expectation value for �, and
so ��max� maximizes this expectation value. A similar argu-
ment can be made to prove that the state that minimizes
	������ is the eigenstate corresponding to the smallest eigen-
value of �.

The claim following Eq. �16� is justified by applying the
result above to �= 1

d+1����Q�.
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