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Bell theorem without inequalities for two particles. II. Inefficient detectors
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We again consider (as in a companion paper) an entangled two-particle state that is produced from two
” so that the particles have
never met. We show that there is a natural extension of the Einstein-Pololsky-Rosen discussion of “elements of
reality” to include inefficient detectors. We consider inefficient deterministic, local, realistic models of quantum
theory that are “robust,” which we consider to be the minimum requirement for them to be taken seriously. By
robust, we mean they satisfy the following three criteria: (a) they reproduce the quantum results for perfect
correlations, if all particles are detected; (b) they produce some counts for every setting of the angles (so they

independent downconversion sources by the process of “entanglement swapping,’

do not describe some experiments that can easily be performed as “impossible™); (c) all their hidden variables
are relevant (they must each produce a detectable result in some experiment). For such models, we prove a
Greenberger-Horne-Zeilinger type theorem for arbitrary detection efficiencies, showing that any such theory is
inconsistent with the quantum-mechanical perfect correlations. This theorem holds for individual events with
no inequalities. As a result, the theorem is also independent of any random sampling hypothesis, and we take
it as a refutation of such realistic theories, free of the detection efficiency and random sampling “loopholes.”
The hidden variable analysis depends crucially on the use of two independent laser sources for the downcon-
versions. We also investigate the necessity of using two independent sources versus a single source for all
particles. Finally, we argue that the state we use can legitimately be considered as a two-particle state, and used

as such in experiments.
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I. INTRODUCTION

We recently produced a Bell’s theorem [1] (in a compan-
ion paper, which we refer to as paper I) for two entangled
particles that uses a Greenberger-Horne-Zeilinger (GHZ)
type argument [2]. The argument applies to the case where
the two particles have a perfect correlation, meaning that if
one knows the outcome of a measurement on one of them,
one can predict the outcome of a corresponding measure-
ment on the other with absolute certainty, so that an Einstein-
Podolsky-Rosen (EPR) element of reality [3] exists. Another
feature of the argument is that it involves no inequalities, and
discusses only perfectly correlated states.

This argument used a two-particle entangled state that
was produced by the method of “entanglement-swapping”
[4]. In this method, two pairs of particles, each pair in a
singlet state, are independently produced. Then one catches
one particle of each pair simultaneously (which correlates
them into what we call a “cross-entangled” state). This auto-
matically correlates the other particles, which have never
met, into an entangled state, the “entanglement-swapped”
state. Because the particles have never met and have no
shared history, there are many restrictions present that limit
the capacity of a deterministic, realistic, local theory to
model the behavior of such a state.
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Our argument in paper I used counters of 100% -effi-
ciency, so it had no need to exploit all the limitations inher-
ent in the system. However there is a natural extension of the
idea of reality proposed by EPR that applies to inefficient
detectors, and that applies to the type of experiment we are
considering. Then, exploiting the EPR locality assumptions,
we can prove that the Bell functions that describe the out-
come of our experiments for perfect correlations in local,
deterministic, realistic models can be factored in such a way
that the instructions to the system contained in the hidden
variables cannot make use of the angular settings of the po-
larization rotators used in the experiment. It follows from
this that the predictions of such local realistic models are
self-contradictory, a result that is true independently of the
efficiency of the detectors, for a class of models of inefficient
detectors that we call “robust.” Models that are not robust are
too inefficient to effectively model the experiment, and we
do not take them seriously. Within this limitation, this is a
new type of result, that can be used to rule out such realistic
theories, even when using detectors of low efficiency. We
also do not need to assume any kind of random sampling
hypothesis, and thus our result closes two of the important
loopholes in this field [5].

We believe that arguments concerning the efficiency of
quantum detectors are more substantial than most other clas-
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sical arguments that attempt to reproduce the quantum results
with realistic, local theories, because of the limited efficien-
cies of actual quantum detectors, especially those involving
photons, and one should be able to face and refute such
arguments. The experiment we discuss uses the technology
of experiments that have already been performed, and the
Zeilinger group is actively planning to perform an experi-
ment using two independent laser sources.

Others have produced arguments very similar to ours, in a
different context (see, for example, the very cleanly written
papers of Hardy [6,7], Cabello [8,9], Aravind [10], Chen
[11], and Pavicic and Summhammer [12]). However, as ex-
plained in paper I, these papers do not discuss in detail indi-
vidual hidden variable models. Our paper shows the incon-
sistency of such models for individual values of the hidden
variables, since they cannot reproduce the quantum perfect
correlation results for all angles.

A recent paper by Broadbent and Méthot [13] argues that
entanglement swapping experiments can be explained by lo-
cal hidden variables. But it gives an example that is much
simpler than our experiment, and their results do not apply to
our experiment [14].

Some people would argue that we (and Refs. [6-12]) do
not have a true two-particle state since we start with a four-
particle state and reduce it by subsequent measurements. It is
true that one needs all four particles to prove the existence of
the various elements of reality present in the two-particle
state. But once this is done, one can perform and analyze
EPR experiments with this two-particle state, and it yields
results much stronger than the usual Bell theorems of stan-
dard single-source two-particle states

We proceed by showing that one can extend the EPR
analysis to the case of inefficient detectors. We are analyzing
inefficient models that claim to classically reproduce quan-
tum results, but they have to be what we consider to be
reasonable models. So to proceed, we make three assump-
tions that are consistent with the quantum results and that
restrict the models considered to a class we call “robust”
models, a restriction we consider to be reasonable for any
theory that tries to mimic the quantum results, even ineffi-
ciently.

First, we assume that if all four particles are detected, the
result will agree with the quantum-mechanical predictions
for perfect correlations. The second assumption concerns the
number of counts detected in a given experiment. Quantum
mechanics predicts that in a given experiment, the Bell states
appearing for the central two particles, and those for the two
outer particles, are correlated. If the two central particles are
in either of the Bell states ¢, or ;. [see Eq. (4) of paper I],
then the two outer particles will also be in one of these two
states. The total number of events detected in one or the
other of these two states, N,, will then be a fixed number that
depends on the efficiency of the counters, but that will be
independent of the angular settings for each particle. (A simi-
lar result holds for the other two Bell states, yielding N_
events.) For perfect detectors, N+=N_=%N0, where N, is the
number of possible events. For inefficient counters, N,=N_
= % 1Ny, where 7 is the combined efficiency of the detectors,
independently of the angles involved. This is what quantum
theory predicts, but our second assumption is much weaker
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than this quantum result, and merely requires that both N,
and N_ are #0, for any settings of the angles, ¢;. Otherwise,
there will be angles for which it is impossible to have any
measurable events at all. It is not possible to prove that a
theory that produces no events at all is inconsistent. But if
they do produce some events at every angular setting, then
they will be inconsistent.

The third assumption is that all the hidden variables are
relevant, meaning that they must each contribute to some
experiment N[ ¢;]. If they do not, they have no operational
significance whatsoever, and we have no means to verify
their presence.

We call models that fall within these restrictions “robust,”
and the proof will hold for such models. Without these limi-
tations, one can make models that are so extremely ineffi-
cient that, e.g., they can agree with quantum mechanics for
one or two measurement angles, and then declare that the
detectors will never fire in any other situation. Such a model
does agree with quantum mechanics where it works, and so it
is consistent, but it almost never works. So some restrictions
on inefficiency are inevitable, and we consider robustness to
be reasonable. The conditions for robustness are spelled out
in Egs. (5), (15), and (16).

From these three assumptions (robustness), we can prove
that each of the EPR functions can be factored into a product
of two terms, one depending on the angular setting and one
depending on the hidden variables involved. This factoriza-
tion enables one to prove that the entire EPR scheme is in-
consistent, as in the case for efficient detectors. Because the
theories based on the scheme are internally inconsistent, one
does not need an experiment to rule them out. They are self-
defeating. One only has to show that the quantum-
mechanical perfect correlations are correct. In this paper, we
start with the assumption that quantum mechanics works,
and prove that robust, local realistic, deterministic theories
do not work.

A priori, the possibility of factorizing these models, which
is crucial to our proof, is neither obvious nor intuitive. We
shall make it more plausible by first providing a set of con-
sistency conditions that are necessary if a particular model is
to be factorized, and then showing that these conditions in
fact hold quantum mechanically. Once we see that these nec-
essary consistency conditions are true, we can show that
they, together with robustness, are also sufficient to prove
factorizability of the models.

We note that we are assuming from the start that one has
a consistent mathematical model that is local, realistic, and
deterministic, and that can explain all the perfect correla-
tions, Eq. (1), in the experiment we are analyzing, so that
for these correlations it agrees with quantum theory, and it
prescribes all the functions, A(¢;,\;), D(¢4,\4), and
F(¢,,93,N\[,\y), that are necessary to do this. One cannot
obtain these functions A, D, and F, from experiment, since
the N are by definition “hidden.” Our goal is to prove that
even assuming such a model exists, if it is robust we can
show a contradiction—proving that any such model is incon-
sistent. As a step toward this contradiction, we will prove
that if there is a model that can assign a consistent set of
A(e;,\), etc., that satisfies Eq. (1), then one can also find a
model that is equivalent to it [i.e., that assigns the same
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FIG. 1. Schematic diagram of the creation of the two-particle
state.

values to A(¢;,\,), etc.] but at the same time is also factor-
ized, in the sense of Egs. (18), so that this factorization is a
property of the original model, even if it is very obscure in
the original model.

We assume the results and notation of paper I, and any
equations that we use from that paper will be denoted by an
I after the equation number [e.g., Eq. (4)]. We reproduce
here for convenience Fig. 1 from that paper, to refer to the
experiment we are describing.

In this experiment there are two independent downconver-
sions, one creating the pair of photons a-b, and the other the
pair c-d. Each of them undergoes a rotation through the
angle ¢;, and particles b and c enter a Bell-state analyzer
(BSA), which will annihilate them while detecting which
Bell state they were in. If the angles ¢; are set properly, as
one of the perfect correlation cases, this process forces the
particles a and d into a two-particle Bell state. In the actual
experiment, the Bell state of a and d is not determined, only
their polarizations, but this is sufficient to rule out locally
realistic, deterministic theories as an explanation of their ob-
served properties.

We also reproduce Eq. (141), which describes all the per-
fect correlations in this experiment, which must be described
by any classical, deterministic, realistic, local description of
the experiment,

Al@1 MF o n (@2, 03,0 M) D(@g N y) =1, =0, =,

ar
A((Pl,)\l)FK()\],)\4)(Q02’@3’)\1’)\4)D(¢4’)\4) == 1’ §K= * 5’

Le=@1— @+ kKN N (03— @) (L=60=m). (1)

Equation (1) records the product of the polarizations of the
four particles.

II. EXTENDING THE EPR ANALYSIS TO THE CASE
OF INEFFICIENT DETECTORS

These results hold in the case in which the detectors are
100% efficient, which means that the functions A(¢@;,\),
D(@4,N\4), F (@2, 03,N,\4), and x(N\;,\,) exist according to
the EPR postulates, and are equal to =1 for every value of
their arguments, which in turn means that every one of the

PHYSICAL REVIEW A 78, 022111 (2008)

four photons that is generated in each event is counted at a
detector. In paper I, we showed that this situation, given by
Eq. (1), is inconsistent. Now we shall assume that this 100%
efficiency is not necessarily the case, but rather that the par-
ticles may reach their detectors and not be counted.

This introduces a complication into the argument since
the existence of the functions A, D, «, and F depends criti-
cally on the EPR postulates. However, if the particle is not
always counted, then one no longer has the one-to-one cor-
respondence between predictability and reality needed to de-
fine an element of reality, and therefore completeness. None-
theless, if we are considering a realistic, deterministic model,
there is a natural extension of the EPR argument to cover this
case.

In any experiment where the conditions for a perfect cor-
relation are met, namely where {,=0, * 72—7 =+ ar, if we suc-
cessfully detect three of the particles in a given event, there
are only two possibilities for the fourth particle. The first is
that we detect it, in which case we can predict in advance
what its polarization will be. If this happens to be particle a,
say, we can say that in this case A(¢;,\;) exists, and has the
value *1, which was determined when the particle was cre-
ated. The second possibility is that it passes through its de-
tector, but is not detected. (That it does pass through the
detector is a consequence of energy and momentum conser-
vation, and is actually an element of reality.) But because it
is not detected, it has no further effect on the experiment, and
we can consistently assign to A(¢;,\;) the value A=0.

In a deterministic theory, we can assume that this value
was assigned to the particle when it was created. In other
words this photon, with these particular values of \| and ¢,
was destined at its creation not to be detected. The alterna-
tive is that the particle is not recorded simply because the
detector is inefficient. It counts only a certain percentage of
particles impinging upon it, independently of any state vari-
ables \;, and angles ¢;, that may determine the properties of
the particles. This case is conceptually rather simple in that
one may then merely consider those particles that are
counted, knowing that one is counting a fair sampling of all
the particles that impinge upon the counters. Then the out-
come is independent of the properties of the interaction of
the counters with the particles, except for random efficiency
effects, which will not prejudice any results one might obtain
in the case of 100% efficiency, and one can apply Bell-like
theorems in this case. We will not be concerned with this
case in what follows. We are concerned with a deterministic
theory, for which no random sampling assumptions need be
made. This case is more general than the stochastic case
mentioned above, since a deterministic theory can be mod-
eled to duplicate the results of a stochastic theory.

One may well question whether what we have left after
extending the EPR theory to inefficient counters can truly be
called an “element of reality.” The answer is definitely “yes,”
because one must remember the motivation for introducing
the term. Since after making a measurement one can predict
a property of the particle without in any way interacting with
it, then according to EPR we cannot have affected this prop-
erty, and so the property must have existed before we made
the measurement. Thus this is a true, objective property of
the particle that it must have possessed since it was created,
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or at least since it last interacted with another particle, and
hence the designation “element of reality.” This argument
still holds in our situation since, while we cannot predict
whether it will be detected, we can predict this property pre-
cisely, if it is detected. Thus the particle must either possess
this property beforehand, or it must be determined before-
hand that it will not be detected. In either case, the existence
of the property does not depend on the measurement, and so
it is an objective element of reality.

Everything we have said about particle a also applies to
particle d. So the functions A and D are to be considered as
deterministic functions representing instructions to the par-
ticle not only to have a particular polarization if it is counted,
but also to determine whether the particle is to be counted or
not. Specifically, we will amend the definitions of the func-
tions A and D in the inefficient case to read

A((P]’)\l)z * 1’0’ D((P4’)\4)= * LOv (2)

In Eq. (2), no limits are placed on the functions, except that
we will demand the consistency condition that the product of
all the functions agrees with the quantum theory results for
perfect correlations whenever all four particles are actually
detected. The existence of these functions extends the con-
cept of completeness to the case of inefficient counters.

The situation for particles b and ¢ is similar, but a little
more subtle. These particles are not counted separately, but
as part of an entangled state. In our experiment, particles a
and d are individually counted, and so we do not learn the
value of k. However, we do not have to run our particular
experiment. We could have instead combined particles a and
d at a Bell-state analyzer (BSA), measuring their Bell state.
(See the experiment depicted in Fig. 2 of paper 1.) Such an
experiment would reveal the value of the functions « and G,
the equivalent of F,, but for particles a and d. Then the value
of the function F', would be known. Since the particles b and
¢ have no information as to whether particles a and d will be
detected separately, or combined into a Bell state, we must
assume that the latter possibility is taken into account in the
function F,, so that the function x(\;,\,) must be assigned
at the outset. (The details of this argument are in paper I.)

There is a further point to be made concerning particles b
and c. When they meet at the BSA, information becomes
available from both hidden variables, A; and A4, and this
information may indicate a possible violation of Eq. (4I), and
so trigger an included instruction that one or both of the
particles should not be counted. So their combined effect can
be rather subtle. Nonetheless, the output of the BSA is a Bell
state whose properties obey the EPR criteria for elements of
reality when both particles are detected, so the situation for
the function F, becomes similar to that for the other two
functions, except that it is determined by both the hidden
variables \; and A,.

As in the case for the functions A and D, if the counters
are not 100% efficient, the function F' can assume the value
0, when the measurement does not reveal the Bell state of
particles b and ¢ (possibly because the particles are not both
counted). Therefore, for F, as for A and D,
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FK(()D27()D37)\13)\4) = i 1’0 (3)

Here, the =1 values represent the product of their polariza-
tions. In all cases, the situation at the detectors will have
been deterministically decided by a set of instructions set up
when the particles were created, but which may be flexible
enough to alter the particle’s behavior in response to any new
information available when both particles arrive at the BSA.

As mentioned earlier, we will also be guided here by a
further assumption that while the counters may be inefficient
for various reasons, they will not violate the perfect correla-
tion results of quantum mechanics, when all particles are
detected. This has the nontrivial consequence that whether or
not all the particles are counted, Eq. (1) becomes

A(QDI’)\I)FK((PZ’ ¢3’)\17A4)D((P4’)\4)

1 orO0, (=0, xm,
“l-1or0, ===
- or v, k= — >
2
k(NN = £ 1. 4)

For 100% efficient detectors, this set of equations is the same
as Eq. (1), which we have shown in paper I to be inconsis-
tent. But if the product can sometimes be 0, then the situation
is no longer apparent, and it may or may not be possible to
satisfy Eq. (4). We shall show in Sec. IV that for the class of
robust models, no matter how inefficient the detectors are,
Egs. (4) are incompatible with any local, realistic theory con-
sistent with our assumptions.

The perfect correlations, Eq. (4), only hold for certain
values of {,. However, in the factor A(¢;,\;), both ¢; and \;
can be independently varied, and similarly for the parameters
@4 and N4 in the factor D(¢@4,\4). This is also true for the
parameters in F(@,,®3,\,\s). The perfect correlation re-
strictions, e.g., to {,=0, represent a restriction on the vari-
ables in Eq. (4). For other values of {,, the right-hand side of
the equation exists and can take any value (*1,0).

In order to study the effect of detector efficiency more
carefully, we rewrite Eq. (4) as

A(@ N)F (€2, 03, M 1,M4) D(@4,\4)
= AA(QDIa)\l)AFK((PZ,(103,)\1v)\4)AD(§D47)\4)7 «=0, *m,

A(@ N)F (2,03, N1, N4)D(@4,\4)

o
== AA(QDI’)\I)AFK(QDZ’ @3’)\1’)\4)AD(<P4’)\4)’ gk == 57

A(oin) 1, |Al=1, )
AP, N ) = O, |A|=0,
Ay (oroa i) =1 Fil=1.
F P2 P 1 ) = 0, |F=0,
A(oh) 1, |D|:1,
D\Pa,Ng) = 0, |D|=O

022111-4



BELL THEOREM... . II. INEFFICIENT DETECTORS

The functions Ay, Ap, are nonzero when their respective de-
tectors fire, detecting a particle; the function A F, is nonzero
when the Bell state and polarizations of particles b and ¢ are
detected; and the product AAAFKAD=1 when all detectors
fire, corresponding to the registering of an event. The func-
tions A merely define the range over which the functions A,
D, and F, are nonzero, and numerically they are merely the
absolute values of these functions. They obey the relations

> AD=|D

s

AA=|A|’ AFK=|FK

Q+(¢1,¢2,<P3’<P4§)\1,)\4)

(A1 \y) €
Q—(@l’ P2, P3, @4;)\]’)\4)

Thus (), contains all those points (), and )_ for which all of
the detectors fire, leading to the knowledge that particles b
and c are in a definite Bell state, and that particles a and d
have a specific polarization. Below we shall work with the
case k=+1, although a similar argument could be made for
the case k=-1.

Let [¢y,¢,,®3, 04| represent an experiment where the
four angles ¢; are defined by the brackets. Then for a locally
realistic interpretation of the experiment, define y)\lN[(p,-] as
the outcome of this experiment (namely, +1,0, or —1) for
one event, produced by a particular value of the hidden vari-
ables (\|, \4), so that

N L@l =A(@LN)F (@2, 03,0, M)D(@4Ny),  (8)

regardless of whether {,=0 or not. Then the number of
events that will be recorded by all the detectors, i.e., events
in Q, will be

s

1
Nle]= _Nof J d)\ld)\4pl(7\1)P4(7\4)|’)’>\ A [¢:]
2 Ay eQ, e
©)

where N, is the total number of events generated that would
be counted if all the detectors were 100% efficient, and the
pi(\;) are positive semidefinite weighting functions, such that
Jd\;pi(\;)=1. The % comes from the fact that only half the
total counts are involved, namely those with x=+1. [We
note that the integral defining N,[¢;] does not factor into
separate integrals over \; and A4, because presumably,
Q,(\,\,) does not.]

Quantum theory predicts that N+[<p,-]:%17N0, depending
on the overall efficiency # of the detectors, which should be
the product of the efficiencies of the individual detectors, and
n does not depend on the ¢;. Explicitly, we have from Eq.
(41) for the quantum case, for photons,
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Aj=As Af =Ap, AL=Ap,
AAA=A, FKAFK=FK’ DAD=D,

A*=A,, FK2=AF,<’ D*=Ap, (6)

and again, the functions A, D, and F, can take the values
+1,0 [see Egs. (2) and (3)], while the A’s are restricted to
+1,0. We shall use these functions in the next section. For
notational convenience, we define the set (), by

if K()\l,)\4) = +1 and AAAFKAD= 1,

7
if K()\l,)\4)=—1 and AAAFKAD=1' ( )
[
P(Hy Hy, by,0) = PV, Vi 30) = P(H o Vs i)
_ 1
= P(Va’Hd’ l/lbc) = g COSZ §+’
P(Ha’vd’ ¢Zc) = P(Vu’Hd? ¢Zc) = P(Ha’Hd? lﬁl:c)
N
=P(V, Vi) = 3 sin” £, (10)

where P(H,,V;,,.) means the probability for finding that
particle a has a horizontal, and particle d a vertical polariza-
tion, and particles b and c¢ are in the Bell state i, etc. The
sum of these eight probabilities is only % because Eq. (10)
only represents the case where we have ¢, and ;. (corre-
sponding to the k=+1 case, for a local, realistic theory).
[Also note that in the case of spin-1/2 particles, in Eq. (10)
and below in Eq. (11), read 1 for H, and | for V.] In the
quantum case if (as in the original experiment) we only
count states for which the BSA gives i, the singlet state,

N+(d,;ca {+) = nNO{[P(Ha’ Vd’ l//;L) + P(Va’Hd’ l//l_n)]
+ [P(Ha’Hd7 ‘ﬁ;c) + P(Va’ Vd’ lﬂ;c)]}

1
—471 0>
E. ()= 7No _ -
+.qu ‘ﬂbcvé;) = N+(¢; -’g+){[P(Ha’Hd’ lﬁbc) +P(V,,V,, ‘ﬁbc)]
- [P(Ha’vd’ l//;c) + P(Vade’ l//;c)]}
=-cos 2Z,, (11)

where E, ,,(j,..{,) is the quantum expectation value of the
product of the polarizations of the four particles, given that
the middle two are in the singlet state. In the classically
realistic case, this would be
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f f AN dNapi (M) pa )Y ]
o\ )\460 JFo=-1

+ class. [(Pl
f f D0 s
QNN eQ L F =—1

(12)

where the restriction to F,=—1 is to the singlet state, ¢/~ [see
Eq. (10D)].

We are trying to show that deterministic models cannot
reproduce the results of quantum mechanics. In order to
make that possible, we have required three overall condi-
tions, which are satisfied by quantum theory, that should also
be satisfied by any candidate model, even before we seri-
ously examine the model. The first of these considerations,
as we have mentioned, is that when all four particles are
detected, and the result is a perfect correlation, so that quan-
tum mechanics gives a definite result 100% of the time, then
the classical model must yield the same result. Otherwise it
fails in its basic task, namely to provide an alternate expla-
nation of the quantum result. For the second condition, note
that if we examine Eq. (4I), when one measures only the
cases F,, for the results at the central counters b and c, one
finds that

1
N, =Ny 01,02, 03,021 + N[, 01, €2, 03, 04] = 77N0

(13)

for any set of angles ¢;, where N, is the total number of
events, whether detected or not, and # represents the com-
bined efficiency of the four detectors. Thus

N, @1, ¢, 03, ¢4] 70 for any value of the ¢;. (14)

We shall either take it as a blatant contradiction of quantum
mechanics, sufficient to rule a model out, if we can show that
N.Lo1, @2, 03,04]=0, for some value of the ¢;, or equiva-
lently that the model is not worth serious consideration.
(Similar results hold for N_.) This is weaker than the quan-
tum condition, Eq. (13), as it merely requires that some
events take place. It follows as a consequence of Eq. (14)
that

for every set ¢, there exists some (Aj,\,), such that

AA(QDI’)\I)AF+((|D2»§D3’)\Iv)\4)AD(QD4’)\4) # 0. (15)

Otherwise, N.[ ¢, @5, @3, ¢4]=0, in violation of Eq. (14).

Thirdly, we shall also impose one further operational con-
dition on the \’s, namely that they be relevant to the calcu-
lation of the N,. By this we mean that

for every \,, there exists some value of A4, and some set

@;, such that
AA(<P1,7\1)AF+(<P2, ©3. . ) Ap(@sNy) # 0;

for every A4, there exists some value of A\, and some set

¢;, such that
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AA(¢1’)\1)AF+(‘P2s903’)\1’)\4)AD(§D4’)\4) #0. (16)

If Eq. (16) were not true, then for that value of \; or that
value of A4, there would be no events N,[¢;], for any set of
angles, and so that value of \; would never produce a count
in any experiment. One could then proliferate values of \;
whose only effect would be to lower the overall efficiency of
all experiments, and since their presence could never be de-
tected, they would have no operational significance.

These three conditions, Egs. (5), (15), and (16), are suffi-
cient to prove that the functions A, F, and D can each be
factored. We consider these three conditions, viz., that the
model does not disagree with quantum theory when all the
detectors count, that for every set of angles there are some
counts, and that all the \’s are relevant, i.e., that they lead to
a count at some angle, to be a reasonable minimal require-
ment for any deterministic model. We call any model that
satisfies these conditions robust. Our proof will hold for such
robust models, and we will show that they are inconsistent,
i.e., they cannot do what they were set up to do, namely
reproduce the perfect correlations of quantum theory.

III. FACTORIZATION OF THE FUNCTIONS

We will show that for robust models the functions A, F,
and D in Egs. (5) each can be factored into a product of a
function of their angles times a function of their hidden vari-
ables. This factorization specifically depends on there being
two independent sources, meaning that the two original
downconversions were created by independent lasers, so that
the hidden variables, \; and A, are truly independent. (This
statement has no meaning within quantum theory.) It is valid
regardless of whether one has efficient or inefficient detec-
tors. This result is in fact the central theorem of the paper.

It will be convenient to write the functions in the follow-
ing form. We can write

A(UZ’M) = a(a’hl)AA(a,M),
D(a,\y) =d(a,\)Ap(a,\y),
Fi(a’7ﬂ’)\l’)\4) =fi(a’B7)\19)\4)AFt(a’B’)\17)\4)7

ala,N)=*1, dlan)=*1, fla,BN,N\)=*

Ay=1,0, Ap =10, Ap=1,0, (17)
where the a(a,\,), d(a,\,), and f(a,B,\;,\s) represent
the value of A, D, and F,, while the A’s define their range,
i.e., whether they equal O or not. If any of the A’s equal 0, the
corresponding functions a, f,, and d are for the moment
ambiguous.

Our factorization will take the form

A(Q,M) = a(a)u()\l)AA(a”)\l),

D(B,Ny) = a(Bv(\y)Ap(as\y),
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FK(CV,,B’M’M) = a(a)a(ﬁ)”()\l)U()\4)AFK(CV’:8’)\17)\4),
(18)

where a, u and v, ==+ 1, while A=0, 1.

If the function A(a,\;) is to be factorizable as in Eq. (18),
then there are two key consistency relations that must be
satisfied, which are suggested by the form of Eq. (18). The
first is

if A(a,\;) =a(a)u(\;), and D(B,\4) =a(B)v(\y), then

A(a,N))D(B,\y) = a(@)u(\y)a(B)v(Ny)

=A(B,N)D(a,\y), or0,

A(a’)\I)A(B7)\1)D(a’)\4)D(B’)\4)= 1s0 (19)
The second consistency relation is

if A(a,\;) =a(a)u(\;), then

A(a,NDA(B. ) = a(a)u(\)a(Bu(N)

=A(a,\)A(B,\;), or0;

A(aa)\I)A(Q’A{)A(ﬂ’)\l)A(IBJ\{) = 1’0

and similarly for D(a,\,). (20)

The actual perfect correlations, Eq. (4), imply that these
relations are satisfied. (We shall restrict ourselves to the case
k=+1. There is an equivalent proof for the case xk=-1.)
Consider, whenever there exists an event

A(a,)\])F+('y,y,)\])\4)D(a,)\4): lv §+=O- (21)
If there exists another event,
A(Ba)\l)F+(’y» '}’,)\1)\4)D(,3,)\4)= 1’ §+=O’ (22)

for the same 7, A, and A\, then by multiplying Egs. (21) and
(22), we get Eq. (19). If eq. (19) holds for two different
values of A\,

A(as)\l)A(Bv)\l)D(a’)\4)D(ﬂs)\4) = ls

A(a,NDA(BN)D(a,N)D(BA) = 1, (23)

then by multiplying both Egs. (23) together, we get Eq. (20).

A very similar proof applies to the function D(a,\4), SO
that Egs. (19) and (20) also hold for the functions D.

The form of Eq. (18) also suggests a number of consis-
tency relations for the function F,. We write down a few of
them, although many variations of these exist, and any con-
sistency relation suggested by the factorization in Eq. (18)
must be true in any model, or else the factorization would be
inconsistent. For example, the following must all be true, if
the functions #0:

F+(CY,B,)\1,)\4) :F+(B,a,)\],)\4),
F+(a’ﬂ’)\lrk4) =F+(a’ 77>\[7)\4,1)F+(B7 77)\19)\4)F+(55 57A{’)\4,t)7

F+(a’B’)\17)\4)F+(aa ')’,)\1’}\4,1) =F+(5’B’)\i’)\4)F+(5’ Y7AI’)\£)5
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F+(7579)\1’)\4)F+(5953)\{,)\4,1) :F+(a,ﬂ7)\19)\4)F+(avﬁs)\iv)\z,¢)9

etc. (24)

These are representative of the various relations that exist.

We will not bother to prove all of the relations in Eq. (24),
but point out that all such relations are true. The way to
prove them is to insert the appropriate A and D functions,
and use Egs. (5), (19), and (20). We will illustrate the proce-
dure with the top equation of Eqs. (24),

A(a,)\])F+(a,ﬂ,7\|,)\4)D(ﬂ,)\4) = 1,

A(B’)\I)F+(ﬂ’a’)\l’)\4)D(a97\4): I. (25)

Then, multiply the two Egs. (25) together, and use Eq. (19)
to eliminate all the A’s and D’s. In this way one proves that
all the consistency relations suggested by the factorization in
Eq. (18) hold, when the functions #0.

That Egs. (19), (20), and (24) hold guarantees that when
one is able to assign values to the functions a(a), u(\;), and
v(\,), one will not arrive at contradictions. We emphasize
that Egs. (19), (20), and (24) are consistency conditions that
the functions A D, and F must satisfy if they are factorable.
They are not a proof of factorizability. However, we can use
them to construct a factorization that is necessarily consis-
tent.

One should note at the outset that the factorization will
never be unique. Even in the case of 100% efficiency of the
detectors, one can change a(a) to —a(a@) and u(\;) to —u(\,)
everywhere, without affecting A(a,\;), which is just the
product of the two functions. As the efficiency of the
counters becomes very low, there will be subsets S:(a,\;) of
the angles and hidden variables that do not interact with
other subsets S’:(a’,\|) [meaning that A(a,\)A(a’,\})
=0 for all (a,N\) €S, and all («',\]) eS’], and one can
change signs within each of the subsets separately. So as the
efficiency of the detectors decreases, the nonuniqueness of
the assignment becomes greater. Ultimately, for very ineffi-
cient counters there will be functions A(a,\;) for which
A(a,\,)# 0 for only one value of \;. We are only interested
in showing that one can assign a consistent factorization to
any model of these Bell functions. The lack of uniqueness is
irrelevant, and is in fact guaranteed by the very designation
“hidden variables.” They can be used to model the behavior
of the system, but they are not by their very nature directly
accessible to measurement in a one-to-one fashion.

There is another extremely important property that both
a(a,\) and d(B,\,) exhibit, namely that robustness deter-
mines that they are defined for all values of a, A\, and Ay,
even though originally it appeared that they were defined
only when A4, Aj, and Ay were not zero. It follows from Eq.
(15) that for every value of « there is some value of \; for
which A(a,\;)#0, so that in Eq. (18) a(«) is defined for
every value of «. But for each value of «, only some values
of Ny and A4 occur for which A and D #0. It also follows
from Eq. (21) that for every value of \; there is some value
of a for which A(a,\;)#0, and so it follows that in Eq.
(18), u(\;) is defined for all \,. So robustness extends the
definition of a(a,\;) beyond the region where it was origi-
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nally defined (namely where A, # 0) to all regions of (a,\;),
and it is never=0. It is only A,(a,\;) that can make
A(a,\)=0 (and similarly for D). This will never lead one
into trouble however, because of the consistency conditions,
and in experiments one only needs regions where A, and
Ap #0. These same remarks also follow for the function F.

In order to prove that our functions factorize, we start
with the equation

A(a’)\l)F+(:8nB’)\l’)\4)D(a,)\4) = 1,0 (26)

For a given value of « and S, the right-hand side of Eq. (26)
must=1 for at least one set of (A, \4), according to Eq. (15).
If one takes all values of « for which the right-hand side
=1, one sees that

A(a',)\l)D(a",)\4)=A(a',)\1)D(01,7\4) (27)

for all such &', so the product is independent of «. There-
fore, one can take one particular value of «, «, and set

Alag, N)D(ag,Ng) = w(h,Ny) = u(N)v(Ny). (28)

Since the left-hand side factors, the right-hand side must
also. In a similar way, Eq. (26) does not depend on 8. So one
may take one value of B, By, for which F(B,8,\,\4) #0,
and one has

F(Bo: Bo:-MioNg) = u(N)v(Ny). (29)

One may extend this to other values of \; and \; by
writing

A(ag,\)) =u(\})  for A(ap,\}) # 0,

D(ag,\y) =v(Ny)  for D(ag,\;) # 0. (30)
Finally, one can extend it to different values of a by writing

A(a,\]) =a(a)u(\]) for A(a,\]) # 0,

D(a,\y) =a(a@)v(\y) for D(a,\};) # 0. (31)

Remember that the mathematical model gives A(a,\;) and
D(a,\y), so one is defining the functions a, u, and v by this
procedure. One extends this to F' by using

A(a,)\1)F+(a,ﬁ,)\l,)\4)D(B,)\4) = l, AF+D * 0,

Fi(a, BN, Ny) = al@)a(Blu(N v (Ny). (32)

How far can this procedure take you? It will take you to
all the points in the set of points S;(¢;, ®>@3, ®4,N|,\,) that
can be reached starting from our initial point above, by all
A(a,\;), or D, or F#0. They are reached, for example, by
starting from A(ap,N;g) #0, and extending it to all
A(ag,\;) #0, for a given «p, then to all «; such that
A(a;,N\ ;) #0, compatible with all the \;;, then to all X\,
such that A(a;,\,) # 0, etc.

When the set S, is exhausted, there will be other sets S,
S5, etc., whose points are all disjoint from each other, such
that §;NS;=0. Each of these sets can be self-consistently set
up, independently of the others. Altogether, for robust mod-
els, they must span the entire space of all angles and N\’s.
There will be no inconsistencies in assignments because of
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the consistency relations. But the different subsets S; are not
truly independent of each other. This is because, as we have
noted, there is indeed a complete overlap caused by the ro-
bustness and factorization.

As an example showing that a(a,\,) is defined every-
where, even in the region where A(a,\;)=0, consider the
consistency condition, Eq. (20), in the case where, say, the
last term equals O,

A(B\)) =0, (33)
while the first three terms do not. Then
A(a,NDA(a, NDA(B ) = a(@)u(N)a(@)u(N))a(B)u(\;)
=a(B)u(\), (34)

even though A(B,\"|)=0. So the perfect correlation condi-
tion, Eq. (5), and the conditions of Egs. (15) and (16), to-
gether are sufficiently strong that they define counterfactu-
ally what the value of A(8,\|) would be if the detector were
to fire, even when it does not fire.

Once again we emphasize that if three of the detectors
fire, and £,=0, we can predict with 100% certainty what
value the fourth detector would have if it fired. So this value
is an EPR element of reality, represented by the functions a
and u. What we cannot predict is whether it will fire, al-
though in a deterministic model that fact will be determined
in advance, and that is the role played by the A’s. We note
once more that the deterministic model itself predicts
A(a,\,), as well as D and F. Because of this, it follows that
our “independent” sets S; are not truly independent, and their
values for the functions a, u, and v must be compatible with
those of the other regions, S » J 7 i. However, because of the
consistency relations, each set, S;, is either totally correct, or
totally incorrect, requiring all its signs to be changed.

In order to insure the consistency of the assignments be-
tween the sets, S;, we will use a relationship that we will
prove in the next section, namely

for ) — @, + @3- ¢4 =0.
(35)

a(ep)a(@y)alez)ale,) =1

Then, for example, if ¢, comes from the set S,, while the
other three ¢’s come from the set S;, one can use this to
determine a(g,). If one has made the wrong choice, one has
to reverse all the assignments in the set S,. Once one knows
the a(¢@y4), one can use this to determine whether u(\,) is
correct, from u(\,)=a(¢4,\)/a(e,), and whether to reverse
all the u(\,). In this way, one arrives at a complete determi-
nation of all the a(¢,), u(\;), and v(\,), regardless of how
inefficient the detectors are.

The functions A, D, and F have no explicit dependence on
{,, and in fact, the value of {, is not available locally at any
of the detectors, or the BSA, as any of the ¢, can be arranged
to be suddenly switched, even after the detectors that are not
locally in the path of that ¢; have already fired. So , is a
nonlocal variable, whose value is uncovered only after all the
¢; are known, and this value then determines whether the
perfect correlation equations are valid in that individual situ-
ation. (A similar result holds for {_.) But the values of A, D,
and F, themselves, are locally determined by their argu-

022111-8



BELL THEOREM... . II. INEFFICIENT DETECTORS

ments. Their factorization, as given in Egs. (18), is a conse-
quence of the use of two independent sources, represented by
the independent hidden variables \; and A4, in performing
the VW experiments, and it holds for all values of ., not just
£,=0.

Although we have already noted this for other reasons, it
is also a consequence of Eq. (14) that in an equation like

Ala,\y) = al@)u(N)A (e, N ), (36)
we must have
ala) # 0, (37)
or else any experiment of the form
N a, ¢y, @3, ¢4]=0 for arbitrary ¢;. (38)
We can also conclude that

u(N) #0, v(\y) #0, (39)

or else any equation involving u(\;) will never contribute to
any four-particle event, or for that matter, any event at all,
and thus that particular value of \; will be totally irrelevant,
and can be dropped out of the range of the \’s. Thus the
restriction due to the inefficiency of the detectors shows up
only in the A functions.

Finally, we note that there is an issue of internal consis-
tency, that comes up in two situations, concerning the exis-
tence of the functions a, d, and f. The first such situation is
that if the detectors are extremely inefficient, we might find
that A(a,\;) # 0, but the product FD=0 in all cases. That is,
we might have

A(a,\,) # 0, but
A(a,)\1)F(C¥,B,)\1,)\4)D(ﬂ,)\4) = O,

F(a,BN N)D(BN) =0  for all B\,. (40)

In this case we might never have all the detectors except one
firing, and we would never be in the situation where we
could make a prediction of the value of any that might fire.
Therefore, the possibility arises for the model to have either

AlaN)=+1, or Ala\)=-1, (41)

in Eq. (26), so that one could never guarantee a perfect cor-
relation for A(a,\|) in any situation, which would certainly
violate our consistency conditions. However this ambiguity
cannot occur.

The reason for this is that the situation in Eq. (40) cannot
come about. If the product AFD=0, while A # 0, and if ei-
ther F or D # 0, then two of the functions would #0, and we
could predict the value of the third one, which must be con-
sistent with Eq. (10), and so its value would then be unique,
and our consistency condition would hold. The only way to
challenge this uniqueness would be if Eq. (31) held, and both

F(a,fN\) =0 and D(B\,)=0 for all B,\,.
(42)

But if Eq. (42) were true, then D(3,\,) would never contrib-
ute to any experiment of the form N,[¢,,¢,,8,8], for any
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N4, violating the condition of Eq. (14). So the ambiguity
implied by Eq. (40) never comes about. It is certainly pos-
sible for only one detector to fire (or none of them), but not
for all angles, as in Eq. (42). [Thus there is a limit as to how
bad the detectors can be. Otherwise, they can be so grossly
inefficient that they violate our conditions for robustness,
Eqgs. (5) and (14)—(16).] We have not explored the question
of how inefficient a model can possibly be, and still be ro-
bust.

The second situation in which it looks like an ambiguity
can occur that would destroy our consistency conditions for
factorizability is in the case where, say, A=0, while the prod-
uct FD # 0. Then, it would seem that the product FD could
be =1, and either would seem to be possible. But here too,
the choice is actually restricted. The problem is

A(a7)\l) =07 but F(“’B’)\I’A4)D(ﬁ’)\4) # 0.

IS F(a’ﬂl’)\l’)\i)D(ﬂl’)\é) =F(a’B’)\]s)\4)D(ﬁ’)\4)

for any B',\; for which F(a, 8’ ,\,\)D(B',\}) # 0?2
(43)

In other words, is the product FD ambiguous, or does it
always assume the same value for any case where it is #0,
even though the relevant A=0? We note that if A # 0, then

A(a,N\)F(a, B N, N)D(B' Ny =1

ifA#0 and FD # 0. (44)

So the ambiguity only occurs when A=0. But in fact, the
reality conditions determine that

F(a,B,N1,M4)D(B.\y) = a(@)a(B)u(N)v(Nga(B)v(\y)
=a(a)u(\y), (45)

even if A(a,\)=0, as in Eq. (34). Then Eq. (44) will obvi-
ously be true, so whenever the product FD # 0, it must al-
ways have the same value, which must be consistent with the
case when A(a,\;) #0.

IV. THE INCONSISTENCY OF INEFFICIENT
REALISTIC DETERMINISTIC MODELS

Once we have proven that the various functions that are
introduced by the EPR reality argument are factorable, one
can show straightforwardly that the scheme is inconsistent,
even for very inefficient detectors. An important thing to
note in what follows is that for any set of angles that yields
a perfect correlation, say {,=0, for which all detectors fire,

A(@,M)F (@02, 03N A )D(@g, N y) = 1,

Lm0 =@+ o3— s =0, (46)

both \; and A, drop out of this equation, i.e., the equation is
true for any \; and A4 consistent with that choice of the ¢;.
Within the subset of those values of the N\’s for which Eq.
(46) holds, the right-hand side of the equation is a constant.
For any set of angles consistent with
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A1, M) F (@2, 03,0, M) D( @4, N y)
= AA((P]’)\I)AFJr((P% @3,)\1,)\4)AD(<P4,)\4),

where £, =@ — @+ @3- ¢4 =0,

[a(qo,)u()\l)a(goz)u()\1)a(¢3)v()\4)a(go4)v()\4)
= 1AL (@1, M)AE (02,03, M. M) Ap(4, M)

la(e))aley)ales)ale,)
= 1A (@1 M)AE (02,03, 01X ) Ap(@s,Ny)  (47)

(The equations within [ ] mean that both sides of the equa-
tion are multiplied by AAA.) From Eq. (15), we know that
the product AFD # 0 for some value of \; and A4. So, since
there is at least one value of \; and A, for which AAAF+AD
=1, then the equation in brackets within Eq. (47) is valid for
all ¢; (consistent with £,=0), and we can write

a(epaler)ales)ales) =1,
where £, =@ — @+ @3- ¢4 =0, (48)

independently of \; and A,.
Now look at the specific set of angles

¢1=a_:8’ ¢ =a, (P3=ﬂ’ (P4=0’ (§+=0)’
a(a - Bla(@)a(Pa(0) =1,
a(B - y)a(Bla(y)a(0) = 1. (49)

The second equation of Eq. (49) follows by just relabeling
the symbols in the first equation. Multiplying these two
equations together gives

ala = B)a(B-y)ala)a(y)=1. (50)
If we let B be the average of a and vy in Eq. (49), we get

a+y

B=—""

a—y a—\ B B
a( 5 >a( 5 )a(a)a()/)—a(a)a(y)—l,

ala)=a(y). (51)

This equation is true because a*=1 for any angle. And so, a
is a constant, the same for any angle, which is an absurd
result. For example, from the second of Egs. (5), when an
event occurs, we have

w
A(‘Pl9)\l)F+(<P2’@3’)\1’)\4)D((P4’)\4):_ 1’ §+=E’

a(@l)a(@z)ﬂ(%)a(%) =-1, (52)

which cannot happen if all the a’s are the same. [We used
£,=0 in our proofs, but the factorizations, Egs. (18), do not
depend on this and are general for all values of {..]
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And so the whole scheme of assigning hidden variables
becomes self-contradictory. We take the result, Eq. (51), as a
reductio ad absurbum refutation of any robust deterministic,
realistic theory that attempts to explain Bell-type experi-
ments using the VW state, even with very inefficient detec-
tors.

V. NONPERFECT CORRELATIONS

An immediate extension of the above result for perfect
correlations is that the factorization will also be true for ex-
periments at arbitrary angles. We have proven that the func-
tions A, D, and F exist. The only difference, for arbitrary
angles, is that £, can assume any value between —7 and +7r.
However, it is still true that

Yl @il =A@ N )F (@2, 03, M1, M) D(@4,\4)
= a(<P1)u()\1)61(%02)61(@3)14()\1)0()\4)0(%)0()\4)

=a(e))a(@)al@s)aley) = + 1, (53)
since all the a(¢;) are equal. Therefore, from Eq. (12),
Eclass[QDi] =+ 1. (54)

Thus, any experiment at any angle will give the same result,
+1. This is a far more stringent result than one gets from the
Bell inequalities.

One consequence is that if one raises the objection to our
result that one can never be sure experimentally that one has
a perfect correlation, because one cannot measure the angles
accurately, it just does not matter. Our result is good at all
angles. So from an experimental point of view, one only has
to show that Eq. (54) is not true, regardless of the efficiency
of the detectors, and it will disprove any robust model of the
system.

VI. A SINGLE SOURCE VERSUS
TWO INDEPENDENT SOURCES

In Refs. [6-12], all their reasoning is quantum-
mechanical, and the specific question of whether the sources
of the downconversions are two independent lasers, or come
from multiple reflections of a single laser, is not important.
But in our arguments directly concerning the hidden vari-
ables, it is important that they be independent of each other,
in other words, that the two downconversions are performed
by independent lasers.

We would like to explicitly face the issue here of what
differences occur between the two cases, a single source vs
two independent sources, for the two sets of particles. If we
examine our proof in the 100% efficient case (in paper I),
which we gave for two independent sets of particles, and
adapt it to the case where both sets of particles come from a
single source, we have the condition

A((Pl’)\')FK()\)((P2’(PS’)\)D(()Déb)\): I, §K:O’

L= @1 = @2+ k(N (@3 = ¢4), (55)

where N stands for any particular assignment of hidden vari-
ables emanating from the source. From this it follows that
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A(@p, MF (@2, 03, M)D(@3,N) =1, (=0,
F . (©2,03,N) =A(¢2,N)D(@3,\),

A(QDI’A)A(@Zv)\)D((P%)\)D(QD&)\) = 17 (56)

and so the proof will go forward just as in the case with two
sources. Thus the same contradiction arises in both cases,
and the independence of the two sources is not needed for
100% efficient detectors.

In fact it turns out that one can make a simple model that
does satisfy Eq. (4) for detectors that are at least 50% effi-
cient, if the four particles, and therefore the \’s, are created
by a single source, rather than by two independent sources as
in the VW experiment. (In this model, the counters that de-
tect particles a and d are each 50% efficient, while the BSA
is 100% efficient, or other equivalent possibilities.)

However, any of the results that depend on the factoriz-
ability of the functions A, D, and F need two independent
sources, as one cannot usefully factor out the N in the one-
source equivalent of, say, Eq. (23),

A(a,\)F(y,v,A)D(a,\) = 1,0. (557)

[For example, one could have A(a,N)=ala—N\)u(N),
D(a,N)=a(a—N)v(\), and F=AD, even in the 100% case,
since a’=u’=v’=1.]

So all the results for inefficient counters need two inde-
pendent sources, to allow for factorization. For efficient de-
tectors, a single source is good enough. Of course all of this
discussion is meaningless quantum mechanically, but the dif-
ference is important if one is trying to model the system
deterministically.

VII. SUMMARY

Quantum mechanically, the singlet state produced by two
sources is the same singlet state as that which would be
produced by a single source. We believe that because one can
reduce the system down to a two-particle state and perform
two-particle experiments with it, we can legitimately refer to
our results as applying to a two-particle state. [In the stan-
dard two-particle Bohm type EPR experiments, one can
think of the decay that produces the singlet state as a “black
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box,” producing this state. Similarly, one can think of the
apparatus producing the VW state, the two downconversions,
the BSA and its associated detectors, and all the dials that
determine the angles of particles b and c, as a black box that
creates the entangled state of particles a and d. Because the
end result is a more complicated state (any one of the Bell
states, not just the singlet state), it is a more complicated
apparatus, whose output must be monitored, but it is still
physically separated from the two-particle experiment that is
performed on particles a and d, and so it still plays the role
of an isolated black box, defining our two-particle state.]
Thus, the entangled state of the particles a and d are a per-
fectly normal two-particle state, but because of the way they
were created, they obey our factorization theorem, and any
realistic, deterministic model of an experiment performed
with them will yield much more restricted results than those
of the usual Bell-type theorems, and will in fact be inconsis-
tent if they are robust.

To summarize our results, in a two-source experiment us-
ing the VW state, any robust deterministic, realistic, local
model predicts that every experiment will give the same re-
sult, independently of the angles set on the apparatus, flatly
contradicting a quantum-mechanical calculation. Further-
more, this result is independent of the efficiency of the de-
tectors, and it holds for detectors of any efficiency. (The
requirement of robustness limits how low the efficiency can
be. Of course at very low efficiencies, one has discrimination
problems experimentally, when the efficiency is down to the
same level as the noise, but that is not our concern here.) So
it would seem that deterministic, realistic, local theories are
inconsistent with quantum mechanics even in the case of low
detection efficiencies, without our having had to resort to any
random sampling hypotheses, provided they are robust,
which we consider a reasonable limitation.

ACKNOWLEDGMENTS

We would like to thank Professor David Mermin for sev-
eral suggestions in the earliest version of this paper, and also
Rainer Kaeltenbaek for uncovering a loophole in that ver-
sion. M.Z. would like to thank Marcin Pawlowski for ex-
tended discussions, and also to thank the European Commis-
sion for their support (Project No. 015848). The Austrian-
Polish collaboration is part of an OEAD/MNiSW program.

[1] D. M. Greenberger, M. A. Horne, and A. Zeilinger, preceding
paper, Phys. Rev. A 78, 022110 (2008).

[2] D. M. Greenberger, M. A. Horne, and A. Zeilinger, in Bell’s
Theorem, Quantum Theory, and Conceptions of the Universe,
edited by M. Kafatos (Kluwer, Dordrecht, 1989), p. 69; D. M.
Greenberger, M. A. Horne, A. Shimony, and A. Zeilinger, Am.
J. Phys. 58, 1131 (1990).

[3] A. Einstein, B. Podolsky, and N. Rosen, Phys. Rev. 47, 777
(1935). See also J. S. Bell, Physics (Long Island City, N.Y.) 1,
195 (1964). This article is reprinted in J. Wheeler and W.
Zureck, Quantum Measurement Theory (Princeton University

Press, Princeton, 1983). The paper is also reprinted in the col-
lections of Bell’s papers on the subject, J. S. Bell, Speakables
and Unspeakables in Quantum Mechanics (Cambridge Univer-
sity Press, Cambridge, England, 1987); and John S. Bell on the
Foundations of Quantum Mechanics, edited by M. Bell, K.
Gottfried, and M. Veltman (World Scientific, Singapore, 2001).

[4] T. Jennewein, G. Weihs, Jian-Wei Pan, and A. Zeilinger, Phys.
Rev. Lett. 88, 017903 (2001). The concept of entanglement
swapping was first introduced by M. Zukowski, A. Zeilinger,
M. A. Horne, and A. K. Ekert, ibid. 71, 4287 (1993).

[5] For a discussion of the low detection efficiency, random sam-

022111-11



GREENBERGER et al.

pling, and other loopholes, see, for example, M. Redhead, In-
completeness, Nonlocality, and Realism (Clarendon, Oxford,
1987); F. Selleri, Quantum Paradoxes and Physical Reality
(Kluwer Academic, Dordrecht, 1990); A. Shimony, An Expo-
sition of Bell’s Theorem, in Search for a Naturalistic World
View, Vol. II (Essays of A. Shimony) (Cambridge University
Press, Cambridge, England, 1993); and references within
these.

[6] The first two-particle proof, which held for only about 16% of
all cases, was given by L. Hardy, Phys. Rev. Lett. 71, 1665
(1993).

[7] Hardy’s experiment has been performed. See D. Boschi, S.
Branca, F. De Martini, and L. Hardy, Phys. Rev. Lett. 79, 2755
(1997); D. Boschi, F. De Martini, and G. Di Giuseppe, Phys.
Lett. A 228, 208 (1997); G. Di Giuseppe, F. De Martini, and
D. Boschi, Phys. Rev. A 56, 176 (1997).

[8] The first complete proof for the case of two-particles and four
observers was given by A. Cabello, Phys. Rev. Lett. 86, 1911
(2001).

[9] A. Cabello, Phys. Rev. Lett. 87, 010403 (2001).

[10] P. K. Aravind, Found. Phys. Lett. 15, 397 (2002).

[11]Z.-B. Chen, J.-W. Pan, Y.-D. Zhang, C. Brukner, and A.
Zeilinger, Phys. Rev. Lett. 90, 160408 (2003). See also Z.-B.
Chen, Y.-A. Chen, and J.-W. Pan, arXiv:quant-ph/0505178.

[12] Many of the results of papers [8—14] were previously arrived

PHYSICAL REVIEW A 78, 022111 (2008)

at by M. Pavicic and J. Summhammer, Phys. Rev. Lett. 73,
3191 (1994); M. Pavicic, J. Opt. Soc. Am. B 12, 821 (1995).

[13] A. Broadbent and A. A. Méthot, Phys. Lett. A 364, 357
(2007).

[14] Reference [13] talks vaguely of “Bob,” the observer of par-
ticles b and c in our case, as sharing his state with observer a,
“Alice,” and observer d, “Charlie,” but there is no such sharing
in our experiment. The photons are produced by two indepen-
dent downconversions and Alice, Bob, and Charlie are all pas-
sive receivers of this information. Bob receives a mixture of all
four Bell states. (We also could not prove the theorem with
him receiving only the singlet state, a condition which they
assume.) Furthermore, there are four independent angles of
rotation in our experiment, which rotate the polarization of
each beam, in ways not known to the observers in the other
beams, so that in our case their auxiliary experiments cannot
be done as they describe, since none of their players know the
axes the others are using. These rotations are crucial as our
chief result is to be able to separate the angular and hidden
variable knowledge. There is no counterpart to this in their
experiment. (Even in the original EPR experiment, leaving out
the angles leads to a trivial explanation by hidden variables.)
As an afterthought, they discuss the case in which these vari-
ables are in continual long-range contact, but this defeats the
entire locality motivation of EPR.

022111-12



