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We consider an entangled two-particle state that is produced from two independent downconversion laser
sources by the process of “entanglement swapping,” so that the particles have never met. We prove a
Greenberger-Horne-Zeilinger type theorem, showing that any deterministic, local, realistic theory is inconsis-
tent with the quantum-mechanical perfect correlations for such a state. This theorem holds for individual
events, with no inequalities, for detectors of 100% efficiency.
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I. INTRODUCTION

We would like to produce a Bell’s theorem �1� for two
entangled particles that uses a Greenberger-Horne-Zeilinger-
type argument �2�. The argument applies to the case where
the two particles have a perfect correlation, meaning that if
one knows the outcome of a measurement on one of them,
one can predict the outcome of a corresponding measure-
ment on the other with absolute certainty, so that an Einstein-
Podolsky-Rosen �EPR� element of reality �3� exists. Another
feature of the argument is that it involves no inequalities, and
discusses only perfectly correlated states. Because of this,
one does not have to integrate over the internal hidden vari-
ables, and one can deal directly with the hidden variable
models, and show that they cannot reproduce the quantum-
mechanical results.

One might be skeptical that such an argument can exist,
since in the usual Bohm-Bell analysis �4� for two particles in
a singlet state, one can reproduce the perfect correlations
with a simple classical model �5�. But that is because of the
way that the singlet state is usually produced, namely
through a single decay event that results in the simultaneous
creation of both the particles.

However, a different way to produce two-particle en-
tangled states has recently been successfully shown to work,
namely the method of “entanglement-swapping” �6�. In this
method, two pairs of particles, each pair in a singlet state, are
independently produced. Then one catches one particle of
each pair simultaneously �which correlates them into what
we call a “cross-entangled” state�. This automatically corre-
lates the other two particles, which have never met, into an
entangled state. This is the “entanglement-swapped” state.
This entanglement-swapped state is quantum-mechanically
like any other entangled two-particle state, but from the point
of view of classical local reality, it is a very problematical
state, since two independently produced particles that have
never met are suddenly thrown into an entanglement, even
though they have no shared history. We will show that the
situation is strange enough so that one cannot reproduce the
quantum perfect correlations of the entanglement-swapped

state with a classical, deterministic theory. While the original
experiment �6� detected the cross-entangled pair of particles
in a singlet state, in principle we can detect any of the four
Bell states and our argument uses all four of the Bell states
�7�, rather than merely the singlet state.

Others have produced arguments very similar to ours, in a
different context �see, for example, the very cleanly written
papers of Hardy �8,9�, Cabello �10,11�, Aravind �12�, Chen
�13,14�, and Pavicic and Summhammer �15��, rather than in
a direct Bell-type experiment. In their arguments, the analy-
sis is quantum mechanical, and they do not directly analyze
hidden variable models. Of the papers we quote, only Hardy
does not use any inequalities. But in his discussion, he uses
results that “sometimes” occur, so they do not keep track of
the individual hidden variables. His results also do not per-
tain to the perfect correlations of completely entangled
states, and the experiments confirming his results �9� use the
“fair-sampling” assumption. His paper also does not use en-
tanglement swapping. So his results are in some sense
complementary to ours. In the other papers, even though two
downconversions are used to make the four photons, in the
quantum analysis one does not have to worry about whether
they are produced by two independent lasers, or by a split
beam from one laser. But in our classical analysis, it is very
important that the two sets of hidden variables, one produced
by each downconversion, are inherently independent, and so
they must be produced by two independent laser sources.
There is a large difference, classically, between one or two
totally independent sources, although it does not show up in
a discussion involving 100% efficient detectors, where we
also do not need to exploit all the symmetries available clas-
sically from the independence of the two-source state we use.
In the following paper �16� �referred to as paper II�, we shall
use the total independence of the sources to show that one
can rule out realistic local theories even if one uses detectors
of low efficiency.

Our papers differ also in kind from the papers we quote
above in that those papers are interested in showing that an
experiment can rule out various types of theories built on
local realism. We are interested in showing that the local,
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realistic theories themselves are internally inconsistent, in
the sense that they cannot be constructed to reproduce the
quantum results for all perfect correlations. These realistic
theories are inconsistent and cannot reproduce the quantum
results, even in just the perfect correlation cases, which are
where the EPR elements of reality argument holds. All indi-
vidual values of the hidden variables yield definite EPR ele-
ments of reality which, taken together, produce results that
cannot be fitted together to explain the quantum results for
perfect correlations. These inconsistent results occur at the
level of the individual variables, and do not have to be inte-
grated over. So there is no need for “random sampling” type
assumptions.

In this paper, we consider only 100% efficient detectors.
In both papers, we are concerned with individual values of
the hidden variables, and in paper II we show that such re-
alistic theories are inconsistent even for arbitrarily low effi-
ciencies, provided the theories are “robust,” which we will
explain in detail in paper II. �Robustness requires that even
for a very low efficiency realistic model, one can detect some
events at every polarization angle setting. Otherwise there
will be angles at which nothing can ever be observed. One
cannot prove the inconsistency of a theory that predicts that
no events are ever observed! We consider robustness to be a
reasonable requirement.� So as long as one is willing to con-
cede that quantum mechanics works, and that all the perfect
correlation cases predicted by quantum theory hold true in
the laboratory, then because these realistic theories are incon-
sistent, there is no experiment that needs to be done to rule
them out. They are self-defeating.

Some people would argue that we �and Refs. �10–15�� do
not have a true two-particle state since we start with a four-
particle state and reduce it by subsequent measurements. It is
true that one needs all four particles to prove the existence of
the various elements of reality present in the two-particle
state. But once this is done, one can perform and analyze
EPR experiments with this two-particle state. An argument in
defense of calling it a two-particle state is presented in paper
II.

Recently, a paper of Broadbent and Méthot argues �17�
that one can explain entanglement swapping experiments by
hidden variables. Their argument does not apply to our situ-
ation, as is explained in paper II, Ref. �14�.

In this paper, we first describe the entanglement swapping
experiment we will be analyzing, and examine it quantum
mechanically, noting all the perfect correlation cases that
arise. Then we show how a hidden variable experiment will
describe the same experiment, and derive a formula, Eqs.
�15� and �17�, that describes all the perfect correlation cases
from a local, realistic point of view. Finally, we show that
this formula is inconsistent, so that no such hidden variable
model can describe the perfect correlations, in the case of
100% efficient detectors. The case of inefficient detectors is
more involved, and requires more elaborate machinery than
we develop in this paper, which will be presented in paper II.

II. A QUANTUM ANALYSIS OF THE EXPERIMENT

The Bell states of a two-particle system are a particular
set of four orthogonal entangled states that form a complete

set of states for the system. For a two-photon system, they
are

��+� =
1
�2

��H1��H2� + �V1��V2�� ,

��−� =
1
�2

��H1��H2� − �V1��V2�� ,

��+� =
1
�2

��H1��V2� + �V1��H2�� ,

��−� =
1
�2

��H1��V2� − �V1��H2�� . �1�

Here the subscripts 1,2 refer to two different momentum
states for the different photons. The notations ���� , ���� in
Eq. �1� represent the conventional labeling of each of these
states. With present technology, by making suitable unitary
transformations between the four Bell states, one can detect
any two of the four states.

One further operation we shall need is that of rotating the
polarizations of each of our photons. This is given by the
equations

R����H� = �H�cos � + �V�sin � ,

R����V� = �V�cos � − �H�sin � . �2�

The situation we are going to describe is based on an
experiment that was recently performed by the Zeilinger
group �6�, in which they swapped the entanglement of two
photons as mentioned in the Introduction, and as depicted in
Fig. 1. In this experiment, two independent pairs of photons
are created, each in the photon equivalent of a singlet state,
1
�2

�H1V2−V1H2�= ��−�, and the polarizations of the four pho-
tons are independently rotated, through the angles �1, �2, �3,
and �4, as in Eq. �2�.

The initial state of the system produced by the two inde-
pendent lasers and two independent downconversions �18� is
a product of two singlet states, photons a and b produced by
one laser, and c and d produced by the other,

��0� =
1

2
��H�a�V�b − �V�a�H�b���H�c�V�d − �V�c�H�d� . �3�

We call this the “Volkswagen state” �VW state�, from the
shape of Fig. 1. Next, the polarization of each of the photons
a, b, c, and d gets rotated through their respective angles, �i.
The subsequent experiment combines photons b and c at a
Bell state analyzer �BSA� �19� and also detects photons a
and d separately, as well as their polarizations. It is thus
appropriate to rewrite Eq. �3� in terms of the Bell states of
particles b and c, and the Bell states of particles a and d,
after the polarization of each of the photons has been rotated.
The resulting wave function, ��I�, after some algebra, is
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��I� =
1

2
���bc

+ ��− ��ad
+ �cos � + ��ad

− �sin ��

+ ��bc
− ��− ��ad

− �cos � − ��ad
+ �sin ��

+ ��bc
− ��+ ��ad

− �cos � + ��ad
+ �sin ��

+ ��bc
+ ��+ ��ad

+ �cos � − ��ad
− �sin ��	 ,

� = ���1 − �2� + ��3 − �4�� ,

� = ���1 − �2� − ��3 − �4�� . �4�

As they approach the BSA, the two particles b and c are
in a superposition of all four Bell states, according to Eq. �4�.
However, in the original Zeilinger experiment, only a beam-
splitter was used, instead of a BSA, and so only the singlet
state ��−� was detected �6�, and if the angle �=0, then by Eq.
�4� particles a and d were also thrown into a singlet state.

One can see from Fig. 1 that the original experiment can
also be conceived of as a sort of teleportation �20�. Consider
one of the incident entangled pairs of photons, say a and b.
Then by catching photons b and c simultaneously and mak-
ing a Bell-state measurement on them, one has “teleported”
the entanglement of photons a and b into that of photons a
and d. Normally, one must telegraph classical information
from the detectors at the BSA to a device in the path of
particle d, in order to allow it to be appropriately manipu-
lated, so that it will be in the proper configuration. However,
in the case of singlets, the appropriate manipulation is the
unit operator. The only classical information that has to be
transmitted is the fact that the Bell state measurement has
been successfully made.

The special feature of such a teleportation is that the re-
sulting entanglement is between two photons that were cre-

ated independently and that have never met. Because of the
symmetry of the situation, one can instead consider the en-
tanglement of photons d and c to have been teleported to that
of photons d and a. Another interesting aspect of this situa-
tion is that because it is entangled, particle b cannot be said
to have a specific state that has been teleported. Rather, it is
the entanglement itself that has been “teleported.” In this
experiment, only the singlet Bell state was detected, yielding
only the term ��bc

− ���ad
− � in Eq. �4�, and the particles a and d

were entangled with high fidelity, when �=0. In the experi-
ment, the phase shifter �3 in beam c was only used as a
fiduciary phase, in order to determine the zero point for the
other three phases.

With a fully functional BSA, all of the four Bell states
would be detectable. Then Eq. �4� shows that, once the BSA
result is registered, particles a and d are in general thrown
into a superposition of the Bell states, and with a suitable
choice of the �i, into a very specific Bell state. In what
follows, we will assume a full BSA.

III. ANALYSIS OF THE ARRANGEMENT IN TERMS
OF ELEMENTS OF REALITY

We shall start by establishing the elements of reality im-
plied by the perfect correlations in experiments using the
VW state, restricting ourselves in this paper to 100% effi-
cient detectors, as originally envisioned by EPR in their
analysis. First, we consider the elements of reality directly
connected to the Bell states of particles b and c, and to the
Bell states of the particles a and d as well.

Consider the arrangement, shown in Fig. 2, which is al-
most that of Fig. 1, but which is more symmetrical and more
general. In Fig. 2, we have included a BSA that can detect
the Bell state of particles a and d, as well as the one that
works with particles b and c. We have also drawn one of our
downconversion pairs coming from the bottom and one from
the top. If one makes both these Bell state measurements at
the same time, then according to Eq. �4�, the results will be
strongly correlated. In fact, according to Eq. �4�, if one finds
that the Bell state for particles b and c is either �− or �+, then
one will invariably find that the Bell state for particles a and
d will also be �− or �+. This statement will be true regardless
of the values of any of the angles �i. Similarly, the Bell states
�+ and �− for particles b and c are invariably coupled with
the Bell states �+ and �− for particles a and d, again regard-
less of the values of the �i.

These results show the existence of an EPR element of
reality associated with these Bell state measurements. Recall
the EPR definition of an element of reality �3�: If, without in
any way disturbing a system, we can predict with certainty
(i.e., with probability equal to unity) the value of a physical
quantity, then there exists an element of physical reality cor-
responding to this physical quantity. In our case, if one mea-
sures the Bell state of particles b and c to be one of the
outcomes �bc

− ,�bc
+ , then one can predict with 100% certainty

that if one also measures the Bell state of particles a and d, it
too will turn out to be �bc

− ,�bc
+ , which one can determine

even if the first measurement is performed far away from the
second one, without the results in any way disturbing par-

H

V
H

V

BSA
b-c

a b c d

ϕ ϕ ϕ ϕ1 2 3 4

FIG. 1. Schematic diagram of the creation of the two-particle
state. In this experiment, there are two downconversions, one cre-
ating the pair of photons a-b, and the other the pair c-d. Each
photon undergoes a rotation through the angle �i, and particles b
and c enter a Bell state analyzer �BSA�, which will annihilate them
while detecting which Bell state they were in. If the angles �i are
set properly, as one of the perfect correlation cases, this process
forces the particles a and d into a two-particle Bell state. In the
actual experiment, the Bell state of a and d is not determined, only
their polarizations, but this is sufficient to rule out locally realistic,
deterministic theories as an explanation of their observed
properties.
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ticles a and d. A similar situation occurs if the result of the
first measurement turns out to be �bc

+ ,�bc
− .

EPR also set up a requirement for a theory to be complete
�3�: Every element of physical reality must have a counter-
part in the physical theory. A consequence of completeness
here is the existence of a function �21�

� = ���2,�3,�1,�4� , �5�

for the outcome of the Bell measurement for particles b and
c, whose values equal +1 for the Bell states �+ and �−, and
−1 for the Bell states �− and �+. Here, � can only depend on
the angles �2 and �3, as a look at Fig. 2 shows that the two
particles meeting at the BSA have only encountered these
two angles in their flight to the analyzer. The function � can
also depend on any hidden variables, collectively noted by
�1, that were defined for the particles a and b, when they
were created together, and on those, �4, for the particles c
and d, when they were created together.

These hidden variables arise from the fact that in a deter-
ministic local, realistic model, all characteristics of the vari-
ous particles, such as their polarizations, and any correla-
tions, must be defined for the particles when they are created.
They may evolve over time into new values, and change
values as they meet various other particles, or detectors along
the way, but these are deterministic consequences unfolding
from the initial assignments and the equations of motion, in
such a way as to produce a continuous local explanation of
all causes and effects in the history of the particle as it moves

along. We assign these values when the particles are created,
and denote them by the �’s.

Similarly, there exists a function

�� = ����1,�4,�1,�4� �6�

for the outcome of the measurements of the Bell states of the
particles a and d. Again, the function �� takes on the value
+1 for Bell states �+ and �−, and −1 for the Bell states �−

and �+.
Then the statement of the perfect correlation between the

two BSA measurements in Fig. 2 is given by the equation

���2,�3,�1,�4�����1,�4,�1,�4� = 1,

���2,�3,�1,�4� = ����1,�4,�1,�4� . �7�

Since the left-hand side of this equation only depends on the
angles �2 and �3, while the right-hand side only depends on
the angles �1 and �4, it follows that neither side depends
upon any of the angles �i. This could also have been seen
from the original statement that the perfect correlations that
lead to Eq. �7� exist independently of any of these angles,
which follow from the form of Eq. �4�. So we can restate Eq.
�7� as

���1,�4� = ����1,�4� independently of the �i. �8�

Equation �4� also shows that for certain sets of the �i,
there are additional perfect correlations, and additional ele-
ments of reality. If the angle �=�1−�2+ ��3−�4�=0, �	, in
Eq. �4�, then when the Bell state of particles b and c turns out
to be �bc

+ ��bc
− �, the Bell state of particles a and d will also be

�ad
+ ��ad

− �. So in this case, there is an exact correlation of the
individual Bell states, not merely a partial correlation to a set
of two of them. Similarly, if �= �	 /2, then the opposite
exact correlation will hold, namely when the Bell state of
particles b and c turns out to be �bc

+ ��bc
− �, the Bell state of

particles a and d will be �ad
− ��ad

+ �. These are the perfect
correlations when �= +1.

When �=−1, there is a similar set of perfect correlations.
In this case, according to Eq. �4�, if the angle �=�1−�2
− ��3−�4�=0, �	, then, when the Bell state of particles b
and c turns out to be �bc

− ��bc
+ �, the Bell state of particles a

and d will also be �ad
− ��ad

+ �. Similarly, if �= �	 /2, then the
opposite exact correlation will hold, namely when the Bell
state of particles b and c turns out to be �bc

− ��bc
+ �, the Bell

state of particles a and d will be �ad
+ ��ad

− �. These cases rep-
resent the perfect correlations when �=−1.

Additional information can be gleaned from these perfect
correlations by considering the polarization states of the par-
ticles. We give the numerical value +1 to an H polarization,
and −1 to a V polarization. Then a Bell state can be labeled
by the product of the polarization of its two particles. That is,
if the Bell state contains the polarizations HH and VV, the
product is +1 �see Eq. �1��, while if it contains the polariza-
tions HV and VH, the product is −1. Because of the perfect
correlations summarized in the above paragraph by the exis-
tence of � and ��, there exists a function

d

ϕ
3

BSA
b-c

ϕ
1

ϕ
2

ϕ
4

a b

c

BSA
a-d

FIG. 2. Bell-state determination of both sets of particles. This
experiment is similar to that in Fig. 1, except that the Bell states of
both sets of particles, b-c, and a-d, are determined at the BSA. One
set of particles is shown entering from the top, to explicitly show
the symmetry of the situation. When the particles are created, in a
deterministic treatment, either the situation of Fig. 1 or that of Fig.
2 can be set up by the experimenter before the particles reach their
respective BSA’s, and so both possibilities must be foreseen in the
original instructions to the particles.
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F = F���1,�4���2,�3,�1,�4� = � 1, �9�

which represents the polarization product of the Bell state of
particles b and c. Here F= +1 for HH or VV, representing the
states �bc

+ and �bc
− , and F=−1 for HV and VH, representing

the states �bc
+ and �bc

− . F also depends on the value of �, and
so, since it includes both the polarization product and the �
value of the state, it uniquely represents the Bell state of the
particles b and c. Explicitly,

F1 = + 1 refers to �bc
+ ,

F1 = − 1 refers to �bc
− ,

F−1 = + 1 refers to �bc
+ ,

F−1 = − 1 refers to �bc
− . �10�

One could alternatively �and equivalently� characterize F
as a function that can take on four values, rather than two,
given namely by the values of � and the polarization. How-
ever, the way we have done it will be convenient for charac-
terizing the perfect correlations in our experiments.

In the same way as we have done for the two particles b
and c, we can uniquely characterize the Bell state of the
particles a and d by introducing the function

G = G����1,�4���1,�4,�1,�4� = � 1. �11�

Once again, the values G= �1 give the polarization product
of the Bell state, and �� characterizes which subset, as
before.

These results show that the full ensemble of states de-
scribed by the parameters ��1 ,�4� breaks into two distinct,
nonoverlapping subensembles. Half of the sets ��1 ,�4� work
with one value of �, and half work with the other value. So
Eq. �8� implies that once one has a value �1 for �, it will not
change, regardless of the �i. However, for each pair of the
��1 ,�4�, all values of the �i do occur, since they are deter-
mined by the experimenter �possibly as late as while the
beam is traveling toward the Bell state analyzer, or detec-
tors�, whereas the �’s are chosen by nature when the photons
are created.

All of the perfect correlations that we have discussed in
the arrangement of Fig. 2 are summed up by the conditions

F���1,�4���2,�3,�1,�4�G���1,�4���1,�4,�1,�4� = 1,


� = 0, � 	 ,

F���1,�4���2,�3,�1,�4�G���1,�4���1,�4,�1,�4� = − 1,


� = �
	

2
,


� = �1 − �2 + ���1,�4���3 − �4� . �12�

Here, we have dropped the prime on ��, since ��=� �see Eq.
�8��. Also we have introduced the angle 
�, which replaces
both � and � �
+=�, 
−=��.

This analysis can be extended to our actual experiment,
employing the VW state of Fig. 1, where we will not com-
bine the particles a and d into a Bell state, but will measure
their polarizations separately. According to Eq. �4�, it is still
true that the function F exists in this case, as the particles b
and c cannot tell if we are going to measure particles a and d
separately, or combine them into a Bell state. Particles a and
d each have an element of reality associated with their po-
larization since, if we measure the Bell state of particles b
and c and then measure the polarization of particle d, we
can uniquely predict the polarization of particle a without
interacting with it in any way, provided the angle 
�

=0, �	 /2, �	. A similar argument holds for particle d.
Thus there exist functions A and D such that

A = A��1,�1� = � 1,

D = D��4,�4� = � 1, �13�

where, as before, A= +1 for polarization H, and A=−1 for
polarization V. In this case, there is no operational signifi-
cance to the function ��. Any value of �1 is compatible with
both values of ��, depending on the value of �4. �This argu-
ment shows the existence of the function A��1 ,�1� within the
context of our experiment. But this also follows directly
from the fact that particles a and b are created in a singlet
state, and so by setting �2=�1, and detecting particle b be-
fore it reaches the BSA, one can uniquely predict the polar-
ization of a from the outcome for b.�

Now, we have all the elements of reality needed for a
local-reality account of the arrangement of Fig. 1, where the
particles a and d do not meet at a BSA, but go directly and
separately to polarization analyzers. Agreement with perfect
correlations in the quantum state of Eq. �4� imposes the con-
ditions

A��1,�1�F���1,�4���2,�3,�1,�4�D��4,�4� = 1, 
� = 0, � 	 ,

A��1,�1�F���1,�4���2,�3,�1,�4�D��4,�4� = − 1, 
� = �
	

2
,


� = �1 − �2 + ���1,�4���3 − �4� , �14�

on the product of the polarizations, given by the elements of
reality functions A, F�, D, and �.

From a quantum-mechanical point of view, the particles a
and d are entangled, once the particles b and c are detected
by the BSA. From a classical, realistic point of view, all the
correlations between the particles must be contained in Eq.
�14�. Photon a is coupled to photon b at its creation, and any
instructions to photon a were built in when the state was
created. The situation is the same with photons c and d,
which were created independently of photons a and b. The
instructions to photons a and d have no input from whatever
happens when photons b and c meet at the BSA �and indeed,
in the actual Zeilinger experiment �6� we mentioned earlier,
photons a and d were counted before any conceivable infor-
mation could propagate to them at the speed of light from the
beam-splitter through which particles b and c passed�.
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In fact, since both pairs were independently created, the
instructions to photons a and d are completely uncorrelated.
Nevertheless, photons a and d become entangled when both
photons b and c are counted at the BSA. Thus, from a clas-
sical point of view, extra information is generated at the BSA
when particles b and c meet, and it is not obvious a priori
how strongly the original instructions can incorporate this
information to correlate the particles a and d. However, so
long as we restrict ourselves to 100% efficient counters, we
shall see that this effect is minimal.

IV. THE INCONSISTENCY OF LOCAL,
REALISTIC MODELS

All of our counters are assumed to be 100% efficient, so
that for any value of any of the �’s, and any of the �’s, all of
our functions, �, A, F, and D, are defined and take the value
�1. In the perfect correlation conditions, Eq. �14�, we take
the special case �1=�2, �3=�4, so that 
�=0 for either value
of �, leading to

A��2,�1�F���1,�4���2,�3,�1,�4�D��3,�4� = 1,


� = �1 − �2 + ���3 − �4� = �2 − �2 + ���3 − �3� = 0.

�15�

Then for either value of �,

F���1,�4���2,�3,�1,�4� = A��2,�1�D��3,�4� , �16�

and this reduces Eq. �14� to

A��1,�1�A��2,�1�D��3,�4�D��4,�4� = 
+ 1, 
� = 0, � 	 ,

− 1, 
� = �
	

2
. �

�17�

One can further restrict these equations in many ways, but
for the purpose of this paper it will not be necessary.

We shall show that the set of equations �17� is inconsis-
tent. First look at the case in which the variables ��1 ,�4� are
such that k��1 ,�4�= +1. From Eqs. �16� and �17�, if we take
�1=�, �2=�+ 	

4 , �3=�+ 	
4 , �4=�, with � and � arbitrary,

we have

A��,�1�A�� +
	

4
,�1D�� +

	

4
,�4D��,�4� = 1,


+ = �1 − �2 + �3 − �4 = � − �� +
	

4
 + �� +

	

4
 − � = 0.

�18�

If we now take the case �1=�, �2=�+ 	
4 , �3=�, �4=�+ 	

4 ,
we have

A��,�1�A�� +
	

4
,�1D��,�4�D�� +

	

4
,�4 = − 1,


+ = �1 − �2 + �3 − �4 = � − �� +
	

4
 + � − �� +

	

4
 = −

	

2
.

�19�

Now multiply Eq. �18� by Eq. �19� to get

�A��,�1�A�� +
	

4
,�1D��,�4�D�� +

	

4
,�4�2

= − 1,

+ 1 = − 1. �20�

So for the case �= +1, Eqs. �17� are inconsistent.
The argument is almost identical in the case �=−1. In that

case, take ��1 ,�4� to be such that k��1 ,�4�=−1. Then from
Eqs. �16� and �17�, take �1=�, �2=�+ 	

4 , �3=�, �4=�+ 	
4 ,

with � and � arbitrary. Then

A��,�1�A�� +
	

4
,�1D��,�4�D�� +

	

4
,�4 = + 1,


− = �1 − �2 − ��3 − �4� = � − �� +
	

4
 − � + �� +

	

4
 = 0.

�21�

Finally, take �1=�, �2=�+ 	
4 , �3=�+ 	

4 , �4=�, and we get

A��,�1�A�� +
	

4
,�1D�� +

	

4
,�4D��,�4� = − 1,


− = �1 − �2 − ��3 − �4�

= � − �� +
	

4
 − �� +

	

4
 + �

= −
	

2
. �22�

Multiplying Eqs. �21� and �22� together again gives Eq. �20�,
and so Eqs. �17� are inconsistent in this case also.

Equations �18�–�22� follow from the definition of 
�=�1
−�2+���3−�4�, so that the order of factors is very impor-
tant, implying as it does, a different experiment �setting �3 vs
setting �4�. Equations �20� holds for any values of � and �,
as we have said, and for �= �1.

We have thus proven that the set of equations, Eqs. �17�
and therefore Eqs. �14�, representing the perfect correlations
in a deterministic, local, realistic model for the entangled
two-particle state described by this experiment, is inconsis-
tent when the detectors are 100% efficient, and this proof
does not depend on the two downconversion sources being
totally independent, or on the elaborate factorization that will
be necessary in the case of inefficient detectors, as given in
paper II.
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