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Correspondence between quantum and classical descriptions for free particles

X. Y. Huang
Department of Physics, Peking University, Beijing 100871, China
(Received 15 December 2007; published 21 August 2008)

We define the condition of the quasiclassical state of free particles, which is useful in the approximate
treatment of quantum systems. Then we introduce classical pure ensembles. Their states are represented using
distribution functions on phase space. We compare distribution functions of classical pure ensembles and
Wigner distribution functions of quasiclassical states for free particles and draw two conclusions: (i) A wave
function does not describe an individual particle but a classical pure ensemble. (ii) Given a quasiclassical wave
function, we can tell which classical pure ensemble is described by it.
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I. INTRODUCTION

The quantum-classical correspondence has been a subject
of numerous studies, but it is still a problem that puzzles us.
In most textbooks of quantum mechanics, students are still
told that quantum mechanics transits to classical mechanics
in the small % limit but there are no wave functions for them
to test the conclusion. What is the condition of the classical
limit? Evidently, the small 7 limit is not a suitable condition
of the classical limit. We cannot merely define #—0 to be
the classical limit. Only when # is negligibly small compared
with the relevant dynamical parameters can we use the small
# limit [1]. The small % limit is not well-defined mathemati-
cally unless some additional conditions are specified [2]. In
addition, many works on the subject mainly concentrate on
the study of the equation of motion of a state but do not pay
much attention to the initial conditions given by a wave
function. For example, the Ehrenfest theorem in operator
form is beautiful. When the theorem is applied to a wave
function, some problems will arise. The theorem always
yields the result that zero equals zero for stationary wave
functions and for any even or odd wave functions no matter
what classical limit is used.

On the other hand, some physicists use the large quantum-
number limit and obtain another conclusion. A wave function
does not describe an individual particle but an ensemble and
the classical limit of quantum mechanics is not classical me-
chanics but classical statistical mechanics [1,3-9]. Their con-
clusion can be tested by many wave functions. It is worth
noting that the large quantum-number limit is consistent with
the necessary condition of the Bohr correspondence prin-
ciple. In some works, the system described by a wave func-
tion is treated as an ensemble [10,11].

Classical mechanics and quantum mechanics both are
well known in physics and their formalisms are beautiful in
mathematics. To establish the correspondence between them
should be easy, if we find the right way. It is convenient to
study the correspondence on phase space. Many references
can be used in the area [10-16]. The first step is the usage of
the condition of quasiclassical states. The choice of distribu-
tion functions and classical limit procedures becomes unim-
portant under this condition. The second step is the introduc-
tion of classical pure ensembles. Their probability distri-
bution functions are the general solutions of the classical
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Liouville equation. It is convenient to compare them with
quasiclassical states of quantum mechanics.

In this paper we focus our attention on the simplest sys-
tem of free particles. Two results are obtained in the corre-
spondence between classical and quantum descriptions of the
simple system. (i) A quasiclassical wave function does not
describe an individual particle but a classical pure ensemble.
(ii) Giving a quasiclassical wave function, we can tell what a
classical pure ensemble is described by it. The condition of
quasiclassical states and the choice of distribution functions
are given in Sec. II. The introduction of classical pure en-
sembles is done in Sec. III. Exact and approximate solutions
of correspondence relations will be given in Secs. IV and V.
Some concluding remarks of the paper are summarized in
Sec. VL

II. QUASICLASSICAL STATES AND DISTRIBUTION
FUNCTIONS

It is well known that the transition from quantum mechan-
ics to classical mechanics is somewhat similar to the transi-
tion from wave optics to geometrical optics. The condition in
which quantum mechanics transits to classical mechanics is
the limit of zero deBroglie wavelength. We define a critical
momentum value p.=27#h/a, for convenience of the study,
where ay, is the Bohr radius. We think that wave properties of
a free particle with a smaller deBroglie wavelength than a
cannot be observed in classical mechanics. Generally, if a
state |¢) satisfies (¢p°|y)=pZ, we call it a quasiclassical
state.

The Wigner distribution function corresponding to state
function (x,1) is

| .
pu(x,p,t) = P f dy eXp[— é2py} Prx=y,0Px+y,1).

(1)
The equation of motion of the Wigner distribution function is
[12]
. pip, AV dp, 1 (
Pw EFPPw 2V OPw

h )2d3V(x) #p,
o m dx dx (7p_ 3!

+
2 ax*  op?
(2)

The equation becomes the classical Liouville equation for
free particles. Therefore, the Wigner distribution function
will be used as a standard one in this study.
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Generally, different rules of associating a function of non-
commuting operators with the corresponding function of sca-
lar variables yield different distribution functions. For ex-
ample, the Wigner distribution function can be derived from
the Weyl rule of operator ordering [10,15]

expliux + i\p] < exp[iut + iNp].

Another simple symmetric rule of operator ordering is the
Rivier rule [14,15]

1
explipx + iNp] < E{exp[i,w?]exp[i)\ﬁ] + expliNp lexpliux]}.

The distribution function associated to the rule is

1
pr(x.p.1) = ZVWW*(X NP ppn+eel,  (3)
where ¢(p,1)=(p|(1)).

The difference between the two distribution functions ex-
ists for the expectation value of the type ((xp)*"), where N is
an arbitrary positive integer [15]. Consider the difference

fdxf dpx*p*pr
= f dx f dpx’p’p,, + f dx J dpx*p*(px - p.)

= (x*p?), + h%. (4)

#i2 can be neglected compared with (x?p?),, for a quasiclas-
sical state. Generally, in the calculation of the expectation

value ({fl4) of the physical quantity f(x,p), the difference
caused by operator ordering can be neglected in the quasi-
classical condition. In other words, the expectation value

(Yfl) can be approximately calculated by use of the
Wigner distribution function no matter how operators are
ordered under the quasiclassical condition.

III. CLASSICAL PURE ENSEMBLES

At the beginning we generally introduce the classical pure
ensemble and then reduce it to the system of free particles.
Suppose that there are many identical classical particles, with
no interaction between them. The motion of each particle is
described by functions x=X(xy,po,f) and p=P(xy,po,t)
which are solutions of Newton’s equation in a time-
independent potential V(x). Each particle has its own initial
values x, and p,. Giving a probability distribution function
g(xg,po) of initial values x, and p,, we obtain a classical
ensemble. The state of the ensemble can be expressed by the
probability distribution function on phase space:

Pc-(X,P’t)=fdx0JdP05(X—X(x0,P0J))

X 8(p = P(x0,po:1))g(x0,P0) - (5)

We call the ensemble a classical pure ensemble.

It is easy to see that the distribution function satisfies the
classical Liouville equation. The expectation value of physi-
cal quantity f(x,p) in the ensemble is
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(D)= f dx J dpf(x.p)pc(x.p,1). (6)

Let f(x,p) be x and p, respectively, Egs. (5) and (6) yield

<x(l)>c=fdxofdPOX(Xo,PoJ)g(Xo»Po), (7)

<P(f)>c=fdxofdPOP(xo’PoJ)g(Xo’Po), (8)

50 (). ©)

<dV(X)> f dxg f dpog(xopo) dViX)

x=X(x0,pO,t)

(10)
Applying Newton’s second law to Egs. (8) and (10) we get
d{p(t dV
). __[avw) "
dt dx /.

Equations (9) and (11) constitute the mathematical formula-
tion of the Ehrenfest theorem in the classical pure ensemble.

Now we return to classical pure ensembles of free par-
ticles. When the potential V(x)=0, Eq. (5) becomes

PL(X’PJ) deﬂfdp()é(x Xo— )6(17 p())g(x()’p())

=g<x—}%t,p>. (12)

When the distribution function of initial values is
g(xg,po)=(xy— L) 8(py—7m), the distribution function is re-
duced to the state representation of an individual free particle
on phase space. For the special ensemble we have from Eqs.
(6) and (12)

PHy=p)=(n? (13)

It is the necessary condition satisfied by the distribution
function of an individual free particle.

Giving a quasiclassical wave function, our aim is to find a
classical pure ensemble that is in dynamics equivalent to the
system described by the wave function. Since the Wigner
distribution function p,,(x,p,?) of free particles satisfies the
classical Liouville equation, it is completely determined by
its initial distribution function p,(x,p). It is easy to see the
expression of the Wigner distribution function

p
pu(x,p,t) = f dxg f dpo§<x - Xp— ;Ot) Ap = o) p(x0.Po)

=pw(x_ Et,p). (14)
m
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Equation (14) is the same form as Eq. (12). We are sure
that the system described by a quasiclassical pure state |¢(t))
must be equivalent to a classical pure ensemble represented
by Eq. (12).

IV. EXACT SOLUTIONS

When the initial Wigner distribution function of a quasi-
classical wave function is non-negative everywhere, we put
g(x0,P0)=pw(x0,P0) =0 in Eq. (12) to get the exact solution
corresponding to Eq. (14). Because p,.(x,p,t) and p,(x,p,?)
both satisfy the classical Liouville equation, the choice of
g(x0,p0)=py(x9,po) in Eq. (12) guarantees that the two dis-
tribution functions are the same and are positive definite in
all time as shown by Egs. (12) and (14). In this section we
discuss three categories of important states. They are mo-
mentum eigenstates, energy eigenstates, and Gaussian wave
packet states of free particles.

A. Momentum eigenstates
Consider the wave function
b (x,1)=A i i ’t L <x< L
x,t)=Aexp| -mgx— —— , ——<x<-—,
v L™ omn 2 2
(15)
where L is very large.

The Wigner distribution function of the state given by Eq.
(1) is

L L
pux.p. ) =|APSp-7n), -=<x< > (16)

2

When |A|*=1/L, the Wigner distribution function is normal-
ized.
Substituting g(xy,po)=p.(X,po) into Eq. (12) we get

p.(x,p.t) = p,(x,p.1),

1 +L/2 +00 p
pc(-x’p7t) = _f dxof dp05<x —Xp— —Ot)
L L/2 —co m

X &(p = po)dpo—n)

1
==8p-n),
3 (p—n)
L L
——<x<—. (17)
2 2

Equation (17) means that a momentum eigenstate with ei-
genvalue 7 describes a classical pure ensemble in which all
particles have the same momentum but their positions dis-
tribute uniformly. As to the transition from wave optics to
geometrical optics, it is worth noting that a plane wave does
not describe a light ray but a light beam no matter how short
its wavelength in optics.
Let xo=nty/m and L=75T/m, Eq. (17) can be written as
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1 +772 +0o0 ” p

plx,p,t) = _f dfof dl’05(x - —l— _0f>
TJ) 1 —oo m m
X 8(p = po)&po— 1)

m
=—3d8p-17),
T (p—n)

T T
— << -, (18)
2 2
The equation means that a plane wave describes the averaged
motion of a free particle over time. It is consistent with the
interpretation on the Bohr correspondence principle given by
Ref. [17].

The Wigner distribution function of Eq. (16) does not
implicitly depend on #; the small A limit can hardly be used
in the case. In order to neglect differences caused by operator
ordering in distribution functions, the quasiclassical condi-
tion of large 77 is still necessary.

B. Energy eigenstate

Consider the wave function which is an energy eigenfunc-
tion with E= ﬁ 7

. . : t
Yr(x.1) = (Ce ™ + Cze_lwﬁ)exp[_ i] ’
2mh

L L
——<x<-, (19)
2 2
where L is very large. The Wigner distribution function of
the state is

pu(x.p,0) =[|C1[?8(p = ) +[Co*6(p + )
+ (Clc;kel?nx/ﬁ + CTCZe—iZWX/ﬁ) 5(17)]’

L L
——<x<-. (20)
2 2
When 7 is large, the third term is a fast oscillating function
of x in the equation. It can be neglected in the distribution
function. The normalization condition of the distribution
function is |C,|?+|C,|?=1/L.
Substitute g(xq,po)=p,.(x0,p0) into Eq. (12), and let x,
="ty and L="'T, then we still get

p(x,p.0) =[|C\[*8(p - 7) +|Col*8(p + 7)1,

T T
—— <<, (21)
2 2

Equation (21) is the same as Eq. (20). When | 7| is large, an
energy eigenstate equivalently describes a classical time ho-
mogeneous ensemble [4,5].

The energy eigenstate does not satisfy the necessary con-
dition (13) of an individual free particle. Generally, any su-
perposition state of plane waves does not satisfy the neces-
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sary condition. It means that there is no wave function that
can describe an individual free particle.
C. Gaussian wave packet states

Consider the state of free particles

28p\"* | (x = x,)
w(x,z=o>=<\[—77”) exp[5<p>x— j(Ai‘;z }
(22)

where 4(Ax)?(Ap)?>=#? [10]. The initial Wigner distribution
function of the state is

(x - xo)z
- 2(Ax)? B

1 (=)
pW(x?p7t=0)=;TeXp|: pz(A<pp)2 :|'
(23)

The Wigner distribution function containing time is given by
Eq. (14) [15]

X —XO -1 2
(xpt):Lexp_ m /) (p={p)
Pl =g 2(Ax) 2(Ap)>?

(24)

Substituting g(xy,po) = p,s(xg,po,t=0) into Eq. (12), we ob-
tain the same distribution function as Eq. (24),

p\?
1 (x-xo -2 (0= p)P
px,p,t) = B SXP| 2(Ax)? © 2(Ap)?

(25)

Equations (24) and (25) show us that the wave packet
state equivalently describes a classical pure ensemble in
large (p)?> condition. The probability density function of the
classical pure ensemble in position space is

1

pe(x,1) =
1 2
\/77|:2(Ax)2 + (—Apt) ]
m

1 2
(x — X~ ;(p)t)

Xexp| — (26)

1 2
2(Ax) + (—Apt)

Because a quasiclassical state including the Gaussian
wave packet state of free particles does not describe an indi-
vidual particle but a classical pure ensemble, the extension of
the probability distribution of the system in position space is
correct.

There are still some other quasiclassical states having
positive definite Wigner distribution functions. Incoherent
superposition states from quasiclassical plane waves are such
states, but the examples above are the most important for the
discussion that a quasiclassical wave function does not de-
scribe an individual particle but a classical pure ensemble.
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V. APPROXIMATE SOLUTIONS

Generally the Wigner distribution function is not non-
negative everywhere. It is a quantum phenomenon and has
been observed in many experiments [18,19]. On the one
hand, the Wigner distribution function can be used as a stan-
dard distribution function since it exactly satisfies the classi-
cal Liouville equation. On the other hand, when the Wigner
distribution function of a quasiclassical state is not positive
definite, we have to find an approximate solution of Eq. (12).
The approximate solution should satisfy three conditions. (i)
It satisfies the classical Liouville equation of free particles.
(ii) It is non-negative everywhere. (iii) It gives results
(f(x,p)).={f(x,p)), for all usual observables {f(x,p)}. We
discuss the Husimi distribution function py by use of the
following two relations. One is the definition expression of
the distribution function [13,15]

2
. (27a)

1 +°° 1 % ’ ’
PH(x’p,t) = ﬂ‘ J_x dx Bxp(x )'ﬁ(x ’t)

where ,[fj;(x’):(%)”4 exp[—%(x—x’)zﬂpx/ﬁ] represents
the wave function for a minimum uncertainty squeezed
Gaussian wave packet peaked at (x,p). Evidently the Husimi
distribution function is non-negative everywhere on phase
space.

The other expression is the relation between pg(x,p,?)
and p,,(x,p,1) [11,15],

PH(st,t):fdx,fdP,G(x_x,,P_P,)Pw(x,’l’,’t)’
(27b)

where G(x, p):# exp[—%xz—ﬁpz]. We discuss some re-

sults of relation (27b):

Pu= f ppu(p.t)dp = J pp(p.)dp ={p),, (28)

h
<p2>H = <p2>w + %’ (29)
(0= (e = -+ (0)

In Eq. (30) the Ehrenfest theorem has been used.
When (x?) is finite, we have from Eq. (27b)

o

1)y = P (O) + el

31)
Noticing the result

2
<(X - <x>w)2>w = 0’ <x2>w = (nl1<p>wt + xO) ’

we can freely choose parameter |a| so that each last term can
be neglected in Egs. (29) and (31) for quasiclassical states.

Differentiating py(x,p,7) with respect to ¢t we get from
Egs. (14) and (27b)
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d
—pulx,p.1)

o
.
fdx fdp Glx-x",p- p)— ,pw< ——t,p)
m ox m

p ! ! ! ! a ! !
=_fdx fdp pw(x P v[) ,G()C—X sP—P )
m ox

=— EipH(x,p,t). (32)

m ox

The Husimi distribution function of a state of free particles
satisfies the Liouville equation also.
The Fourier transform of G(x,p) in Eq. (27b) is

M(w’)z].

h
Folw,0") = F[G(x,p)] = eXp{— mwz =4

(33)

Let Fw(w’ o' s t)zf[pw(x’p’t)]a FH(w, o' ,l) :f[PH(st,t)]s
the convolution theorem for Eq. (27b) yields [20]

filof
4

2

f
FH(w,w’,t)=exp{—mw - (w')z}FW(w,w’,t).

(34)

Fy(w,w',1) decreases with the increase of w and w’. The
equation means that the effect of G(x,p) in Eq. (27b) is
equivalent to the role of a “low-pass filter.”

Similarly, we have for Fourier transforms of marginal dis-
tribution functions pg(x,7) and p,,(x,7)

Fylw,1) = exp{ || }Fw(w,t), (35)

where PH(xst):ftzdpPH(X,Pat) and pw(x,t)
=[Zdpp,(x,p,1).
In the following calculation the approximate expression

on the real unity step function u(x) will be used [20]:

A A A 1 . (oA )
ulx+—|-ulx-—|= do— sin| — |expliwx]
2 2 o T 2
e 1 (oA
= dw— sin| — |exp[— iwx]
_m T 2

*Om 1 . [wA )
~ dw— sin By exp[—iwx],

wT

m

(36)

where w,,=2/A. Since the integrated function is a decay
oscillating function of w, the approximation is good.
It is easy to see from Eq. (36),
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+A/2
f dxpy(x.t)

-AR
e A A
3 dx| u x+5 —ulx-> py(x,1)
+00 1 A +00
f do— sin(w—)f dxpy(x,t)exp[— iwx]
o T 2 o

e 1 (oA
= do— sin| — |Fy(w,1).
e w1 2

The equation can be written as from Egs. (35)-(37),

+A/2
f dxpp(x,1)

-A/2

A 1 [wA oo,
= do— sin| — |exp| - " |F,(w,1)
e O 2 4|al
*Om 1 [wA o,
=~ do— sin| — |exp| - T—w
o, T 2 4|a

+00
X f dxp,,(x,t)exp[— iwx].

(37)

(38)

Choosing A so that 4‘ o 4‘al(zw) =0.1, we approximately
get from Egs. (36) anA (38

+A/2
f dxpy(x,1)

-A2

e *Om 1 . [wA )
~ dxp,,(x,1) do— sin| — |exp[— iwx]
o, T 2

—o0

= J+w dx{u<x+ é) - u(x— é)]p (x,1)
» ) 2 Wiy

+A/2
= f dxp,,(x,1),

-A/2

(39)

where A:W\%.
Applying the shift theorem of the Fourier transform to
u(x’—x), we generally have

x+A/2 x+A/2
f dx' py(x',1) %J dx'p,,(x',1).

x=A/2 x=A/2

(40)

Though py(x,7) does not equal p,(x,?), Eq. (40) holds ap-
proximately.

Similarly for marginal distribution functions py(p,?) and
p..(p,1) we have

p+A'/2 p+A'/2
f dp'py(p’,1) zf dp'p,(p'.1),
p-A'12 p-A"72

(41)

where A’ =10|alf.
Applying the same approximate procedure to distribution
function py(x,p,t) we get
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x+A/2 p+A 12
dx’ dp'pu(x',p’,t)
x=A/2 p-A'12

x+A/2 p+A /2
%f dX’f dp'p,(x'.p'.) =0, (42)
x=A/2 p=-A'12

where A and A’ are the same as the above values and AA’
=107h.

Generally we can tell the probability of a particle in an
area that is larger than the AA’ on phase space in spite of the
uncertainty relation. In macroscopic classical mechanics
where AA’=107%% is small, Eq. (42) means that
[p,(x,p,0)=py(x,p,1)] is a fast oscillating function of x and
p on phase space.

We use the Husimi distribution function of a quasiclassi-
cal state as the approximate solution of the classical distri-
bution function corresponding to the state. Now expression
(12) of the distribution function becomes

)4
pc(x,p.t) = f dx f dPOJ(x —Xo— ;OT) p = po)pu(xo.po)

- pH(x - %t,p) . (43)

Consider expectation values of two physical quantities
x*p? and xp?. When (x’p?),, is finite, the expectation value
can be written as

(*p?),, = (phyy + f dx f dpx*p*[p,(x.p.t) = py(x,p.1)].
(44)

Because x’p? slowly varies and (p,,—pp) oscillates fast on
phase space, the last term can be neglected compared with
other terms.

Another expectation value (xp?),, can be written as

0
(xp®), = f dx f dpxp*py(x.p.1)
0
+ f dxf dpxpz[pw(x,pJ) - PH(x,p’t)]
+00
+ f dxf dpxp’py(x,p,1)
0

+00
+ f dx f dpxp*[p,(x.p.t) = pu(x.p.0)] [ .
0

(45)

In each bracket the last term can be neglected compared with
the other terms.

The positive definite distribution function py(x,p,?) satis-
fies the classical Liouville equation and gives results
(flx,p))y={(f(x,p)),, for all the usual observables {f(x,p)}.
It can be seen from Egs. (28)—(31) and the calculation above
that the approximation is quite good for quasiclassical states.
Therefore, when the Wigner distribution function of a quasi-
classical state is not non-negative everywhere, the Husimi
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distribution function of the state is the approximate solution
of the classical distribution function corresponding to the
state.

VI. CONCLUDING REMARKS

The Bohr correspondence principle tells us that a state
with large quantum numbers is a quasiclassical state. Gener-
ally, superposition states have no quantum numbers. In order
to study the correspondence generally, we should give a con-
dition of quasiclassical states for them. The condition of qua-
siclassical states for free particle systems is given in the first
paragraph of Sec. II.

The Wigner distribution function for a state of free par-
ticles exactly satisfies the classical Liouville equation. There-
fore, classical pure ensembles are defined. Their probability
distribution functions satisfy the classical Liouville equation
also. The probability distribution functions can be written
from classical solutions of free particles. They are general
solutions of the classical Liouville equation. Especially, the
distribution function of an individual free particle is included
in general solutions.

A solution of the classical Liouville equation is com-
pletely determined by the initial function of the solution. It is
convenient for us to establish the correspondence between
quantum and classical descriptions of a system. If the initial
Wigner distribution function p,,(x,p,t=0) of a quasiclassical
state is non-negative everywhere on phase space, the classi-
cal distribution function corresponding to the state can be
written from general solutions by putting p.(x,p,r=0)
=p,,(x,p,t=0). Some important states belong to the case and
give correspondence results directly. A quasiclassical mo-
mentum eigenstate equivalently describes a classical position
homogeneous ensemble. A quasiclassical energy eigenstate
describes a classical time homogeneous ensemble. There is
no quasiclassical state that can describe an individual free
particle. A quasiclassical Gaussian wave packet state corre-
sponds to a classical pure ensemble whose initial distribution
function is a Gaussian function of x and p on phase space.
The extension of the wave packet state in position space can
be understood well by use of the classical ensemble corre-
sponding to the state.

If the initial Wigner distribution function p,,(x,p,7=0) of
a quasiclassical state is not positive definite on phase space,
the Husimi distribution function pg(x,p,) of the state can be
used as the approximate solution of the classical distribution
function corresponding to the state. The Husimi distribution
function satisfies the classical Liouville equation and is posi-
tive definite on phase space. Furthermore, the Husimi distri-
bution function of a quasiclassical state gives results
(flx,p)yy={f(x,p)), for all usual observables {f(x,p)}.
Generally, the system of free particles described by a quasi-
classical state is equivalent to a classical pure ensemble of
free particles in dynamics.
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