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I. INTRODUCTION

Entanglement has been identified as a key resource for
quantum-information processing tasks. Furthermore, it is
clear that the speed-up gained in computation times using
quantum mechanical systems instead of classical ones to pro-
cess information emerges only in the limit of a large, or very
large, number of system components. For example, quantum
simulators are expected to be composed of a few tens of
qubits; and a quantum computer must run on quantum reg-
isters of at least several hundreds �or several thousands, if
error correction is to be used� of qubits to outperform its
present-day classical counterpart. This explains the tremen-
dous effort dedicated during the last few years to the experi-
mental production and coherent manipulation of multipar-
ticle entangled states of photons �1–6�, ions �8–11�, in cavity
QED devices �7�, and in coupled solid state quantum devices
�12–15�.

Also the experimental quantification of multipartite en-
tanglement has thus become a major issue of interest. In
principle, such quantification can be carried out through
quantum state tomography �9,16,17�, i.e., the complete re-
construction of the state’s density matrix via the measure-
ment of a complete set of observables, followed by the sub-
sequent evaluation of a valid entanglement measure. In
practice, however, tomography rapidly saturates the available
resources and is thus no viable strategy under the perspective
of scalability. Clear evidence of this is given by the experi-
mental characterization of genuine multiparticle entangled
states of up to eight ions �11�: Ten hours of data aquisition—
implementing measurements in 38=6561 detection bases,
each corresponding to a different experimental setting—were
followed by computationally expensive data processing, to
reconstruct the eight-ion density matrix of the experimentally
prepared state. Therefore, full tomography of entangled ion
chains composed of more than only eight ions appears
largely impracticable.

Quantum nonlocality tests �1,2,4–7� and entanglement
witnesses �3,8–11,18–21� provide alternative means to assess
the degree of entanglement of a quantum state, and were
used in several experiments. Both these techniques require
the measurement of only a few observables, but allow the
detection of entanglement of only a small class of states.
This implies that some a priori knowledge on the state to be
analyzed is necessary. A simple entanglement measurement

scheme for arbitrary mixed states is therefore highly desir-
able.

First steps in this direction were taken in Refs. �22,23� for
the two qubit case and for the multipartite case in Refs.
�24,25�, where multipartite concurrence �26� was shown to
be directly accessible through projective measurements on
two identically prepared quantum states �27,28�. The original
approach �24,25,31�—experimentally demonstrated for twin
photon entanglement �29,30�—was restricted to the ideal
case of pure states, and a first generalization for mixed states
was given in Ref. �32�, yet applicable only for bipartite sys-
tems. Here we give the extension of this approach to direct
experimental entanglement estimation for mixed states of
quantum systems with an arbitrary number of constituents.
Our procedure, based on local parity measurements, features
excellent scaling properties: The number of required
observables—which can all be probed in one single experi-
mental setting—is equal to the number of subsystems.

II. OBSERVABLE LOWER BOUND

Consider two copies of an arbitrary mixed state � of an
N-partite quantum system with Hilbert space H. We intro-
duce an observable V such that

C2��� � Tr�� � �V� , �1�

i.e., that allows us to experimentally bound the concurrence
of the state from below. The Hermitian operator V acts on the
composite Hilbert space associated with the twofold copy of
the system H � H, and has the two following remarkable
properties: �i� It can be detected through projective measure-
ments of only N two-particle observables; and �ii� a single
experimental setting is required throughout the detection
process.

The required two-particle measurements are simultaneous
parity measurements on each particle and its copy. In each
run of the experiment, measuring the local parity state of all
N pairs defines an event in which each pair is projected onto
either a symmetric or an antisymmetric state. From all pos-
sible events we distinguish three types:

�i� The entire system together with its copy is projected
onto a globally symmetric state—symmetric with respect
only to the exchange of both copies of the entire system.

�ii� The entire system and copy are projected onto a glo-
bally antisymmetric state—antisymmetric with respect only
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to the exchange of both copies of the entire system.
�iii� System and copy are projected onto a full locally

symmetric state in which all N-particle-copy pairs are simul-
taneously found to be in a symmetric state �which is a par-
ticular case of �i��.

The probabilities of these three events suffice to obtain
the expectation value of V, as described below. The measure-
ment protocol is sketched in Fig. 1, for two strings of eight
ions, reminiscent of the experimental situation in Ref. �11�.
Each particle, together with its counterpart in the copy, is
subject to a local parity measurement, which reduces to a
Bell-state measurement, since the particles are qubits in this
example. Recording the abundance of singlets in the string of
eight ion pairs allows to infer the probabilities of the three
above events immediately.

From a more technical point of view, the system’s Hilbert
space H is a tensor product H�H1 � H2 � ¯ � HN of the
single particle Hilbert spaces Hi, 1� i�N. The symmetric
and antisymmetric subspaces Hi�Hi and Hi∧Hi of the Hil-
bert space Hi � Hi of two copies of the ith single-particle
subsystem are defined as the subspaces spanned by all states
that acquire a phase shift of 0 or �, respectively, upon ex-
change of the single-particle copies. These two subspaces are
associated with the local two-particle projectors P+

i and P−
i

=1− P+
i . The globally symmetric and antisymmetric sub-

spaces H�H and H∧H are the subspaces of all states that
are symmetric and antisymmetric with respect to the ex-
change of two copies of the entire system, and not only of
some subsystems, and are in turn associated with the global
projectors P+ and P−=1−P+. In terms of these, our observ-
able can be explicitly expressed as

V = 4�P+ − P+
1

� ¯ � P+
N − �1 − 21−N�P−� . �2�

Since the symmetric �antisymmetric� global projector P+
�P−� can be decomposed into a sum of all products of N local
projectors with an even �odd� number of antisymmetric local
projectors, it suffices to measure the parity of the N pairs of
copies to reconstruct Tr�� � �V�.

Finally, it is important to note that V, as defined in �2�, has
an equivalent interpretation to that of its bipartite analogue
�32�, just with a much more intricate combinatorial structure:
The expectation value of A=4�P+− P+

1
� ¯ � P+

N� yields the
concurrence of pure states �25�. For a general state �, how-
ever, a positive expectation value of A can have two causes:
Entanglement or mixedness of �. In turn, the operator P−
quantifies the degree of mixing of �, 1−Tr��2�=2 Tr
�� � �P−�. The linear combination of A and P− in Eq. �2�
therefore rescales the expectation value of A with respect to
the state’s intrinsic impurity, and thus provides an estimate of
the inscribed entanglement through a lower bound of multi-
partite concurrence, as elaborated in the Appendix.

III. TIGHTNESS OF THE BOUND

Let us finally test the tightness of the observable bound on
mixed random states. In Figs. 2 and 3 we plot the expectation
value of the operator �2�, versus concurrence in quasipure
approximation �33� �which is known to yield very good ap-
proximations for weakly mixed states�, for 105 random states
of 4-qutrit and 5-qubit systems, respectively, and for differ-
ent degrees of mixing. Mixed states of different purity were
obtained by acting with the generalized depolarizing channel
�which essentially mixes a pure state with the identity� �34�
onto 105 random pure states, for three different coupling

FIG. 1. �Color online� An eight-qubit state �, together with its
copy, is encoded, for example, in strings of two-level ions and is
subject to Bell-state measurements �BSMs� on each pair. The en-
tanglement of � is obtained from the joint probabilities of appear-
ance of singlets and triplets.

FIG. 2. Observable lower
bound versus concurrence, in qua-
sipure approximation, for 105

four-qutrit density matrices with
strong, intermediate, and weak
mixing. The dashed line indicates
equality of our present measurable
bound and of entanglement in
quasipure approximation. The
tightness of the observable bound
is excellent for strongly entangled
or weakly mixed states, but re-
mains surprisingly good even for
strong mixing.
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strengths. As spelled out by the comparison in Figs. 2 and 3,
the observable bound is hardly weaker than the quasipure
approximation. In fact, the comparison is excellent for
weakly mixed or highly entangled states. On the other hand,
for some very strongly mixed or very weakly entangled
states other techniques involving few measurements, such as
tailored witnesses �35�, may be used to improve the tightness
of the entanglement estimation if some a priori knowledge
of the state is available. The expectation value of �2�, how-
ever, provides a directly observable nontrivial bound for any
unknown multipartite state’s concurrence.

IV. CONCLUSIONS

We have derived a general lower bound for the entangle-
ment of mixed quantum states, which provides a hierarchy of
observable entanglement measures. As such, our result has
the essential virtue of scalability for unknown, multipartite
mixed quantum states in arbitrary finite dimensions. Given a
twofold copy of the state to be analyzed, our bounds are
experimentally accessible, with linear scaling of the experi-
mental overhead with the number of system constituents.
While derived for a specific type of multipartite concurrence
�26,36�, equivalent expressions can be found for other ob-
servable multipartite concurrences with the same algebraic
structure �24,36�. This defines a versatile toolbox for the ex-
perimental probing of quantum correlations inscribed into
ever larger multicomponent quantum systems, an essential
prerequisite for scaling up quantum-information technology.
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within the PROBRAL program of the German Academic Ex-
change Service �DAAD�, through the Feodor Lynen program
of the Alexander von Humboldt Foundation �AvH�, as well
as by FAPERJ, CAPES, and the Brazilian Millenium Insti-
tute for Quantum Information.

APPENDIX

Here we prove that the observable defined in �2� satisfies
Eq. �1�, for any state �: The concurrence of � is given by the

convex roof �37� C���=inf � jC�� j�, i.e., the minimal aver-
age concurrence over all �subnormalized� pure-state decom-
positions �=� j�� j�	� j�. If � jkC�� j�C��k��Tr�� � �V�
=� jk	� j� � 	�k�V�� j� � ��k� holds for all decompositions

�� j��, then it also holds for the optimal convex-roof decom-
position, and inequality �1� is automatically satisfied. There-
fore, we seek V such that

C���C��� � 	�� � 	��V��� � ��� �A1�

holds for any two arbitrary pure states ��� , ����H. Such an
observable is known for the bipartite concurrence c: v
=4�P+− P+

1
� P+

2 − 1
2 �P−

1
� P+

2 + P+
1

� P−
2�� �32�. Now, we can

make use of the fact that the N-partite concurrence can be
decomposed into bipartite terms as

C��� = 21−N/2��
i

ci
2��� , �A2�

where the sum is taken over the bipartite concurrencies ci
corresponding to each subdivision of the entire system into
two subsystems. This allows us to bound our quantity of
interest from below as

C���C��� = 22−N��
i

ci
2�����

i

ci
2��� �A3�

�22−N�
i

ci���ci��� �A4�

�22−N�
i

	�� � 	��vi��� � ��� , �A5�

where we made use of the Cauchy-Schwarz inequality
��ixi

2��iyi
2��ixiyi and the above knowledge on bipartite

systems. It is now a matter of straightforward algebra to
show that V=�ivi, which finishes the proof of Eq. �1�.

FIG. 3. Same as Fig. 2, now
for 105 five-qubit density matrices
at various levels of purity. Once
more, the tightness of the observ-
able bound is excellent for
strongly entangled or weakly
mixed states, and still surprisingly
good for strongly mixed states.
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