
Non-Markovian dynamics for bipartite systems

Bassano Vacchini*
Dipartimento di Fisica dell’Università di Milano and INFN, Sezione di Milano, Via Celoria 16, 20133 Milano, Italy

�Received 30 April 2008; published 25 August 2008�

We analyze the appearance of non-Markovian effects in the dynamics of a bipartite system coupled to a
reservoir, which can be described within a class of non-Markovian equations given by a generalized Lindblad
structure. A master equation is derived, which we term the quantum Bloch-Boltzmann equation, describing
both motional and internal states of a test particle in a quantum framework. When due to the preparation of the
system or to decoherence effects one of the two degrees of freedom is amenable to a classical treatment and not
resolved in the final measurement, though relevant for the interaction with the reservoir, non-Markovian
behaviors such as stretched exponential or power law decay of coherences can occur.
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I. INTRODUCTION

The complete isolation of quantum mechanical systems,
which should arise because of perfect shielding from the en-
vironment, can of course in general only be an idealization.
The study of the dynamics of open quantum systems then
naturally becomes of great interest �1�, especially when it
comes to a realistic description of experimental situations.
While for the case of a closed quantum system the time
evolution is given by a one-parameter unitary group charac-
terized by a self-adjoint Hamiltonian, the situation is more
involved for an open quantum system, where dynamical evo-
lutions including irreversible effects like dissipation and de-
coherence must also be considered. The possible structures
of dynamical equations for an open quantum system are not
known in full generality, despite the huge efforts devoted to
the problem. A well-known result of paramount importance
has been obtained for Markovian dynamics, requiring the
mapping giving the dynamics to be a completely positive
quantum dynamical semigroup. The expression for the gen-
erators of such semigroups, which gives the master equation
for the statistical operator of the system, has been fully char-
acterized �2,3�, providing a reference structure, often referred
to as the Lindblad equation. Such Lindblad-type master
equations ensure a well-defined time evolution, preserving in
particular the positivity of the statistical operator. The differ-
ent terms and operators appearing in the equations are often
naturally amenable to a direct physical interpretation. More-
over, analytical approaches are often feasible, and when this
is not the case numerical studies can always be performed,
by considering Monte Carlo simulations of suitable stochas-
tic differential equations associated with the master equation
via a particular unraveling.

Such a general and physically transparent characterization
is not available for master equations describing a non-
Markovian dynamics. However, systems exhibiting non-
Markovian dynamics, such as memory effects and decay be-
haviors other than exponential, are also of great interest both
for practical applications and from a conceptual standpoint.
In this spirit major efforts have been devoted to deriving

possibly general classes of master equations, which, while
providing well-defined time evolutions, also describe non-
Markovian effects. Various difficulties appear in this connec-
tion. In particular, it is important to provide a link between
the operators entering the structure of generalized master
equations and quantities of physical relevance characterizing
the environment and its coupling to the system. General
classes of non-Markovian master equations have been ob-
tained in the literature �4–6�, also pointing to possible physi-
cal applications. In particular the analysis of the interaction
of a quantum system with a structured reservoir, performed
via a time-convolutionless projection operator technique re-
lying on the use of correlated projection operators adapted to
the structured reservoir �7�, has led to point out a generalized
Lindblad structure �8�. This generalized Lindblad structure
describes a non-Markovian dynamics on states that are given
by classical convex mixtures of subcollections, that is, posi-
tive trace class operators with trace equal to or less than 1,
naturally appearing in the description of quantum experi-
ments �9�. Master equations of this form have already been
proposed in an utterly different context in order to introduce
the notion of an event in the description of quantum me-
chanical systems �10�, for the purpose of better understand-
ing the interplay between classical and quantum descriptions
of physical reality. More recently and to the point, similar
equations have been considered for the statistical operator of
an active atom interacting through collisions with a gas,
when describing in a classical way the center of mass de-
grees of freedom �11�.

General physical mechanisms leading to the appearance
of such generalized Lindblad structures which can account
for non-Markovian effects have already been conceived. This
is the case if one studies the dynamics of an open system
coupled to a structured reservoir using the above-mentioned
time-convolutionless projection operator technique, provided
the projectors used in obtaining the reduced equations of
motion do project on classically correlated states between
system and environment, rather than simply on a factorized
state, as in the common wisdom �7,12,13�. Another natural
situation leading to this generalized Lindblad structure ap-
pears in what has been called the generalized Born-Markov
approximation �14�. Here one considers the usual second-
order perturbation scheme, but once again the state of system
and bath is supposed not to be factorized, but rather given by*bassano.vacchini@mi.infn.it
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a convex mixture of factorized states. The indices of the
mixture are related to the structure of the bath and of the
interaction Hamiltonian. Further work has traced back the
derivation of non-Markovian equations of this form to the
existence of extra unobserved degrees of freedom mediating
the entanglement between the considered system and a Mar-
kovian reservoir �15,16�. Earlier work �17� also led to this
kind of non-Markovian master equations for a system inter-
acting with an environment with a finite heat capacity, so that
energy exchanges between system and reservoir also affect
the energy distribution of the reservoir. It has been recently
shown that the same quantum master equation can also be
derived in a physically more transparent manner by means of
the projection superoperator technique �18�.

In the present paper we show how such generalized mas-
ter equations naturally arise by considering a bipartite quan-
tum system interacting with a Markovian reservoir, when-
ever decoherence effects or superselection rules affect only
one kind of degree of freedom of the bipartite system. A
non-Markovian behavior then appears when the thus
emerged classical label is not resolved in the final measure-
ment. The analysis is done by means of a concrete and rel-
evant physical example. We consider the dynamics of a
quantum test particle, whose internal and center of mass de-
grees of freedom are both described quantum mechanically,
interacting, e.g., with a gaseous background. The appearance
of non-Markovian features is related to the involvement of
both internal and center of mass degrees of freedom in the
scattering amplitude which describes the coupling between
bipartite system and environment. As a first step a quantum
master equation is heuristically derived, which extends pre-
vious work on the quantum linear Boltzmann equation
�19–22�, focusing on a quantum description of the center of
mass degrees of freedom, and on the Bloch-Boltzmann equa-
tion �11,23–26�, which describes in a classical way the mo-
tion of the test particle, but retains a quantum expression for
the dynamics of its internal degrees of freedom. According to
this terminology the equation obtained is termed the quan-
tum Bloch-Boltzmann equation. Two limiting situations then
naturally appear. When decoherence affects more strongly or
equivalently on a shorter time scale the center of mass de-
grees of freedom, a generalized Lindblad structure corre-
sponding to the Bloch-Boltzmann equation appears, in which
the momentum of the test particle is treated classically. This
equation describes non-Markovian effects when the final
measurement affects only the internal degrees of freedom. In
a similar way, when the experimental effort is devoted to
studying quantum superpositions of motional degrees of
freedom, e.g., in interferometers for massive particles study-
ing robustness of their quantum behavior, non-Markovian
features can appear if the internal degrees of freedom influ-
ence the collisional scattering cross section but are later not
observed in the assessment of the interference pattern.

The paper is organized as follows. In Sec. II we describe
the mathematical framework and expression of the general-
ized Lindblad structure; in Sec. III we outline the derivation
of the quantum Bloch-Boltzmann equation, involving both
center of mass and internal degrees of freedom, starting from
the classical linear Boltzmann equation and the known ex-
pression of the quantum linear Boltzmann equation involving

only the motional degrees of freedom. Section IV is then
devoted to considering the reduced dynamics of either inter-
nal or center of mass degrees of freedom, for which a gen-
eralized Lindblad structure follows, showing by means of
example the appearance of non-Markovian behaviors. Fi-
nally, in Sec. V we briefly comment on our results.

II. GENERALIZED LINDBLAD STRUCTURE

We now want to introduce the above-mentioned non-
Markovian generalization of the Lindblad structure, which is
easily obtained considering the standard theorem of Gorini,
Kossakowski, Sudarshan, and Lindblad for a special choice
of Hilbert space for the open system and of the expression of
its statistical operator. Let us consider a bipartite quantum
system described on a Hilbert space H � HB, with H and HB
separable. Exploiting the isomorphism of HB with either of
the possible physically relevant choices of Hilbert space,
such as Cn, l2�C�, or L2�R�, the tensor product can be ex-
pressed as a direct sum or direct integral, thus naturally in-
troducing a label �. For the case in which HB describes a
system with n degrees of freedom, one can consider the two
equivalent constructions of the same bipartite Hilbert space

H � Cn = �
�=1

n

H , �1�

and similarly for l2�C�, replacing the finite sum with a series.
On similar grounds a continuous index appears for the case

H � L2�R� = �
R

�

d� H , �2�

exploiting the notion of a direct integral of Hilbert spaces
�see, e.g., �27��. It is then of course possible to consider a
statistical operator for the bipartite system, that is to say, a
positive trace class operator on H � HB, normalized to 1.
Considering for the sake of example the case of H � Cn=
��=1

n H, and denoting by � the statistical operator of the
system, one can consider the general expression for the Lind-
blad equation for �. Let us now restrict attention, however,
to statistical operators whose matrix representation is block
diagonal, so that they can equivalently be written as �
=��=1

n �� � ���	�� or as �= ��1 , . . . ,�� , . . . ,�n�. The index �
can now really be interpreted as a classical label indexing the
various subcollections ���TC�H�, which are given by posi-
tive trace class operators on H with trace less than or equal
to 1. Such a block diagonal statistical operator

� = ��1, . . . ,��, . . . ,�n�

fixed by the set of subcollections 
����=1,. . .,n is normalized
according to

Tr� = �
�=1

n

TrH�� = 1. �3�

The set of trace class operators that are block diagonal is a
closed subalgebra of the set of all trace class operators,
whose dual space is given by the closed subalgebra of
bounded operators also having a block diagonal structure.
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Equivalently, one can say that this subclass of statistical op-
erators provides information only on the expectation values
of observables diagonal with respect to the label �, which
thus correspond to the only relevant variables for the system
under consideration. Considering a statistical operator in the
subalgebra of block diagonal trace class operators �
�TCdiag�H � Cn� and an observable given by a block diago-
nal bounded operator B�Bdiag�H � Cn�

B = �B1, . . . ,B�, . . . ,Bn� ,

with B��B�H�, the duality relation is given by

	B,�� = �
�=1

n

TrH�B���� . �4�

It is now of interest to consider the expression of the
generator of a quantum dynamical semigroup acting on this
bipartite space when applied to such block diagonal states or
observables, with the further constraint that the time evolved
state or observable still preserves this simple block diagonal
structure, thus defining a dynamics which remains within the
spaces TCdiag�H � Cn� or Bdiag�H � Cn�, respectively. In the
Schrödinger picture this generalized Lindblad structure can
be written in terms of coupled equations for the different
subcollections �� according to �8,10�

d

dt
�� = −

i

�
�H�,��� + �

�
�
�=1

n �R�
����R�

��†

−
1

2

R�

��†R�
��,���
 , �5�

leading due to the duality relation Eq. �4� to the following
equations in the Heisenberg picture for the components B� of
a block diagonal observable:

d

dt
B� = +

i

�
�H�,B�� + �

�
�
�=1

n �R�
��†B�R�

��

−
1

2

R�

��†R�
��,B��
 . �6�

In Eqs. �5� and �6� the index � runs from 1 to n, the operators
H� are self-adjoint on H, and R�

�� are operators on H, with
� a further index labeling the various Lindblad operators.

Introducing the mapping

L� = � d

dt
�1, . . . ,

d

dt
��, . . . ,

d

dt
�n
 ,

one can therefore write for the time evolution in the
Schrödinger picture

��t� = „�1�t�, . . . ,���t�, . . . ,�n�t�…

= etL��0� = etL
„�1�0�, . . . ,���0�, . . . ,�n�0�… ,

and similarly for the Heisenberg picture using the mapping
L� dual to L according to the relation Eq. �4�. Now Eq. �5�
provides a Markovian set of equations for the statistical op-
erator ��t�= (�1�t� , . . . ,���t� , . . . ,�n�t�) on H � Cn, but a non-
Markovian dynamics for the statistical operator

w�t� = �
�=1

n

���t� , �7�

which is a statistical operator on the Hilbert space H only. In
particular it is not possible to define a mapping from w�0� to
w�t� according to the noncommutativity of the following dia-
gram:

��0� = „�1�0�, . . . ,�n�0�… ——→
exp�tL�

��t� = „�1�t�, . . . ,�n�t�…

w�0� = �
�=1

n

���0� w�t� = �
�=1

n

���t�→——/

↓ ↓

—
—

—
—

arising because of the loss of information in going from ��t�
to w�t�. The set of equations given by Eq. �5� thus provides a
non-Markovian dynamics for the statistical operator w�t�
supposed to be expressible at any time as a mixture of sub-
collections ���t�, or equivalently as a convex combination
with weights p��t�=TrH���t� of statistical operators given by
w��t�=���t� /TrH���t�. This last standpoint stresses the ap-
pearance of the classical probability distribution

p��t���=1,. . .,n, which justifies the name random Lindblad
equations or Lindblad rate equations �14,16�, also given to
equations falling within the class given by Eq. �5�.

The statistical operator w�t� can arise in a twofold way:
Either by taking the trace of a block diagonal ��t� with re-
spect to Cn, corresponding to a situation in which one con-
siders a reduced dynamics of the bipartite system with re-
spect to the degrees of freedom which behave effectively in a
classical way, or by assuming that the state of the system
under study living in the Hilbert space H is specified at the
initial time as a convex combination of n statistical operators
with suitable weights, and retains this form throughout the
dynamics. The first type of realization makes it intuitively
clear why Eq. �5� encompasses non-Markovian situations.
By looking at the time evolution of w�t� only, one is consid-
ering a restricted set of variables with respect to the full
collection 
���t���=1,. . .,n, for which the time evolution law
would be Markovian. The set of relevant physical variables
then determines whether or not the dynamics is Markovian.
Statistical operators of the form given by Eq. �7� naturally
appear in connection with a structured reservoir, the label �
being then connected to a characterization of the reservoir
itself, e.g., labeling different energy bands. This is the case
both when considering a projection operator technique as-
suming classical correlated states between system and reser-
voir �7�, and more simply in the so-called generalized Born-
Markov approximation �14�, using a classically correlated
state in the derivation of the master equation to second order
in the perturbation. As we shall argue below, statistical op-
erators of this form also appear when considering a bipartite
system interacting with a reservoir, when due to decoherence
one of the two kinds of degrees of freedom behaves classi-
cally, and despite characterizing the initial preparation and
being relevant for the interaction with the environment, can-
not later be resolved by the measurement apparatus. Need-
less to say, the formal scheme developed above can also be
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implemented when the label � runs over a countable set or
even in the continuum, corresponding to a Hilbert space con-
struction as depicted in Eq. �2�.

III. DERIVATION OF QUANTUM BLOCH-BOLTZMANN
EQUATION

We now address the issue of the derivation of a master
equation describing the dynamics of both internal and center
of mass degrees of freedom of a quantum test particle inter-
acting through collisions with a reservoir such as a back-
ground gas. Here we will outline a heuristic derivation, leav-
ing a more detailed and microscopic one for a later
presentation, in particular we will concentrate only on the
incoherent terms corresponding to gain and loss terms in the
classical case, leaving aside the Hamiltonian contributions
due to the kinetic term and forward scattering. To do this we

will build on the known results for the quantum linear Bolt-
zmann equation �19–22�, describing in a quantum framework
the center of mass degrees of freedom, and on the so called
Bloch-Boltzmann equation �11,23–26�, which accounts for a
semiclassical description of both internal and center of mass
degrees of freedom. As a starting point we take the equations
of motion considered in �11� for the collection 
��P��P�R3 of
trace class operators on the space Cn of internal degrees of
freedom, labeled with the continuous index P now character-
izing the classical momentum of the test particle. This result
extends the work in �23,26� by considering also the dynam-
ics of the center of mass degrees of freedom of the test par-
ticle, which in �23,26� is supposed to have infinite mass and
therefore to be at rest. It is most convenient to write the
equation putting into evidence the constraints due to momen-
tum and energy conservation in the single interaction events,
thus obtaining

d

dt
��P� =

ngas

m*
2

�
ijkl

Eij=Ekl

� dP�� dp�� dp ���p����P�2

2M
+

p�2

2m
+ �	 j −

P2

2M
−

p2

2m
− �	i



�3�P� + P� − p − p�f ij„rel�p,P�,rel�p�,P��…f
kl
*�rel�p�,P��,rel�p,P��Eij��P�Ekl

†

−
1

2

ngas

m*
2

�
ijkl

Eij=Ekl

� dP�� dp�� dp ���p��� P2

2M
+

p2

2m
+ �	 j −

P�2

2M
−

p�2

2m
− �	i



�3�P + p − P − P��f ij„rel�p�,P��,rel�p�,P��…f
kl
*
„rel�p�,P��,rel�p,P�…
Ekl

† Eij,��P�� . �8�

In this equation M and m denote the masses of test particle
and gas particles, respectively, m* is the reduced mass, ���p�
is the Maxwell-Boltzmann distribution of the gas,

���p� =
1

�3/2p�
3 exp�−

p2

p�
2 
 , �9�

with p�=�2m /� the most probable momentum at tempera-
ture T=1 / �kB��, relative momenta denoted as

rel�p,P� �
m*

m
p −

m*

M
P , �10�

and

f ij�p,p�� � f�p�, j → p,i� �11�

indicating the complex scattering amplitude for a transition
from an in state with labels p� , j to an out state with labels
p , i. Finally, the matrices Eij correspond to the mappings be-
tween energy eigenstates, providing a basis of operators in
Cn, according to

Eij = �i�	j� , �12�

while �	 j is the energy of the j level and Eij =�	i−�	 j
denote the possible transition energies. Using a �-function
momentum conservation Eq. �8� can also be expressed using
as a variable the momentum transfer Q=P�−P in single col-
lisions, thus coming to

d

dt
��P� =

ngas

m*
2

�
ijkl

Eij=Ekl

� dQ� dp ���p − Q��� �P + Q�2

2M
+

�p − Q�2

2m
−

P2

2M
−

p2

2m
+ Eij
 f ij„rel�p,P�,rel�p,P� − Q…


f
kl
*
„rel�p,P�,rel�p,P� − Q…Eij��P + Q�Ekl

† −
1

2

ngas

m*
2

�
ijkl

Eij=Ekl

� dQ� dp ���p��� �P + Q�2

2M
+

�p − Q�2

2m
−

P2

2M
−

p2

2m
+ Eij
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f ij„rel�p,P� − Q,rel�p,P�…f
kl
*
„rel�p,P� − Q,rel�p,P�…
Ekl

† Eij,��P�� .

Introducing now by the notation �Q and �Q the component of a vector parallel and perpendicular to the momentum transfer
Q, so that P�Q= �P ·Q�Q /Q2 and P�Q=P−P�Q, respectively, one has using Eq. �10� in the � function of energy conservation

�� �P + Q�2

2M
+

�p − Q�2

2m
−

P2

2M
−

p2

2m
+ Eij
 = �� Q2

2m*
−

Q

m*
· rel�p�Q,P�Q� + Eij
 , �13�

so that in the integral one can use the replacement

rel�p�Q,P�Q� =
1

2�1 +
E ji

Q2/�2m*�
Q , �14�

and therefore

d

dt
��P� =

ngas

m*
2

�
ijkl

Eij=Ekl

� dQ� dp ���p − Q��� Q2

2m*
−

Q

m*
· rel�p�Q,P�Q� + Eij



f ij�rel�p�Q,P�Q� +
Q

2
+

E ji

Q2/m*
Q,rel�p�Q,P�Q� −

Q

2
+

E ji

Q2/m*
Q



f
kl
*�rel�p�Q,P�Q� +

Q

2
+

Elk

Q2/m*
Q,rel�p�Q,P�Q� −

Q

2
+

Elk

Q2/m*
Q
Eij��P + Q�Ekl

†

−
1

2

ngas

m*
2

�
ijkl

Eij=Ekl

� dQ� dp ���p��� Q2

2m*
−

Q

m*
· rel�p�Q,P�Q� + Eij



f ij�rel�p�Q,P�Q� −
Q

2
+

Eij

Q2/m*
Q,rel�p�Q,P�Q� +

Q

2
+

Eij

Q2/m*
Q



f
kl
*�rel�p�Q,P�Q� −

Q

2
+

Ekl

Q2/m*
Q,rel�p�Q,P�Q� +

Q

2
+

Ekl

Q2/m*
Q

Ekl

† Eij,��P�� .

One can now perform the translation p→p+mQ / �2m*�+mP�Q /M +mE jiQ /Q2 in the gain term, and similarly for the loss one,
which does not affect the argument of the scattering amplitudes, thus obtaining

d

dt
��P� =

ngasm

m*
2

�
ijkl

Eij=Ekl

� dQ� dp ���p +
m

m*

Q

2
+

m

M
�P�Q − Q� +

Eij

Q2/m
Q
��Q · p�


f ij�rel�p�Q,P�Q� −
Q

2
+

Eij

Q2/m*
Q,rel�p�Q,P�Q� +

Q

2
+

Eij

Q2/m*
Q



f
kl
*�rel�p�Q,P�Q� −

Q

2
+

Ekl

Q2/m*
Q,rel�p�Q,P�Q� +

Q

2
+

Ekl

Q2/m*
Q
Eij��P − Q�Ekl

†

−
1

2

ngasm

m*
2

�
ijkl

Eij=Ekl

� dQ� dp ���p +
m

m*

Q

2
+

m

M
P�Q +

Eij

Q2/m
Q
��Q · p�


f ij�rel�p�Q,P�Q� −
Q

2
+

Eij

Q2/m*
Q,rel�p�Q,P�Q� +

Q

2
+

Eij

Q2/m*
Q



f
kl
*�rel�p�Q,P�Q� −

Q

2
+

Ekl

Q2/m*
Q,rel�p�Q,P�Q� +

Q

2
+

Ekl

Q2/m*
Q

Ekl

† Eij,��P�� ,

where we also performed the change of variables Q→−Q in the gain term and used the simple relation m / �2m*�−m /M =1
−m / �2m*�. Noting that
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� dp g�p���Q · p� =
1

Q
�

Q�
dp g�p�Q� , �15�

where the integration on the right-hand side is restricted to momenta of the gas particle perpendicular to the momentum
transfer, we obtain the equation

d

dt
��P� =

ngasm

m*
2

�
ijkl

Eij=Ekl

� dQ

Q
�

Q�
dp ���p�Q +

m

m*

Q

2
+

m

M
�P�Q − Q� +

Eij

Q2/m
Q



f ij�rel�p�Q,P�Q� −
Q

2
+

Eij

Q2/m*
Q,rel�p�Q,P�Q� +

Q

2
+

Eij

Q2/m*
Q



f
kl
*�rel�p�Q,P�Q� −

Q

2
+

Ekl

Q2/m*
Q,rel�p�Q,P�Q� +

Q

2
+

Ekl

Q2/m*
Q
Eij��P − Q�Ekl

†

−
1

2

ngasm

m*
2

�
ijkl

Eij=Ekl

� dQ� dp ���p�Q +
m

m*

Q

2
+

m

M
P�Q +

Eij

Q2/m
Q



f ij�rel�p�Q,P�Q� −
Q

2
+

Eij

Q2/m*
Q,rel�p�Q,P�Q� +

Q

2
+

Eij

Q2/m*
Q



f
kl
*�rel�p�Q,P�Q� −

Q

2
+

Ekl

Q2/m*
Q,rel�p�Q,P�Q� +

Q

2
+

Ekl

Q2/m*
Q

Ekl

† Eij,��P�� . �16�

Let us now recall the expression of the dynamic structure
factor for a gas of free particles obeying Maxwell-Boltzmann
statistics, which is given by

SMB�Q,E� =��m

2�

1

Q
exp�−

�

8m

�Q2 + 2mE�2

Q2 
 , �17�

where the variables Q and E denote energy transfer and mo-
mentum transfer in a scattering event. The dynamic structure
factor is a two-point correlation function appearing in the
expression of the scattering cross section of a probe scatter-
ing off a macroscopic sample, in the present case the gas,
expressed in terms of momentum and energy transferred in
the collision �28,29�. Its general expression is given by the
Fourier transform with respect to energy and momentum
transfer of the density-density correlation function of the me-
dium, and for the case of a sample of noninteracting particles
can be analytically evaluated to give Eq. �17�. The physical
meaning of the dynamic structure factor for the characteriza-
tion of scattering of a test particle off a gas explains its
natural appearance in the expression of the quantum linear
Boltzmann equation, as already recognized in �20,22,30,31�.
As we are now going to show, the dynamic structure factor
also appears when considering internal degrees of freedom,
the energy transfer being now also related to the energy ab-

sorbed or released as a consequence of internal transitions.
Exploiting Eq. �15�, we observe in fact the identity

���p�Q +
m

m*

Q

2
+

m

M
P�Q +

Eij

Q2/m
Q


= ���p�Q + �Q2 + 2m�E�Q,P� + Eij�
Q2 
Q

2
� ,

leading via Eqs. �9� and �17� to

m

Q
���p�Q +

m

m*

Q

2
+

m

M
P�Q +

Eij

Q2/m
Q


= ���p�Q�SMB„Q,E�Q,P� + Eij… , �18�

where ���p�Q� denotes the Maxwell-Boltzmann distribution
in two dimensions. The quantity

E�Q,P� =
�P + Q�2

2M
−

P2

2M
=

Q2

2M
+

Q · P

M
, �19�

actually only depending on P�Q, is the energy transferred to
the center of mass in a collision in which the momentum of
the test particle changes from P to P+Q. Relying on Eqs.
�18� and �15� we can therefore finally write
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d

dt
��P� =

ngas

m*
2

�
ijkl

Eij=Ekl

� dQ�
Q�

dp ���p�Q�SMB„Q,E�Q,P − Q� + Eij…


f ij�rel�p�Q,P�Q� −
Q

2
+

Eij

Q2/m*
Q,rel�p�Q,P�Q� +

Q

2
+

Eij

Q2/m*
Q



f
kl
*�rel�p�Q,P�Q� −

Q

2
+

Ekl

Q2/m*
Q,rel�p�Q,P�Q� +

Q

2
+

Ekl

Q2/m*
Q
Eij��P − Q�Ekl

†

−
1

2

ngas

m*
2

�
ijkl

Eij=Ekl

� dQ�
Q�

dp ���p�Q�SMB„Q,E�Q,P� + Eij…


f ij�rel�p�Q,P�Q� −
Q

2
+

Eij

Q2/m*
Q,rel�p�Q,P�Q� +

Q

2
+

Eij

Q2/m*
Q



f
kl
*�rel�p�Q,P�Q� −

Q

2
+

Ekl

Q2/m*
Q,rel�p�Q,P�Q� +

Q

2
+

Ekl

Q2/m*
Q

Ekl

† Eij,��P�� , �20�

where because of the � function of energy conservation Eq.
�13� exploited in coming to this final expression the transi-
tion energy Eij must be equal to zero whenever Q is equal to
zero, due to the fact that we consider the gas particles as
structureless. We stress the dependence on P−Q in the gain
term with respect to P in the loss term. Note also the very
natural appearance of the argument E�Q ,P�+Eij in the dy-
namic structure factor, corresponding to the energy transfer
in the interaction events, due to both the momentum ex-
change and the internal transition, whenever the scattering is
not elastic.

Equation �20� is equivalent to Eq. �8�, but it is written in
a more convenient way for the sake of considering a quan-
tum description of the center of mass degrees of freedom.
The quantum master equation for the dynamics of both in-
ternal and center of mass degrees of freedom has to be of
Lindblad form and to coincide with the semiclassical expres-
sion �20� when the diagonal matrix elements are considered

in the momentum representation. Moreover, due to the ho-
mogeneity of the gas, the equation has to reflect the physical
invariance under translations, which is expressed at the level
of the master equation by the property of covariance under
translations, corresponding to the fact that the generator of
the master equation commutes with the generator of transla-
tions. This property has been considered at a formal level in
�32–35�, leading to a general mathematical characterization
of Lindblad structures complying with translational invari-
ance, and discussed in a physical framework in �20,31�. In
view of these requirements, the quantum master equation is
simply obtained by making operator valued the relevant
physical expressions appearing in the equation and depend-
ing on the momentum of the test particle, such as the dy-
namic structure factor and scattering amplitude. In this way
one obtains the following master equation for a statistical
operator � on the space L2�R3� � Cn, which is manifestly in
Lindblad form:

d

dt
� =

ngas

m*
2

�
ijkl

Eij=Ekl

� dQ�
Q�

dp ���p�Q�� f ij�rel�p�Q,P�Q� −
Q

2
+

Eij

Q2/m*
Q,rel�p�Q,P�Q� +

Q

2
+

Eij

Q2/m*
Q



eiQ·X/��SMB„Q,E�Q,P� + Eij…Eij�Ekl
† �SMB„Q,E�Q,P� + Ekl…e

−iQ·X/�


fkl
† �rel�p�Q,P�Q� −

Q

2
+

Ekl

Q2/m*
Q,rel�p�Q,P�Q� +

Q

2
+

Ekl

Q2/m*
Q
�

−
1

2

ngas

m*
2

�
ijkl

Eij=Ekl

� dQ�
Q�

dp ���p�Q�� fkl
† �rel�p�Q,P�Q� −

Q

2
+

Ekl

Q2/m*
Q,rel�p�Q,P�Q� +

Q

2
+

Ekl

Q2/m*
Q



f ij�rel�p�Q,P�Q� −
Q

2
+

Eij

Q2/m*
Q,rel�p�Q,P�Q� +

Q

2
+

Eij

Q2/m*
Q
SMB„Q,E�Q,P� + Eij…Ekl

† Eij,�� , �21�
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where X and P denote the position and momentum operators
of the massive test particle, and the scattering amplitudes f ij
appearing operator valued describe inelastic scattering with a
momentum transfer Q between two channels differing in en-
ergy by Eij. One immediately checks that the diagonal matrix
elements in the momentum representation of Eq. �21� do
coincide with Eq. �20�, and furthermore that, if the internal
degrees of freedom are neglected, one comes back to the
quantum linear Boltzmann equation �22�, which, together
with the correct behavior under translations, granted by the
very operator structure of the equation, provides a further
argument for the assessment of the off-diagonal matrix ele-
ments. The step leading from Eq. �20� to Eq. �21�, which
corresponds to promoting the classical momentum to the cor-
responding operator, similarly to what happens in standard
quantization procedures, relies on the specific structure of
Eq. �20�, and can also be applied when the internal degrees
of freedom are neglected, in which case it leads to the correct
version of the quantum linear Boltzmann equation, as con-
firmed by independent derivations �19,21,22,30�. Of course
the ultimate justification for Eq. �21� relies on a microscopic
derivation, which can be obtained similarly but with much
lengthier calculations than in �22�. Due to the quite compli-
cated expression, it is worth introducing a more compact
notation by defining the Lindblad operators

LQ,p,E = eiQ·X/�L�p,P;Q,E� , �22�

where

L�p,P;Q,E� = �
ij

Eij=E

f ij�rel�p�Q,P�Q� −
Q

2

+
Eij

Q2/m*
Q,rel�p�Q,P�Q� +

Q

2
+

Eij

Q2/m*
Q



�ngas

m*
2

���p�Q��SMB„Q,E�Q,P� + Eij…Eij ,

�23�

thus writing Eq. �21� in the compact and manifestly Lindblad
form

d

dt
� = �

E
� dQ�

Q�
dp�LQ,p,E�LQ,p,E

† −
1

2

LQ,p,E

† LQ,p,E,��
 .

�24�

We will refer to Eq. �24� or equivalently Eq. �21� as the
quantum Bloch-Boltzmann equation.

IV. REDUCED NON-MARKOVIAN DYNAMICS

We now want to point out two different situations of
physical relevance in which by relying on Eq. �24� one can
obtain a description of non-Markovian behaviors, typically
showing up in nonexponential decay, e.g., of coherences of
the system under study. Despite focusing on a concrete class
of physical systems, our analysis generally applies to the
case of a bipartite quantum system interacting with a reser-

voir, provided all degrees of freedom of the bipartite system
are involved in the interaction mechanism between system
and reservoir, thus generating the entanglement which ac-
counts for the memory effects. This provides a realization
and clarification of the scheme envisaged in �15,16�, calling
for extra fictitious unobserved degrees of freedom in order to
lead to a Lindblad rate equation realizing in the Born ap-
proximation a generalized Lindblad structure. In particular,
our result goes beyond the Born approximation and displays
the full-fledged generalized Lindblad structure Eq. �5�, al-
lowing for truly coupled equations for the different subcol-
lections �� and considering both the case of a discrete and a
continuous label �.

As we discussed in Sec. I the non-Markovian behavior
described via Eq. �5� arises when one goes over from Eq.
�24� to a semiclassical description, and a classical label char-
acterizing the initial state cannot be resolved or accounted
for in the final measurement. This semiclassical picture of
the dynamics holds if the initial state of the system is pre-
pared so that one of the two degrees of freedom is in a
classical state, or if decoherence affects the two kind of de-
grees of freedom of the bipartite state on different time
scales, so that, e.g., the motional dynamics can be treated
classically while the internal degrees of freedom still require
a full quantum treatment. In this framework knowledge
about the way in which the system is prepared usually natu-
rally provides information about both parts of the bipartite
system, while the final detection scheme is not necessarily
fine enough to fully characterize the outgoing state. In dif-
ferent contexts it might also possibly arise as a consequence
of superselection rules.

A. Description of center of mass degrees of freedom

Let us consider first a situation in which we put our test
particle, or equivalently a sufficiently dilute collection of
such test particles so that they can be considered as nonin-
teracting, in a dense inert gas. The test particle will undergo
many collisions quickly, leading to a classical characteriza-
tion of the motion of its center of mass, so that only the
diagonal matrix elements in the momentum representation of
Eq. �24� are left on a time scale set by the collisional deco-
herence mechanism, which leads us back to Eq. �20�, which
is also called the Bloch-Boltzmann equation. Of course, due
to the complexity of the master equation �24� such a behav-
ior, though naturally expected on physical grounds and usu-
ally invoked in the literature on decoherence �36�, cannot be
easily demonstrated in realistic situations. It has, however,
been confirmed by means of Monte Carlo simulations, which
also allow for estimates of the decoherence rates �37�. It is
convenient to write the equation in a more compact way
introducing the following C-number rate operators:

Mik
jl�P + Q;Q� = �Eij,Ekl

ngas

m*
2
�

Q�
dp ���p�Q�SMB„Q,E�Q,P�

+ Eij…f ij�rel�p�Q,P�Q� −
Q

2

+
Eij

Q2/m*
Q,rel�p�Q,P�Q� +

Q

2
+

Eij

Q2/m*
Q
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 f
kl
*�rel�p�Q,P�Q� −

Q

2

+
Ekl

Q2/m*
Q,rel�p�Q,P�Q� +

Q

2
+

Ekl

Q2/m*
Q
 ,

�25�

which provide the rates for scattering from P to P+Q, in-
cluding the dependence on the indices for internal degrees of
freedom and the transition energy Eij. In the limit of an infi-
nitely massive test particle, these rate coefficients can be
checked to go over to those derived in �26� for the case of an
immobile system. Exploiting the expression Eq. �25� for the
rate operators, we can write Eq. �20� more compactly as

d

dt
��P� = �

ijkl
� dQ�Mik

jl�P;Q�Eij��P − Q�Ekl
†

−
1

2
Mik

jl�P + Q;Q�
Ekl
† Eij,��P��
 . �26�

Despite the enormous complexity of this integro-
differential operator equation one can consider some simpli-
fied situations, allowing to put into evidence non-Markovian
behaviors arising for the reduced statistical operator �
=�dP ��P�, only describing the internal degrees of freedom,
once the dynamics of the various subcollections 
��P��P�R3

is given by Eq. �26�. Let us consider the most simple con-
ceivable situation, taking an internal C2 space and only al-
lowing for elastic scattering. We thus have Mik

jl ��ij�kl, and
further restricting to ourselves forward scattering we can
write

Mik
jl�P + Q;Q� = �ij�kl�

3�Q�
ik�P� ,

parametrizing the rate operators by means of the functions

ik�P�. According to Eq. �12� we denote by Eii= �i�	i� the
maps between the same energy eigenstates, corresponding to
the projectors on the two one-dimensional subspaces of C2,
so that Eq. �26� now simplifies to

d

dt
��P� = �

ik


ik�P�Eii��P�Ekk −
1

2��i


ii�P�Eii,��P�� .

�27�

The dynamics of the single subcollections ��P� can now be
easily studied. Setting

�ij�P� = 	i���P��j�

for the matrix elements of the collection 
��P��P�R3 of ma-
trices in C2, one immediately sees that there is no dynamics
for the populations, in that �̇ii�P�=0, for i=1,2, so that in
particular integrating over the possible momentum depen-
dence also �̇ii=0, for i=1,2. The coherences of the subcol-
lections �12�P�=�

21
* �P� are instead described by the equation

d

dt
�12�P� = �−

1

2

11�P� −

1

2

22�P� + 
12�P�
�12�P� ,

�28�

which, on introducing what we might call, in the absence of
better names, a momentum-dependent friction coefficient

��P� =
1

2

11�P� +

1

2

22�P� − 
12�P� , �29�

which in view of Eq. �25� has a positive real part propor-
tional to the averaged modulus of the difference of forward
scattering amplitudes �26�, is easily solved by

�12�P,t� = e−��P�t�12�P,0� .

Let us now consider an initial state of the form �12�P ,0�
=�12�0����P�, corresponding to a preparation in which the
test particle, or equivalently the dilute ensemble of noninter-
acting test particles, is in a classical thermal state as far as
the center of mass is concerned, and has a nonvanishing
initial value for the coherences of the internal degrees of
freedom. The behavior in time of the off-diagonal matrix
elements observed for the internal degrees of freedom only,
not resolving the momentum of the considered test particle,
is then given by

�12�t� = ��t��12�0� ,

with

��t� =� dP e−��P�t���P� . �30�

It is now immediately evident that behaviors utterly different
from the usual Markovian exponential decay in time appear
depending on the actual expression of the momentum-
dependent ��P�, the Markovian case obviously correspond-
ing to a constant friction coefficient ��P�=�.

For the simple case ��P�=aP2 one immediately obtains a
power law decay of the form

��t� =
1

�1 + t/��3/2 , �31�

where we have set �=1 / �aP�
2�, indicating a natural reference

time. Another simple expression of the friction coefficient
leads instead to a stretched exponential. Considering in fact
��P�=b /P2 one has to evaluate

��t� =
1

�3/2P�
3 � dP e−��P�te−P2/P�

2
, �32�

so that by exploiting the result �38�

�
0

�

dx x2e−a/x2
e−bx2

=� �

16b3 �1 + 2�ab�e−2�ab,

we obtain

��t� = �1 + �t/��1/2�e−�t/��1/2
, �33�

describing a stretched exponential decay in time with a
square root correction, where the reference time is now set
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by �= P�
2 / �4b�. These two simple choices for the friction

coefficient ��P�, amenable to an analytical treatment, have
clearly shown the appearance of strongly non-Markovian be-
haviors for the operator ��t�. The considered example is ob-
viously quite simplified and does not describe in a realistic
way all possible aspects of the dynamics, e.g., the redistribu-
tion of population in the internal degrees of freedom. It al-
lows us, however, to easily grasp some non-Markovian as-
pects of the generalized Lindblad structure given by Eq. �5�,
of which Eq. �26� provides a simple example, even though
with a continuous index.

B. Description of internal degrees of freedom

We now focus on a quite different situation, in which we
study the dynamics of our test particle when flying through
an interferometer for massive particles, e.g., of the Mach-
Zender type, as recently realized also for the quantitative
study of decoherence �39�. In such a case the initial prepara-
tion is engineered so as to ensure a coherent superposition of
states of the motional degrees of freedom of the system
while, in the absence of a further selection in the prepared
state, the internal degrees of freedom can be described by a
classical distribution, corresponding to a partially diagonal
statistical operator. The diagonal matrix elements of Eq. �24�
with respect to the internal degrees of freedom naturally lead
to coupled master equations for the collection 
�r�r of trace
class operators in L2�R3�, defined according to �r= 	r���r�. In
order to keep a compact notation we introduce the rate op-
erators

Rrj�p,Q� = frj�rel�p�Q,P�Q� −
Q

2
+

Erj

Q2/m*
Q,rel�p�Q,P�Q�

+
Q

2
+

Erj

Q2/m*
Q
�ngas

m*
2

���p�Q�


eiQ·X/��SMB„Q,E�Q,P� + Erj… , �34�

operator valued on L2�R3�, so that the master equations for
the subcollections 
�r�r explicitly exhibit the generalized
Lindblad structure given by Eq. �5�, with the additional ap-
pearance of integrals over continuous indices

d

dt
�r = �

j
� dQ�

Q�
dp�Rrj�p,Q�� jR

rj�p,Q�†

−
1

2

R jr�p,Q�†R jr�p,Q�,�r�
 . �35�

The set of master equations given by Eq. �35� do provide a
non-Markovian dynamics for the statistical operator �
=�r=1

n �r observed at the outcome of the experiment, e.g., to
determine the visibility of the interference fringes, when the
detection scheme cannot resolve the state of the internal de-
grees of freedom.

In a typical experimental situation for the study of colli-
sional decoherence one can safely neglect the dependence on
the momentum operator P in the rate operators defined by
Eq. �34�, replacing it by the classical value of the momentum

of the incoming test particle, due to the fact that on the
decoherence time scale the dissipative dynamics of the mo-
mentum does not play a role �22,40,41�. This brings in an
important simplification in Eq. �35�, which can now be writ-
ten using the unitary operators eiQ·X/�, describing the mo-
mentum kicks causing decoherence of the center of mass,
and C-number positive collision rates � jr�Q�, which depend
on the internal state of the test particle, thus obtaining

d

dt
�r = �

j
� dQ��rj�Q�eiQ·X/�� je

−iQ·X/� − � jr�Q��r� .

�36�

For the case in which the collisions do not lead to transitions
between different internal states, so that � jr�Q�=� jr�r�Q�,
one comes to the following master equation describing a
dynamics determined by momentum kicks of amount Q, tak-
ing place with a probability density Pr�Q� which depends on
the internal state of the test particle:

d

dt
�r = �r� dQ Pr�Q��eiQ·X/��re

−iQ·X/� − �r� . �37�

In Eq. �37� the probability density Pr�Q� is defined accord-
ing to

Pr�Q� =
�r�Q�

�r
, �38�

with �r=�dQ �r�Q� the total scattering rate for particles
with internal state r. The master equations �37� are easily
solved in the position representation according to

	x��r�t��y� = e−�r�1−�r�x−y��t	x��r�0��y� , �39�

with

�r�x − y� =� dQ Pr�Q�eiQ·�x−y�/�

the Fourier transform of the probability density given by Eq.
�38�, that is to say its characteristic function �42�. In particu-
lar, the prefactor is the characteristic function of a compound
Poisson process, composed according to the probability den-
sity Pr�Q�. This equation describes a quite general physical
situation in which one has a sequence of interaction events
between system and environment, distributed in time accord-
ing to a Poisson distribution, each one characterized by a
random momentum transfer, drawn according to a certain
probability density fixed by the microphysical interaction
mechanism �43,44�. At variance with a simple Poisson pro-
cess the momentum transfer is not deterministically fixed to
be the same in each collision, but is a random variable de-
pending on the details of the collision.

We now look at the dynamics of the matrix elements of
the whole statistical operator �=�r�r, responsible for the de-
scription of the measurement outcomes at the output of the
interferometer. To do this we consider an initial state of the
form �r�0�= pr��0�, with pr�0 and �rpr=1, corresponding
to a preparation in which the populations in the internal
states are distributed according to certain weights pr, while
the statistical operator ��0� in L2�R3� characterizes the quan-
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tum state of the center of mass. We thus come to the follow-
ing expression for the solution of the non-Markovian set of
master equations given by Eq. �37�:

	x���t��y� = �
r

pre
−�r�1−�r�x−y��t	x���0��y� , �40�

where the multiplicative prefactor determines the weight of
the matrix elements in the position representation, both with
elapsing time, and as a function of the distance �x−y�. Such
an expression provides information on the loss of coherence
responsible for reduction in the visibility of the interference
fringes. If only one of the weights pr is different from zero,
and therefore equal to 1, one falls back to the usual Markov-
ian exponential decay in time, possibly with a modulation in
the spatial dependence. In particular the coherence of the
quantum state over spatially separated points depends on the
details of the functions �r�x−y�, given by the Fourier trans-
form of the probability density of momentum kicks in the
scattering events. In a typical situation such functions
quickly go to zero in their dependence on the distance �x
−y�, so that, e.g., in the Markovian case one is simply left
with a constant exponential loss of visibility �39�. With the
present more general initial state even for �r�x−y��0 one
has a nontrivial structure describing a decay of coherence
other than exponential

	x���t��y� � ��t�	x���0��y� , �41�

where the function

��t� = �
r

pre
−�rt �42�

is the survival probability of a multiexponential distribution,
i.e., the probability to have no event up to a time t for such a
distribution �42�. Depending on the weights pr and the rates
�r, not only simple deviations from the exponential law can
appear, but also utterly different behaviors. To clarify this
point let us consider for the sake of example a geometric
distribution of weights, with ratio p0=e−a, a�R+, so that

pr = �1 − p0�p0
r ,

and a geometric progression of rates

�r = �0�0
r ,

with ratio �0=e−b, b�R+, and the reference rate �0 as scale
factor. The survival probability then reads

��t� = �1 − p0��
r

p0
re−�0

r�0t,

which, due to the relation �45�

���0t� =
1

p0
���t� − �1 − p0�e−�0t� ,

exhibits at long times a power law decay

���0t� �
1

��0t�a/b , t � 1. �43�

This simplest example allowing for an analytical treatment
already shows the rich variety of non-Markovian behaviors

which might arise when one uses the generalized Lindblad
structure given by Eq. �35�, which provides a further ex-
ample of the general result Eq. �5� for the case of a sum over
a discrete index. In particular Eq. �35� describes how the
dependence of the scattering events on the internal structure
of the test particle affects the loss of coherence in position
space, which in turn determines the reduction of visibility in
an interferometric experiment. As it appears from Eq. �43�,
this can lead to very strong deviations from the exponential
decay, such as power law behaviors.

V. CONCLUSIONS

In this paper we have considered a class of non-
Markovian behaviors, arising when dealing with a bipartite
quantum system interacting with a reservoir. The concrete
bipartite system considered was given by a massive test par-
ticle, for which both internal and center of mass degrees of
freedom have been taken into account. The reservoir was
assumed as a structureless gas, affecting our test particle
through collisions whose microscopic characterization de-
pends on both its motional and internal state. As a starting
point we have derived in Sec. III a quantum master equation
describing such dynamics in a nonperturbative way, ex-
pressed by Eq. �24�, which can also be termed the quantum
Bloch-Boltzmann equation in that it describes at the quantum
level both kinds of degrees of freedom. When due to deco-
herence or features of the initial preparation, one of the two
degrees of freedom is to be described classically, one obtains
from the quantum Bloch-Boltzmann equation two examples
of a generalized Lindblad structure recently considered for
the description of non-Markovian dynamics �7,8�. Such a
generalized Lindblad expression has been outlined in Sec. II,
clarifying its mathematical structure and physical motivation.
For the case at hand non-Markovian effects, leading to decay
behaviors of coherences of the system given by stretched
exponentials or power laws instead of simple exponentials,
appear when the degrees of freedom allowing for a classical
description are not resolved in the final measurement, only
focusing on the quantum degrees of freedom. This provides a
concrete realization of a proposed mechanism for the appear-
ance of such generalized Lindblad structures �15,16�, further
clarifying the origin of the non-Markovian behaviors. These
behaviors have been spelled out in Sec. IV, focusing on the
dynamics of the internal state of a test particle interacting
with an inert gas, as well as on loss of coherence of a mas-
sive particle flying through an interferometer where it inter-
acts with a background gas. It is to be stressed that in the
physical examples considered in Secs. IV A and IV B one
has to deal with decoupled subcollections of statistical op-
erators, so that the non-Markovian features arise from the
average over the classical index in the initial condition. The
generalized Lindblad structure given by Eq. �5� also allows
one to consider coupled equations for the different subcol-
lections, and for these situations one naturally expects a
much more complicated non-Markovian dynamics.

It immediately appears that the outlined scheme leading to
a class of non-Markovian evolutions generally applies in the
presence of the interaction of a bipartite quantum system
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with a quantum environment, when one of the quantum la-
bels of the system becomes classical and can be averaged
over. More generally, such a class of non-Markovian evolu-
tions appear in the presence of a classical degree of freedom,
described by means of some discrete or continuous label,
which is involved in the characterization of the interaction
between two quantum degrees of freedom, and is averaged
over in order to give the relevant dynamics. This classical
label might as well appear on the side of the environment,
corresponding to so-called structured reservoirs, or on the
side of the system, as in the case of a bipartite system. The
present work can naturally be extended to include an internal
structure in the gas particles, which could also influence the

scattering amplitude, introducing new channels. In particular,
a detailed analysis of the rate operators based on microphysi-
cal informations could pave the way to new interferometric
experiments for the quantitative study of decoherence, exhib-
iting more general behaviors than exponential decay of vis-
ibility with elapsed interaction time.
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