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We compare different quantum master equations for the time evolution of the reduced density matrix. The
widely applied secular approximation �rotating wave approximation� applied in combination with the Born-
Markov approximation generates a Lindblad-type master equation ensuring for completely positive and stable
evolution and is typically well applicable for optical baths. For phonon baths however, the secular approxima-
tion is expected to be invalid. The usual Markovian master equation does not generally preserve positivity of
the density matrix. As a solution we propose a coarse-graining approach with a dynamically adapted coarse-
graining time scale. For some simple examples we demonstrate that this preserves the accuracy of the integro-
differential Born equation. For large times we analytically show that the secular approximation master equation
is recovered. The method can in principle be extended to systems with a dynamically changing system
Hamiltonian, which is of special interest for adiabatic quantum computation. We give some numerical ex-
amples for the spin-boson model of cases where a spin system thermalizes rapidly, and other examples where
thermalization is not reached.
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I. INTRODUCTION

The discovery that quantum computers would have much
stronger capabilities for solving certain kinds of problems
�such as number factoring �1� or database search �2�� than
their classical counterparts has initiated a lot of research in
quantum-information theory �3�.

Unfortunately, the fragile quantum coherence necessary
for the superior performance of quantum computers is very
sensitive to the inevitable interaction with the environment
such that theoretical understanding of this process—called
decoherence—is absolutely necessary �4�.

For simple models �such as, e.g., a single spin or har-
monic oscillator coupled to a thermalized bath of harmonic
oscillators� and for sufficiently complex couplings to the res-
ervoir after some time the system will equilibrate in a ther-
mal state with the bath temperature �4�. This behavior would
be consistent with our classical expectations.

A recent idea is to protect the quantum information by
encoding the solution to a given problem in the �unknown�
ground state of a problem Hamiltonian HP. Given sufficient
experimental control of the system Hamiltonian and a reser-
voir at sufficiently low temperature kBT��Emin �where
�Emin denotes the energy gap above the ground-state energy
of HP�, the ground state should be robust against decoher-
ence in the sense that decoherence would always drive the
system toward its ground state. In principle, one could then
prepare the quantum system in any accessible state and wait
sufficiently long until the equilibration has taken place. Un-
fortunately, this mere-cooling approach is not expected to be
very efficient, since the relaxation rate may be very small �5�
or �in extreme cases� the system might get stuck in a local
minimum �6�.

A possible solution was proposed with the concept of
adiabatic quantum computation �7�: The system is initially

subject to a simple Hamiltonian HI and is prepared in its
�easily accessible� ground state. Then, the Hamiltonian is
slowly deformed into the problem Hamiltonian HP. The adia-
batic theorem states that if this transformation proceeds
slowly enough, the quantum state will closely follow the
instantaneous ground state �8�. Finally, for a nearly adiabatic
evolution the system state approximates the system ground
state to a high degree. Consequently, the maximum transfor-
mation rate �where the final excitations are acceptably small�
corresponds to the computational complexity of the adiabatic
algorithm. For closed systems, it is related to the spectral
properties of the time-dependent system Hamiltonian �9,10�.
For a reservoir at sufficiently low temperatures, this scheme
is thought to be robust against decoherence �6� and might
even be aided by it �11�.

Unfortunately, the standard framework of deriving master
equations relies on some prerequisites that are not always
fulfilled in realistic systems. For example, the Markovian
approximation widely used is usually only formulated for
time-independent system Hamiltonians. In addition, it some-
times leads to master equations that do not preserve positiv-
ity of the system density matrix �12,13�. Together with trace
preservation, positivity grants stability of the density matrix
eigenvalues and is thus necessary for probability interpreta-
tion �cf. �14�� of the density matrix. Consequently, observ-
ables obtained from nonpositive density matrices may be-
come unphysical �15�. This problem can be cured by the
secular approximation. Combined with the Markovian ap-
proximation, it leads to Lindblad-type �16� master equations
that generically preserve positivity of the density matrix. Un-
fortunately, the secular approximation is rather valid for
quantum-optical but not for phonon baths �4�. Note that there
exist non-Markovian master equations that are not of Lind-
blad type but nevertheless preserve positivity by construc-
tion. These models however are either phenomenologic
�17,18� in the sense that their parameters are not derived
from a microscopic Hamiltonian or they only grant positivity
on a restricted set of initial states �19�. Especially in view of
an experimental optimization of decoherence effects it is,*schaller@itp.physik.tu-berlin.de
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however, necessary to relate the parameters in the master
equation to those in the microscopic Hamiltonian �20�. For
example, for a realistic implementation of an adiabatic �or
gate-model� quantum computer one would expect the qubits
to be coupled to phonon degrees of freedom as well, such
that a general treatment is advised. The present paper shall
present a further step in that direction.

It has been noted �21,23,24� that coarse graining may en-
sure for positive evolution of the reduced density matrix.
However, the coarse-graining time scale so far must be much
larger than the inverse of the bath density of states cutoff. In
this paper we argue that by adaptively changing the coarse-
graining time scale one does not have to obey this constraint.
Beyond this, we show that for infinitely large coarse-graining
times we reproduce the widely used secular approximation.
We show analytically that for any fixed coarse-graining time
scale ��0, the resulting master equations are of Lindblad
form, i.e., they preserve positivity and thereby also stability
of the density matrix.

This paper is organized as follows: In Sec. II we introduce
our notation and in Sec. III we compare the standard proce-
dure of deriving quantum master equations from microscopic
models with the proposed adaptive coarse-graining scheme.
We make our method explicit by the example of the spin-
boson model in Sec. IV.

II. GENERAL PREREQUISITES

We will consider Hamiltonians which can be divided into
three parts

H�t� = HS�t� + HSB + HB, �1�

where HS�t� describes the system part, HB the part acting on
the bath �with �HS�t� ,HB�=0� and

HSB = ��
A

AA � BA �2�

denotes the interaction Hamiltonian with the small dimen-
sionless coupling parameter ��1 and system operators AA
as well as bath operators BA �differing coupling constants
can be absorbed in the operator definitions�. Hermiticity is
only required for the complete sum �HSB=HSB

† �, but by split-
ting operators into Hermitian and anti-Hermitian parts one
can always redefine them such that

AA = AA
† , BA = BA

† , �3�

which will be assumed further on.
The density matrix of the complete system is thought to

evolve according to ��=1 throughout� the von Neumann
equation of motion

�̇�t� = − i�HS�t� + HSB + HB,��t�� . �4�

Denoting the time evolution operators of system and reser-
voir by U�t� and V�t�, respectively, we can switch to the
interaction picture

��t� = U†�t�V†�t���t�V�t�U�t� ,

HSB�t� = U†�t�V†�t�HSBV�t�U�t�

= ��
A

�U†�t�AAU�t�� � �V†�t�BAV�t��

� ��
A

AA�t� � BA�t� . �5�

We will denote all operators in the interaction picture by bold
symbols throughout. In the interaction picture, the equation
of motion for the density operator �4� transforms into

�̇�t� = − i�HSB�t�,��t�� , �6�

where one can exploit the smallness of the coupling � to
apply perturbation theory.

Equation �6� can be formally integrated to yield
��t�=��0�− i�0

t �HSB�t�� ,��t���dt� and reinserting this result
in Eq. �6� one obtains the following exact equation:

�̇�t� = − i�HSB�t�,��0�� − �
0

t

†HSB�t�,�HSB�t��,��t���‡dt�

�7�

for the density operator.

III. QUANTUM MASTER EQUATIONS

We will first state the results of the Born-Markov approxi-
mation without secular approximation �in Sec. III A� and
with the secular approximation �Sec. III B� in our notation.
Afterwards, we will consider the coarse-graining approach in
Sec. III C.

With the usual assumptions �compare Appendix A� in-
volving initial factorization of the density matrix and ne-
glecting any change in the reservoir part of the density ma-
trix in Eq. �7� we obtain the Born equation

�̇S = − iTrB	�HSB�t�,�S�0��B
0 �


− �
0

t

TrB	†HSB�t�,�HSB�t��,�S�t���B
0 �‡
dt� + O	�3
 ,

�8�

where TrB	¯
 denotes the trace over the reservoir degrees of
freedom. Evaluating the traces leads to the definition of the
reservoir correlation functions

CAB��� � TrB	e+iHB�BAe−iHB�BB�B
0 
 = CBA

� �− �� , �9�

and we obtain with �BA�=0 �which can always be achieved
by a suitable transformation �22��

�̇S = �2�
AB
�

0

t

	�AB�t���S�t��,AA�t��CAB�t − t�� + H.c.
dt�

+ O	�3
 , �10�

where H.c. denotes the Hermitian conjugate. The integro-
differential character of above equation complicates its solu-
tion, since analytical solutions are only possible in very
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simple cases �25,26� �see also Sec. IV B�, and numerical so-
lutions are hampered by the fact that the complete history of
�S�t�� must be stored in order to evolve �S�t�.

A. Markovian approximation scheme

In the usual �4� Markovian approximation �see Appendix
B� one obtains for constant system Hamiltonians
�HS�t�=HS� with the half-sided Fourier transforms

�AB�	� � �
0




CAB���ei	�d� �11�

of the reservoir correlation functions �9� the time-local
Born-Markov �BM� master equation �here given in the
Schrödinger picture�

�̇S = − i�HS,�S�t�� + �2 �
abcd

�
AB

	�AB�Eb − Ea��a
AB
b�

��c
AA
d����
a��b
��S�t�,�
c��d
�†� + H.c.
 , �12�

where HS
a�=Ea
a� denote the orthonormal energy eigenba-
sis. By construction, Eq. �12� does preserve trace and Her-
miticity of �S. Note however, that positivity of its solution
�S�t� is not generally preserved �12,27�, see Sec. IV D for
some counterexamples.

B. Secular approximation

In order to restore preservation of positivity in the BM
approximation in general, it is necessary to perform the secu-
lar approximation �see Appendix C�. Typically, this approxi-
mation is known to be well satisfied for quantum-optical
systems, where it is also known as rotating wave approxima-
tion �28�. In this case, one can combine

�AB�	� = �AB�	� + �BA
� �	� = �

−


+


CAB���ei	�d� ,


AB�	� = �AB�	� − �BA
� �	� = �

−


+


CAB���sgn���ei	�d� ,

�13�

which yields the Born-Markov-Secular �BMS� approxima-
tion �in the Schrödinger picture�

�̇S = − i�HS,�S�t�� − i��
ab


̃ab
a��b
,�S�t��
+ �

abcd

�̃ab,cd��
a��b
��S�t��
c��d
�†

−
1

2
	�
c��d
�†�
a��b
�,�S�t�
� ,


̃ab =
�2

2i
�

c
�
AB


AB�Ea − Ec��Eb,Ea
�c
AA
a���c
AB
b� ,

�̃ab,cd = �2�
AB

�AB�Eb − Ea��Ed−Ec,Eb−Ea
�a
AB
b��c
AA
d��.

�14�

Equation �14� has many favorable properties �compare, e.g.,
Chap. 3.3 in �4��: By construction, it preserves trace and
Hermiticity of the system density matrix �S. Since it is of
Lindblad �16� form �the matrix �AB�	� is positive semidefi-
nite�, it preserves positivity of the density matrix.

For a thermalized reservoir characterized by the inverse
temperature �, the Fourier transforms of the bath correlation
functions can be used to show that the system thermal equi-
librium state with the same temperature

�S
th =

e−�HS

TrS	e−�HS

�15�

is a stationary state. If the spectrum of the system Hamil-
tonian HS is nondegenerate �implying that �Ea,Eb

=�ab�, the
equations for the diagonal elements of �S in the eigenbasis of
HS completely decouple from the equations for the off diago-
nals, and one obtains the same transition rates between the
populations as with the Fermi golden rule.

C. Coarse-graining approach

Equation �6� is formally solved by
��t2�=W�t2 , t1���t1�W†�t2 , t1� with the interaction picture
time evolution operator

W�t2,t1� = T exp�− i�
t1

t2

HSB�t��dt�� , �16�

where the time dependence of HSB�t� necessitates the time
ordering �28� T HSB�t1�HSB�t2��HSB�t1�HSB�t2���t1− t2�
+HSB�t2�HSB�t1���t2− t1�, with ��x� denoting the Heavyside
step function. Now, by expanding W�t+� , t� up to second
order in � we obtain a second-order approximation to the full
density matrix

��t + �� = ��t� − i��
t

t+�

HSB�t1�dt1,��t��
− i� 1

2i
�

t

t+� �
t

t+�

�HSB�t2�,HSB�t1��

���t2 − t1�dt1dt2,��t��
+ �

t

t+� �
t

t+� �HSB�t1���t�HSB�t2�

−
1

2
	HSB�t2�HSB�t1�,��t�
�dt1dt2 + O	�3
 .

�17�

Since such a truncated finite-order approximation to the time
evolution operator W�t+�� is still unitary, the above map
�17� preserves Hermiticity, trace, and positivity of the full
density matrix �. An equivalent expression can be obtained
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from iterative solution of Eq. �7� by keeping only terms up to
O	�2
. We will proceed with this second-order approxima-
tion and derive from this fully unitary map a nonunitary map
for the system part of the density matrix that preserves posi-
tivity.

If we neglect the back-action of the system on the bath
and assume factorization �Born approximation� as described
in Appendix A we can perform the partial trace over the
reservoir degrees of freedom. By inserting the definition �2�
in Eq. �17� and employing the definition of the reservoir
correlation functions �9� we obtain �again working in a frame
where �BA�=0 �22��

�S�t + �� = �S�t� − i
�2

2i �AB
�

t

t+� �
t

t+�

CAB�t2 − t1�sgn�t2 − t1�

��AA�t2�AB�t1�,�S�t��dt1dt2

+ �2�
AB
�

t

t+� �
t

t+�

CAB�t2 − t1��AB�t1��S�t�AA�t2�

−
1

2
	AA�t2�AB�t1�,�S�t�
�dt1dt2 + O	�3


� �S�t� + �L��t��S�t� + O	�3
 , �18�

which defines the action of the Liouvillian on the reduced
density matrix in the interaction picture. If one rearranges the
matrix elements of the density matrix as a N2-dimensional
vector, the Liouvillian superoperator can be understood as an
N2�N2 �generally non-Hermitian� matrix acting on �S. In
the interaction picture the Liouvillian is small, i.e., since
�BA�=0 we even have L�=O	�2
.

Unfortunately, the above map �S�t�→�S�t+�� has some
shortcomings: It does not generally preserve positivity of the
reduced density matrix �S and in addition, if one applies the
above equation recursively n times with small time steps ��
such that n��=� and compares the result with a single itera-
tion of Eq. �18�, the difference between the two solutions is
much larger than O	�3
, i.e., the solution depends on the
choice of the step size.

By defining time averaging of an operator Ô�t� over a
time interval �t , t+�� as

��Ô���t,t+�� �
1

�
�

t

t+�

Ô�t��dt�, �19�

we can write Eq. �18� as

���̇S���t,t+�� =
�S�t + �� − �S�t�

�
= L��t��S�t� + O	�3
 .

�20�

1. Explicit Liouvillian

It is convenient to insert the even and odd Fourier trans-
forms from Eq. �13� of the reservoir correlation functions

CAB��� =
1

2�
�

−


+


�AB�	�e−i	�d	 ,

CAB���sgn��� =
1

2�
�

−


+



AB�	�e−i	�d	 , �21�

and to expand the system operators in the interaction picture
in the orthonormal energy eigenbasis HS
a�=Ea
a� of the
system Hamiltonian �here assumed to be constant�

AA�t2� = �
ab

�a
AA
b�ei�Ea−Eb�t2
a��b
 ,

AB�t1� = �
cd

�c
AB
d�ei�Ec−Ed�t1
c��d
 . �22�

Then, we can use the relation

�
t

t+�

ei�t�dt� = �ei�tei��/2 sinc���
2 �

with sinc�x�� sin�x�
x together with Eqs. �21� and �22� in order

to make the Liouvillian in Eq. �20� explicit. With denoting
the energy differences of the system Hamiltonian by
�ab�Ea−Eb we arrive at

L��t��S�t� = − i��
ab

ei�abt
ab���
a��b
,�S�t�� + �
abcd

ei��cd−�ab�t�cd,ba�����
c��d
��S�t��
b��a
�† −
1

2
	�
b��a
�†�
c��d
�,�S�t�
� ,


ab��� =
�2�

4�i
ei�ab�/2�

c
�
AB

�c
AA
a���c
AB
b��
−


+



AB�	�sinc��w + �ca�
�

2
�sinc��w + �cb�

�

2
�d	 ,

�cd,ba��� =
�2�

2�
ei��cd−�ba��/2�

AB
�b
AA
a���c
AB
d��

−


+


�AB�	�sinc��w + �ba�
�

2
�sinc��w + �cd�

�

2
�d	 . �23�
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The coarse-grained derivative on the left-hand side of Eq.
�20� generates a time evolution that can be compared with its
usual, first-order differential equation counterpart �we denote
the corresponding density operators by an overbar and the
continuous index � referring to the Liouvillian chosen�

d

dt
�S

��t� = L��t��S
��t� . �24�

If we initialize this differential equation with a known den-
sity matrix �S

0 and evaluate its formal solution at time t=�
�i.e., after exactly the coarse-graining time scale�, we find to
first order in L�,

�S
���� � �1 + �

0

�

L��t��dt���S
0 . �25�

This means that when considering the same initial condition,
the difference between the two time evolutions resulting
from Eqs. �24� and �20� is given by

�S
���� − �S��� = ���� + O	�L��2
 ,

���� = ��
0

�

L��t��dt� − �L��0���S
0 , �26�

i.e., essentially by the difference between the coarse-
graining-averaged Liouvillian and its initial value.

It follows from Eq. �23� that especially for short coarse-
graining times ��

1

�Emax
 �with �Emax denoting the maximum

energy difference of HS� the difference will be negligible
�����0, such that the two solutions �S

���� and �S��� are
equivalent. Since we have so far not made any assumption
on separating time scales, this also implies that non-
Markovian effects �that are expected for short times where
the Markovian approximation does not hold� are within
reach of the adaptive coarse-graining approach, where the
coarse-graining time is chosen to match the physical time.

In the limit of very large coarse-graining times we also
obtain lim�→
 �����0, since then the sinc�¯� functions in
Eq. �23� begin to act like � functions, see below. Also for
intermediate coarse-graining times it is easy to see from the
structure of the Liouvillian �23� that the difference ���� is
bounded throughout.

From now on, we will omit the overbar and write �S
��t� for

the solutions of Eq. �24�.

2. Infinite-� limit

In the limit �→
 one should note that for discrete a ,b
and under an integral over d	 with another integrable func-
tion one has in a distributive sense �see Appendix F�

f�	,a,b� � lim
�→


� sinc��w + a�
�

2
�sinc��w + b�

�

2
�

� 2��ab��w + a� , �27�

where �ab is a Kronecker symbol and ��w+a� denotes the
Dirac � distribution. Therefore, we obtain for the Liouvillian
matrix elements �23� in this limit


ab

 =

�2

2i
�Ea,Eb�

c
�
AB

�c
AA
a���c
AB
b�
AB�Ea − Ec� ,

�cd,ba

 = �2�Eb−Ea,Ec−Ed�AB

�b
AA
a���c
AB
d��AB�Ea − Eb� ,

�28�

and we recover the secular approximation �14�. Naturally,
this also implies that in the large-time limit, the solution
�S

�=t�t� captures all the favorable properties of Eq. �14�.

3. Positivity

The most striking advantage of the coarse-graining proce-
dure is that not only for very large, but for any fixed coarse-
graining time ��0, the resulting first-order differential equa-
tions �24� are all of Lindblad form �16� and thus intrinsically
preserve the positivity of the density matrix. This is easily
seen by switching back to the Schrödinger picture, where the
time-dependent phases in Eq. �23� cancel

�̇S
��t� � L��S

��t� = − i�HS,�S
��t�� − i��

ab


ab���
a��b
,�S
��t��

+ �
abcd

�cd,ba�����
c��d
��S
��t��
b��a
�†

−
1

2
	�
b��a
�†�
c��d
�,�S

��t�
� , �29�

which implies that the Schrödinger picture Liouvillian L�

only depends on the coarse-graining time scale �.
First of all, the first two commutator terms correspond to

commutators with a Hermitian operator, i.e., the second term
accounts for the unitary action of decoherence �sometimes
called Lamb shift �4��. Note that Hermiticity of the corre-
sponding effective Hamiltonian follows from the definition
of the odd Fourier transform versus the half-sided Fourier
transform �13�.

In order to show that Eq. �29� is a Lindblad form, it re-
mains to be shown that the matrix �cd,ba��� is positive
semidefinite. In order to see this we introduce the double
indices i= �cd� and j= �ba� running from 1 to N2 for an
N-dimensional system Hilbert space. Then, we can use the
shorthand notation wi=Ec−Ed, AB

i = �c
AB
d�, wj =Eb−Ea,
AA

j = �b
AA
a� and consider for arbitrary complex-valued
numbers xj in Eq. �23�,

�
ij

xi
��ijxj =

�

2�
�

−


+


�
AB

zA
� �	��AB�	�zB�	�d	 , �30�

where we have

zA�	� � �
j

AA
j sinc��w + wj��/2�ei	j�/2xj . �31�

Now, since the Fourier-transform matrix �AB�	� is positive
semidefinite �compare also Appendix C� one has
zA

� �	��AB�	�zB�	��0. The integral over a strictly positive
function can only yield positive results, and since also
��0 it follows that �ij���=�cd,ba��� is a positive semidefinite
matrix.
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This also implies that solutions of the form �S
t �t� are al-

ways positive density matrices, since they correspond to an
interpolation along Lindblad density matrices.

D. Time-dependent generalization

Within the coarse-graining approach, it was in Eq. �22�
where it was used for the first time that the system Hamil-
tonian HS was time independent and had a discrete spectrum.
Here we will show that coarse graining generally leads to a
time-inhomogeneous �i.e., one with time-dependent opera-
tors� Lindblad form of master equations and thus always
preserves positivity of the density matrix. With introducing
the notation

ÃA�t,	� � AA�t�ei	t �32�

we can use Eqs. �21� and �19� in Eq. �18� to obtain

���̇S���t,t+�� = − i� �2�

4�i
�

−


+


�
AB


AB�	�

���ÃA�	����t,t+��
† ��ÃB�	����t,t+��d	,�S�t��

+
�2�

2�
�

−


+


�
AB

�AB�	�

����ÃB�	����t,t+���S�t���ÃA�	����t,t+��
†

−
1

2
	��ÃA�	����t,t+��

† ��ÃB�	����t,t+��,�S�t�
� .

�33�

With the replacements ���̇S���t,t+��→ �̇S
� and �S�t�→�S

��t� this
becomes a time-inhomogeneous Lindblad master equation,
since the positivity of the �AB�	� matrix at every 	 is guar-
anteed for reservoirs in thermal equilibrium. Intuitively, the
time dependence of the Lindblad operators does not destroy
positivity, since at any fixed time t one may approximate the
time-dependent operators by a constant-operator Lindblad
form, see Appendix E for a more explicit discussion. Since
the case of slowly varying system Hamiltonians is of special
interest in the context of adiabatic quantum computation �6�,
we outline in Appendix D how one could in principle calcu-
late the time-averaged operators

��ÃA�	����t,t+�� =
1

�
�

t

t+�

AA�t��e+i	t�dt�

=
1

�
�

t

t+�

U†�t��AAU�t��e+i	t�dt�, �34�

in the adiabatic limit.

IV. SPIN-BOSON MODEL

We will make our method explicit at the example of the
spin-boson model in the following. We will also give some

numerical solutions to the master equations used: The eigen-
values of the density matrices have been calculated with the
LAPACK package �29�. The half-sided Fourier transforms
�11� and odd Fourier transforms �13� were calculated nu-
merically from the full Fourier transform by consecutive ap-
plication of backward and forward integral transforms. This
was implemented by an integration algorithm based on the
discrete Fourier transform optimized for oscillating inte-
grands �30�. For the integration of partial differential equa-
tions, a fourth-order Runge-Kutta method with an adaptive
step size �30� was used. Trace and Hermiticity of the density
matrix were always preserved within machine accuracy.
Likewise, whenever a Lindblad-type master equation was in-
tegrated, non-negativity of the smallest eigenvalue of the
density matrix was preserved within numerical accuracy de-
fined by the accuracy of the Fourier transform.

A. Microscopic derivation

We consider a system Hamiltonian with discrete energy
eigenvalues that can be described by a quadratic form of
Pauli matrices for a system of n spins,

HS = �1 + �
i=1

n

��i
x
i

x + �i
y
i

y + �i
z
i

z�

+ �
i=1

n

�
j=i+1

n

�
�,�=x,y,z

�ij
��
i

�
 j
�, �35�

where 
� i denotes the Pauli matrices acting on spin i. In the
worst case, this Hamiltonian is defined by 1−3 /2n+9 /2n2

real parameters. Note that when considering explicit ex-
amples, we will not give the dimension of these parameters
which implies that all times have their inverse dimensions.
This system Hamiltonian is nontrivial in the sense that even
in the case of time-independent parameters considered here,
the time evolution of the operators in the interaction picture
cannot be solved analytically without using exponential re-
sources. The system is coupled to a bosonic bath

HB = �
k

	k�bk
†bk +

1

2
� �36�

with the usual bosonic commutation relations. The coupling
between system and bath is realized by the quite general
interaction Hamiltonian

HSB = ��
i=1

n

�
k

�n� ik · 
� i � bk + n� ik
� · 
� i � bk

†� , �37�

with ��1 where the frequency dependence is contained in
the complex-valued coupling coefficients n� ik.

1. Bath correlation functions

In order to obtain a rather simple form of the master equa-
tion, we will make the assumption of a collective coupling,
where the frequency dependence of the coupling strengths
factorizes with the different spin positions and spin direc-
tions, i.e.,
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n� ik = n� ihk �38�

for some function hk. This implies that the distance between
the spins is smaller than the correlation length of the reser-
voir oscillators. This approximation is not crucial for the
further procedure but simplifies the resulting system of equa-
tions considerably, since the coupling to the reservoir can be
described by just two effective spin operators. In this case,
the interaction Hamiltonian �37� can be written as

HSB = ��R � �B + B†� + ��I � i�B − B†� �39�

with the composed operators

�R = �
i=1

n

Re�n� i� · 
� i, �I = �
i=1

n

Im�n� i� · 
� i,

B = �
k

hkbk, �40�

where we can identify from Eq. �2� the Hermitian operators

A1 = �R, A2 = �I,

B1 = B + B†, B2 = i�B − B†� . �41�

From the bath Hamiltonian �36� we obtain
eiHB�bke

−iHB�=e−i	k�bk and the Hermitian conjugate, respec-
tively. We will consider the limit of a large bath with a con-
tinuous spacing of oscillator frequencies. In this limit, the
sums over k can be approximated by an integral

�
k


hk
2f�	k� → �
0




g�	�f�	�d	 , �42�

where g�	� is defined by the distribution of bath oscillators
�spectral density� as well as the frequency-dependent cou-
pling strengths hk. With the bosonic expectation value for a
thermalized reservoir �Nk�=TrB	bk

†bk�B
0 
= �exp	�	k
−1�−1 at

temperature �= �kBT�−1 this can be used to determine the
bath correlation functions as

C11��� =
1

2�
�

−


+
 2�g�
	
�

1 − e−�	


e−i	�d	 ,

C12��� =
1

2�
�

−


+
 2��− i�g�
	
�sgn�	�

1 − e−�	


e−i	�d	 ,

C21��� = − C12���, C22��� = C11��� , �43�

where we can directly read off the Fourier transform matrix

��	� =
2�g�
	
�

1 − e−�	


� 1 − i sgn�	�
+ i sgn�	� 1

� . �44�

Note that it is positive semidefinite �compare Appendix C� at
every 	 ensuring positive evolution of the Lindblad form
master equation �14�.

In some examples given, we will phenomenologically pa-
rametrize �31,32� the density of states as

g�	� = � 	

	ph
�s

e−	/	ct, �45�

where the exponent s determines the behavior near small
frequencies, 	ph is some physical frequency of the bath and
	ct is a cutoff frequency necessary for normalization.

2. Exact solution for pure dephasing

The limit of pure dephasing of a single qubit is defined by
considering n=1 with

� =
1

2
, �z = −

1

2
, �46�

and all other coefficients to vanish in Eq. �35� as well as the
simple coupling n� = �0,0 ,1� in Eq. �37�—in this case also the
collective coupling assumption �38� becomes exact. Then the
time evolution operator in the interaction picture �16� can be
calculated exactly �4,24,33� to all orders and one obtains that
in the eigenbasis of the system Hamiltonian the diagonal
elements of the density matrix remain unchanged and the
off-diagonal elements simply decay as �cf. Eq. �82� in �24� in
the limit of a continuous bath spectrum�

�01�t� = e−��t��01�0� ,

��t� = 8�2�
0




g�	�
sin2�	t/2�

	2 coth��	

2
�d	 , �47�

i.e., in the pure dephasing limit one does not obtain thermal-
ization. Likewise, since e+iHStAe−iHSt=A it is evident that BM
and BMS approximations are equivalent for this case �com-
pare also Appendix B and Appendix C�.

B. Non-Markovian solutions

For simple system and interaction Hamiltonians

HS =
1

2
�1 − 
z�, HSB = �
a

� B1, �48�

where a� 	x ,y ,z
 and B1=B1
† is a bath operator, the non-

Markovian Born equation �10� is analytically solvable
�15,25,26� in the special case of an exponentially decaying
correlation function

C11��� � TrB	B1���B1�B
0 
 =

1

2�b
e−
�
/�b. �49�

By considering large �b one can thus model reservoirs with a
long-term memory, and the BM limit �where the BM ap-
proximation becomes exact� is obtained by considering
lim�b→0 C11���=����. We obtain for the even and odd Fourier
transforms in Eq. �13�,

�11�	� =
1

1 + �	�b�2 , 
11�	� =
i	�b

1 + �	�b�2 , �50�

where it becomes visible �for later comparison with the spin-
boson model� from Eq. �43� that this case can in principle be
reproduced by a bosonic reservoir in the large temperature
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limit with a Drude-like slowly decaying �but temperature-
dependent� spectral coupling density

g�	� =
1

2�

�	

1 + �	�b�2 . �51�

Note however that by assuming a sum of many exponentials
and allowing for phases, the method can in principle be gen-
eralized also to the low-temperature limit �25,34�. Inserting
the operator definitions in the Born equation �10� we obtain

�a�t� � �
0

t

e+i/2�t−t��
z

a�S�t��e−i/2�t−t��
z e−�t−t��/�b

2�b
dt�,

�̇S =
i

2
�
z,�S�t�� + �2��a�t� − �a

†�t�,
a� , �52�

where it becomes evident that by taking the time derivative
of the operator �a one simply obtains a coupled set of first-
order differential equations

�S =
i

2
�
z,�S�t�� + �2��̄a�t�,
a� ,

�̇̄a =
i

2
�
z,�̄a�t�� −

1

�b
�̄a�t� +

1

2�b
�
a,�S�t�� . �53�

for the operators �̄a�t�=�a�t�−�a
†�t� and �S�t�. Evidently,

trace and Hermiticity of �S and anti-Hermiticity of �̄a are
always preserved. Due to the initial condition �̄a�0�=0, the
trace of �̄a will always vanish. Therefore, it suffices to pa-
rametrize �S and �̄ by just six real variables,

�S � � �00 �x + i�y

�x − i�y 1 − �00
� ,

�̄ � � i�00 �x + i�y

− �x + i�y − i�00
� . �54�

In the limit �b→0 we simply obtain

�̇S =
i

2
�
z,�S�t�� + �2�
a�S�t�
a − �S�t�� �55�

for the system density matrix. In the BM approximation
�with finite �b� we obtain, along the lines of Appendix B for
a=z �pure dephasing�, �z

BM�t�= 1
2
z�S�t� and thereby

�̇S
BM =

i

2
�
z,�S�t�� + �2�
z�S�t�
z − �S�t�� �56�

which coincides with Eq. �55�, i.e., the dependence on �b
vanishes. In contrast, for the more interesting dissipative
case �a=x� we obtain �x

BM�t�= 1
2

1
1+�b

2 
x�S�t�− 1
2

�b

1+�b
2 
y�S�t�,

which yields

�̇S
BM =

i

2
�
z,�S�t�� +

�2

2

1

1 + �b
2†�


x,�S�t��,
x
‡

−
�2

2

�b

1 + �b
2†�


y,�S�t��,
x
‡ . �57�

1. Pure dephasing

In the pure dephasing case one has a=z. Inserting the
matrix elements in Eq. �53� one finds that �S

00 and �S
11 are

time independent �as is also known from the full solution�
and that the time evolution of the off-diagonal matrix ele-
ment is governed by

d

dt
��S

01�t�
�̄01�t�

� = � i − 2�2

+ 1/�b i − 1/�b
���S

01�t�
�̄01�t�

� .

With the initial condition �̄01�0�=0 one finds

�S
01�t� = �S

01�0�eite−t/�2�b��cosh��1 − 8�2�b
t

2�b
�

+
1

�1 − 8�2�b

sinh��1 − 8�2�b
t

2�b
�� , �58�

which reproduces the decay of the off-diagonal elements �the
factor eit is a consequence of the Schrödinger picture�. In the
high-temperature limit and for the corresponding density of
states �51� leading to exponentially decaying correlation
functions �49�, the decay rate of the exact solution �47� be-
comes

��t� =
8�2

�
�

0


 sin2�	t/2�
	2�1 + �	�b�2�

d	

= 4�2�b�cosh2� t

2�b
� − 1 − sinh� t

2�b
�cosh� t

2�b
�

+
t

2�b
� , �59�

which reduces in the limit �b→0 to ��t��2�2t. Similarly,
we find that in this limit, Eq. �58� reduces to
�S

01�t�=�S
01�0�eite−2�2t. This can be understood as the limit

�b→0 also corresponds to an infinitely fast relaxation of the
reservoir, where also the Born approximation becomes
exact. Likewise, it is straightforward to see that

�S

01�t�
−e−��t��S
01�0�=O	�4
. We will therefore not further

discuss the pure dephasing case with exponentially decaying
correlation functions and compare with the exact solution
�47� instead later on.

2. Dissipative coupling

Another important case is reproduced by choosing the dis-
sipation coupling a=x in Eq. �52�. Inserting the ansatz �54�
into Eq. �53� one finds two 3�3 systems

��̇00

�̇x

�̇y
� = � 0 2�2 0

− �b
−1 − �b

−1 − 1

0 1 − �b
−1��

�00

�x

�y
� +

1

2�b�0

1

0
� ,

� �̇x

�̇y

�̇00
� = �0 − 1 0

1 0 2�2

0 − �b
−1 − �b

−1��
�x

�y

�00
� , �60�

which have an analytic solution that is too lengthy to be
reproduced here. At first glance, these systems seem to be

GERNOT SCHALLER AND TOBIAS BRANDES PHYSICAL REVIEW A 78, 022106 �2008�

022106-8



completely independent but note that the condition of initial
validity of the density matrix relates their initial conditions.
The steady-state solution for the density matrix corresponds
to the thermalized Gibbs state �15� for high temperatures
��→0�.

C. Single-qubit coarse graining

1. Pure dephasing

In order to determine the master equations �29� for the
pure dephasing limit discussed in Sec. IV A 2, we use

A1 = 
z, B1 = �
k

�hkbk + hk
�bk

†� �61�

to obtain that the Lamb shift Hamiltonian in Eq. �23� is pro-
portional to the identity matrix and thus has no effect. From
the dissipative part however we obtain a nonvanishing con-
tribution from Eq. �23�, such that the master equation �24� in
the interaction picture is given by

�̇S
� = �̄����
0��0
�S

��t�
0��0
 + 
1��1
�S
��t�
1��1


− 
0��0
�S
��t�
1��1
 − 
1��1
�S

��t�
0��0
� − �̄����S
��t� ,

�̄��� =
�2�

2�
�

−


+


�11�	�sinc2�	�

2
�d	 . �62�

With assuming exponentially decaying correlation functions
�49� we can use Eq. �50� to recover the BM approximation
�56�, but the above equation for pure dephasing of course
holds also for more general correlation functions. It is
straightforward to show that the off-diagonal elements of the

density matrix will decay as �0
�S
��t�
1�=e−�̄���t�0
�S

��0�
1�. A
closer inspection of the decay rate yields

�̄���t = 8�2 t

�
�

−


+
 sin2�	�/2�
	2

g�
	
�

1 − e−�	


d	

= 8�2 t

�
�

0

+
 sin2�	�/2�
	2 g�	�coth��	/2�d	 =

t

�
���� ,

�63�

i.e., we reproduce the result of �24� that for pure dephasing
of a single qubit, the solution �S

t �t� yields the exact solution
�S�t�, see also Fig. 1. Naturally, this is also equivalent with
the Born equation up to O	�2
. Note also that for large
coarse-graining times, Fig. 1 shows that the coarse-graining
master equations approach the secular approximation master
equation—which can also be seen as a numerical confirma-
tion of Eq. �27�.

2. Dissipative coupling

With considering A1=
x, an exponentially decaying cor-
relation function �49�, and HS= 1

2 �1−
z� one obtains a more
complicated master equation for �S

��t� in the Schrödinger pic-
ture

�̇S
��t� = � i

2

z − i
00���
0��0
 − i
11���
1��1
,�S

��
+ �01,01����
0��1
�S

� 
1��0
 −
1

2
	
1��1
,�S

�
�
+ �10,10����
1��0
�S

� 
0��1
 −
1

2
	
0��0
,�S

�
�
+ �01,10���
0��1
�S

� 
0��1
 + �10,01���
1��0
�S
� 
1��0
 .

�64�

From the nonvanishing matrix elements in Eq. �24� one can
deduce that �unlike in the pure dephasing case� the Lamb-
shift term will contribute, since �although diagonal� it is not
proportional to the identity matrix anymore. Likewise, we
also observe here a decoupled evolution of diagonal

�S00

� �t� =
�01,01

�01,01 + �10,10
�1 − e−��01,01+�10,10�t�

+ e−��01,01+�10,10�t�S00

� �0� �65�

and off-diagonal matrix elements

�̇S01

� = �i − ������S01

� + �01,10�����S01

� ��, �66�

with ����= 1
2 ��01,01+�10,10�− i�
11−
00� �we have omitted

the � dependence�. Considering even and odd Fourier trans-
forms of the form �50� corresponding to exponentially de-
caying correlation functions, we can now compare the solu-
tion �60� of the Born equation with the solutions �64� of the
coarse-graining approach.

When one initializes the density matrix as �S�0�= 
0��0

one finds that for infinite coarse-graining times the diagonal
terms will equilibrate to value 1/2 �which corresponds to
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FIG. 1. �Color online� Eigenvalue evolution of the system den-
sity matrix �only one eigenvalue shown since trace conservation
implies a symmetric evolution� initialized in the pure state
�i
�S

0
j�=1 /2 for single-qubit dephasing. As predicted by Eq. �63�,
the solutions of the coarse-graining master equations �thin dashed
lines� intersect the exact solution �solid line� at t=� �vertical dashed
lines�. The secular approximation �thick dashed line� corresponds to
�→
 and does not correctly cover the short time behavior of the
exact solution. Parameters were chosen as follows: �=1, 	ph=1,
	ct=5, s=1, �=0.1.
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thermalization at infinite temperatures�, see Fig. 2. In this
case, the off-diagonal terms will evidently vanish through-
out. Note that for the small coupling chosen ��=0.1�, the
solution of the Born equation �S�t� is approximated by the
adaptive coarse-graining solutions �S

t �t� with extraordinary
accuracy.

In contrast, when initializing the density matrix as
�S�0�= 1

2 �
0��0
+ 
0��1
+ 
1��0
+ 
1��1
� one observes that the

diagonal entries will remain unchanged and the off-diagonals
will decay. The actual behavior of the decay of the off-
diagonal elements is depicted in Fig. 3. Again we observe a
strikingly good agreement between the Born solution �S�t�
and the adaptive coarse-graining solutions �S

t �t�.
It is also instructive to compare for the adaptive coarse-

graining approach the limit of infinite coarse-graining times
�BMS approximation�

�̇S = � i

2
+

i

2

�2�b

1 + �b
2��
z,�S� +

�2

1 + �b
2 �
0��1
�S
1��0


+ 
1��0
�S
0��1
 − �S� �67�

with the BM approximation master Eq. �57�, where one can
see that only the equations for the diagonals match. Like-
wise, in the limit �b→0 one obtains

�̇S
� =

i

2
�
z,�S

�� + �2�
0��1
�S
� 
1��0
 + 
1��0
�S

� 
0��1
 − �S
��

+ �2e−i�sinc �
0��1
�S
� 
0��1
 + �2e+i�sinc �
1��0
�S

� 
1��0
 .
�68�

Here, one finds that the BMS approximation ��→
� yields a
different master equation than the BM limit �55� and also the
BM approximation �57�. However, also within the coarse-
graining approach the limit �b→0 �with finite �� leads to the
same steady state as the BMS approximation �→
 and the
BM limit �55�—only the relaxation rates may differ. Note
however that the BM approximation �57� may even lead to
instable behavior of the off-diagonal matrix elements for
large � �compare also Sec. IV D�, whereas the coarse-
graining approach always generates Lindblad forms.
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FIG. 2. �Color online� Evolution of the �11-matrix element of
the density matrix for dissipative coupling. The solid line represents
the solution of the Born equation �60� and the thin dashed lines
correspond to solutions of Eq. �64� for different coarse-graining
times �. Up to second order in �, a perfect numerical agreement is
found for the matrix elements of �t�t� �symbols� and the Born so-
lution �solid line�. Parameters were chosen as follows: �=0.1, �b

=1.
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FIG. 3. �Color online� Evolution of the 
�01
 matrix element of
the density matrix for pure dissipation. The solid line represents the
solution of the Born equation �60� and the thin dashed lines corre-
spond to solutions of Eq. �64� for different coarse-graining times �.
Up to second order in �, a perfect agreement is found for the matrix
elements of �t�t� �symbols� and the Born solution �solid line�. The
difference between Born solution and BM as well as BMS approxi-
mations is too small to be visible. Parameters were chosen as fol-
lows: �=0.1, �b=1.
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FIG. 4. �Color online� Evolution of the eigenvalues of the den-
sity matrix for a single qubit initialized in the pure state
�i
�S

0
j�=1 /2. For long times the BMS solution �thick dashed line�
and the adaptive coarse-graining solution �thick solid line� predict
thermalization in the thermal equilibrium state �15�, whereas a dif-
ferent equilibrium state is assumed for short coarse-graining times
�thin dashed lines�. Parameters were chosen as follows: �=1,
	ph=1, 	ct=5, s=1, �=0.1.
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3. General coupling

For a more complex coupling of the spin to the reservoir

HS =
1

2
�1 − 
z�, n�1 =

1
�2

�1 + i,1 + i,1 + i� , �69�

and also more realistic spectral coupling densities of type
�45� we find thermalization as predicted by the BMS ap-
proximation for long times. For short times however, the
solution �S

t �t� may strongly differ from the BMS solution,
see Fig. 4. For example, if coarse-graining times are chosen
too small, a nonthermalized steady state is obtained. For
large coarse-graining times, the thermalized steady state is
reached, but then in the short time regime, large differences
between fixed graining and the adaptive graining solution are
found. Again, we numerically confirm Eq. �27�, since for
large coarse-graining times the secular approximation is re-
produced.

D. Staying reasonable

Frequently, the BM approximation �12� is used although it
does not generally guarantee for positive evolution. This is
certainly tolerable if the solution obtained approximates the
exact solution well �and thus violates positivity only
slightly�. In addition, if the interaction Hamiltonian used in
such models implicitly corresponds to a secular approxima-
tion �6,35�, one will obtain a Lindblad form master equation
and positivity as well as stability of the density matrix will
be granted throughout. In general however, this will not be
the case. Here we will analytically consider a single qubit
HS= 1

2 �1−
z� with the simple coupling HSB=
x � B. Denot-
ing with ��	� the half-sided Fourier transform �11� of the
reservoir correlation function, one can write Eq. �12� in the
form �̇S=L�S�t� and calculate the eigenvalues of the Liouvil-
lian.

If one is only interested in the subspace of diagonal den-
sity matrices one finds the two corresponding eigenvalues

0=0 and 
1=−2�2A with A=Re���+1�+��−1��. For physi-
cally motivated bath correlation functions C11 in Eq. �43�
one obtains that 
1�0, such that the evolution in this sub-
space may not lead to unstable behavior—although positivity
may be violated.

In contrast, in the off-diagonal subspace one obtains the
two eigenvalues �2/3=−2�2A��−1+2B�2+A2�4 with A de-
fined as above and B=Im���−1�−��+1��. Given B�0
�which can be achieved with correlation functions of the
form �43��, one of these will pick a positive real part as soon
as �2� �2B�−1, which corresponds to an unstable evolution,
see also Fig. 5. Numerically, we observe the same for n=2
mutually uncoupled qubits �with similar system Hamilto-
nians and couplings�. In this case, the expectation value of
operators that are not diagonal in the system Hamiltonian
will not yield any meaningful results and the Born-Markov
approximation is questionable.

E. Thermalization

In the pure dephasing limit, one observes a rapid �i.e.,
exponential� decay of the off-diagonal elements of the den-

sity matrix. Also, if there are no degeneracies in the spec-
trum, the rotating wave approximation �14� predicts a decou-
pled evolution of the diagonal elements of the density matrix
in the eigenbasis of HS, i.e., from the corresponding evolu-
tion equation �̇ii�t�=� jAij� j j�t� one might expect an exponen-
tial decay into the eigenvector of the matrix A which has
eigenvalue 0 �steady state�. The corresponding subspace can
still be degenerate �many stationary states� or there may exist
exponentially many other eigenvectors with very small ei-
genvalues, such that thermalization does not necessarily hap-
pen very fast. Here we will consider some specific realiza-
tions of the spin-boson model �35� and solve Eq. �14�
numerically.

For example, if the system Hamiltonian has degeneracies
and the coupling to the reservoir does not lift these, the sys-
tem may relax into states that are not even diagonal in the
system Hamiltonian basis. In these cases, the initial density
matrix may determine which steady state is actually reached,
see Fig. 6. As a first example we consider

� = 1, �1
z = �2

z = −
1

2
,

n�1 = n�2 =
1
�2

�1 + i,1 + i,1 + i� , �70�

and all other coefficients of Eq. �35� vanishing, such that
there exists a twofold degeneracy in the spectrum of HS. In
this section, we will consider spectral densities of type �45�.

For the low reservoir temperatures assumed in Fig. 6,
thermalization corresponds to relaxation into the ground state
and one can see that it may depend on the initial state of the
density matrix and possibly lifted degeneracies whether ther-
malization takes place. In reality, the degeneracy might al-
ways be lifted by some imperfect Hamiltonian implementa-
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FIG. 5. �Color online� Largest eigenvalue of the density matrix
for one �solid� and two �dashed� qubits initialized with �i
�S

0
j�
=1 /2n calculated from Eq. �12�. For large �, not only positivity is
violated �negative eigenvalues not shown—trace conservation�, but
the solution even becomes unstable. The parameters in Eq. �43�
were chosen as �=1, 	ph=1, 	ct=5, s=2, such that the transition
from stable to unstable behavior occurs at �crit�0.231 294 for
n=1.
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tions. In addition, the coupling to the reservoir may be more
complex than in Eq. �70� thus making the thermalized sys-
tem state �15� the only stationary state of the rotating wave
master equation �14�, compare also �4�. However, it is to be
expected that thermalization in this case will take rather long
times, especially for large and complicated systems �see the
next section�.

F. Solving problems by cooling

It is known that Hamiltonians of the form �35� can be
used to encode solutions to computationally hard problems

in their ground state. This is, for example, exploited in adia-
batic quantum computation �7�. For a system made of five
spins, we will compare an enlarged version of the previous
example �70�,

� =
5

2
, �i=1..5

z = −
1

2
�71�

with the ground-state encoding of Exact Cover 3—a specific
NP-complete problem.

The Exact Cover 3 problem can be introduced as follows
�7�: Given a set of m constraints where each constraint con-
tains the positions of three bits Cj = �pj

1 , pj
2 , pj

3� �with evi-
dently 1� pj

i �n�, one is looking for the n-bit bit string
b1 , . . . ,bn �with bi� 	0,1
� that fulfills for each constraint
bpj

1 +bpj
2 +bpj

3 =1 �where the plus sign denotes the integer
sum�. One way to encode the solution to this problem into
the ground state of a Hamiltonian of the type �35� is given by
�36,37�

� = m, �i
z = −

ni

2
, �ij

zz = +
nij

2
�72�

and all other coefficients vanishing—the differing prefactor
of �ij

zz in comparison to �37� results from the absence of
double counting in ij in Eq. �35�. In the above equation, m
denotes the total number of clauses, ni the number of clauses
involving bit i, and nij the number of clauses involving both
bits i and j. Specifically, we will consider the four clauses
C1= �2,3 ,4�, C2= �1,2 ,5�, C3= �1,4 ,5�, and C4= �3,4 ,5�.
This implies the nonvanishing coefficients �=4,
�1

z =�2
z =�3

z =−1, �4
z =�5

z =−3 /2, �12
zz =�14

zz =�23
zz =�24

zz =a25
zz =�35

zz

=1 /2, and �15
zz =�34

zz =�45
zz =1.

As can be easily checked, this problem has the unique
solution 
10100� �with energy E0=0� and the first excited
states �with a sixfold degeneracy� are given by

00101� , 
10010� , 
00001� , 
00010� , 
01001� , 
01010� with en-
ergies E1= ¯ =E6=1. The first excited states have Hamming
distances �i.e., number of bit flips necessary for transforma-
tion� to the solution of 2,2,3,3,4,4, respectively. This already
indicates the hardness of such problems. Simple coupling
Hamiltonians such as Eq. �37� that are only linear in the
Pauli matrices will to first order only yield transitions be-
tween states with Hamming distance 1, since �a

i

x/y
b�=0 if

a� and 
b� have Hamming distance larger than 1. Of course,
this does not completely prohibit transitions between states
with a larger Hamming distance, but such tunneling pro-
cesses will have to pass through energetically less favorable
states and are therefore strongly suppressed. Accordingly,
one may expect that the process of thermalization is strongly
hampered. This is also observed in Fig. 7, where we have
assumed a reservoir temperature much smaller than the fun-
damental energy gap. Whereas for the simple qubit system
�71� the system rapidly relaxes into the ground state, this is
very different for the example �72�.

V. CONCLUSION

We have compared different procedures of deriving mas-
ter equations from microscopic models and have shown that
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FIG. 6. �Color online� Top: Eigenvalue evolution for a 2-qubit
system according to the secular approximation master equation �14�
with a twofold degeneracy for different initial states �solid and
dashed lines� and with a near twofold degeneracy �dotted lines�.
Vertical dashed lines indicate the times at which the bottom row
snapshots have been taken. Bottom rows: Absolute values of the
matrix elements of the corresponding 4�4 density matrix in the
ordered energy eigenbasis �such that the top left-hand corner corre-
sponds to the ground state�. Color coding ranges from blue �value
0� to red �value 1�. In the upper row, the system is initialized in a
nonthermal density matrix �i
�S

0
j�=1 /4 and relaxes into a thermal-
ized state �15� with �sys=�, i.e., for the low reservoir temperature
chosen ��=10� essentially into the ground state. In contrast, in the
middle row the initial state was a thermalized one with initial sys-
tem temperature �sys

0 =1, and the system does not relax into a ther-
mal equilibrium state. In the lowest row, the degeneracy was broken
by choosing �1

z =−1 /2+0.01 and �2
z =−1 /2−0.01. Other parameters

were chosen as �=10, 	ph=1, 	ct=5, s=1, �=0.1.
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by using a coarse-graining approach one always obtains mas-
ter equations in Lindblad form. This ensures for positivity
and stability of the density matrix. In contrast, the usual Mar-
kovian approximation scheme may sometimes lead to a non-
positive and even unstable behavior, where in the latter case
there is no hope of approximating the exact solution. The
coarse-grained master equations depend on a parameter—the
coarse-graining time scale �. For short coarse-graining times
that are adaptively matched with the physical time, the solu-
tion �S

���� must approximate the result of the Born approxi-
mation by construction. For large coarse-graining times and
time-independent system Hamiltonians, we reproduce the
secular approximation. For all intermediate coarse-graining
times, a positive evolution of the system density matrix is
ensured by the Lindblad form of the resulting differential
equations governing the time evolution. For the special case
of pure dephasing of a single qubit we reproduce the analyti-
cal result by �24� that �S

t �t�=�S�t� yields the exact solution
�which is of course equivalent in the weak-coupling limit to
the Born approximation�. For the simple example of expo-
nentially decaying correlation functions we find by numeri-
cal simulation a surprisingly perfect agreement between so-
lutions of the integro-differential Born equation and
solutions of the adaptive coarse-graining approach. Given an
interest in the system density matrix at time t, we therefore
propose to match the coarse-graining time with the physical
time �= t. In this case one must calculate the Liouvillian
matrix elements �23� only once �for the desired time t� and
then evolve the density matrix using Eq. �24� until that time
t. In terms of computational complexity, this is more efficient
than an evolving integro-differential equation. A similar ad-
vantage is given when the resulting master equations are so
simple such that an analytical solution in terms of the damp-
ening matrix elements is possible. If in contrast the system is
very complex and one is interested in the density matrix at
all times, this advantage is destroyed. From a computational
perspective, it would therefore be interesting to find the gen-
eral map

�̇S�t� = L�t��S�t� = lim
�t→0

�S�t + �t� − �S�t�
�t

�73�

which fulfills �S�t�=�S
t �t�. Formally, such a map can be

found by inserting the solution �S
��t�=eL�t�S�0� into the de-

rivative in Eq. �73�,

L�t� = lim
�t→0

1

�t
�eLt+�t�t+�t�e−Ltt − 1� = � d

dt
eLtt�e−Ltt. �74�

We have given various examples of simple qubit systems
coupled to a bosonic reservoir which have demonstrated that
thermalization of spin systems coupled to a bosonic bath
may depend on a plethora of factors such as the initial state,
complexity of the system Hamiltonian, and complexity of the
coupling. Future research will consider the importance of the
coarse-graining approach for different scenarios.
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APPENDIX A: NEGLECT OF BACK-ACTION

Throughout the paper, we make the following simplifying
assumptions:

Initial factorization of the density matrix. By assuming

��0� = �S�0� � �B
0 = �S�0� � �B

0 �A1�

we implicitly demand that one can at t=0 prepare the system
in a product state, which requires sufficient experimental
control.

Born approximation. For a bath much larger than the sys-
tem and weak coupling it is reasonable to assume that the
back-action of the system onto the bath is small, such that
the bath part of the density matrix is hardly changed from its
initial value, i.e.,

��t�� = �S�t�� � �B
0 + O	�
 . �A2�

Clearly, inserting this approximation in the third term in Eq.
�7� is consistent up to second order in �.

Reservoir in stationary state. We will assume that the res-
ervoir is in a stationary state of the bath Hamiltonian, which
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FIG. 7. �Color online� Top: Eigenvalue evolution for a 5-qubit
system according to the secular approximation master equation �14�
for different system Hamiltonians given by Eq. �71� �solid lines�
and Eq. �72� with an Exact Cover 3-problem �dashed lines�, respec-
tively. In both cases, the density matrix has been initialized as
�i
�S

0
j�=1 /32. Whereas for the uncoupled spin system the system
rapidly relaxes into the ground state, the final state for the exact
cover problem is very different. Bottom: Absolute values of the
matrix elements of the 7�7 top left-hand submatrix of the full
32�32 density matrix in the ordered energy eigenbasis. On the
left-hand side �corresponding to the solid line on top�, the system
relaxes to the ground state �red spot�, whereas for the exact cover
problem �right-hand side, dashed line on top�, the system state is
not thermalized. Other parameters were chosen as �=10, 	ph=1,
	ct=5, s=1, �=0.1.
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implies ��B
0 ,HB�=0. One possibility of such a stationary

state is to assume the thermal equilibrium state ��−1=kBT at
temperature T�

�B
0 = �B

0 =
e−�HB

TrB	e−�HB

. �A3�

APPENDIX B: MARKOV APPROXIMATION

Starting from the Born equation �8�, the Markovian ap-
proximation in �4� is performed by replacing �in the interac-
tion picture� �S�t��→�S�t� under the integral, substituting �
= t− t� and extending the integration to infinity. This is usu-
ally motivated by fast decaying reservoir correlation func-
tions �9�. By doing so, we obtain the BM master equation

�̇S = − i TrB	�HSB�t�,�S�0��B
0 �


− �
0




TrB	†HSB�t�,�HSB�t − ��,�S�t��B
0 �‡
d� + O	�3
 ,

�B1�

where one can now insert the decomposition �2� of the inter-
action Hamiltonian to obtain

�̇S = − i��
A

�BA��AA�t�,�S�0��

+ �2��
AB
�

0




�AB�t − ���S�t�,AA�t��CAB���d� + H.c.�
+ O	�3
 , �B2�

with the reservoir correlation functions �9�. We will use
�BA�=0 throughout, since this case can always be generated
with a suitable transformation �22�. In order to evaluate the
time dependence of the operators in Eq. �B2�, it is useful to
expand them into eigenoperators of the system Hamiltonian
�assuming HS to be time independent�,

AA = �
	

AA�	� = �
	

AA
† �	� = AA

† ,

AA�	� = �
ab

��Eb−Ea�,	
a��a
AA
b��b
 , �B3�

where the variable 	 ranges over all energy differences of
HS, HS
a�=Ea
a�, and � is a Kronecker symbol. These opera-
tors AA�	� have the advantageous properties

�HS,AA�	�� = − 	AA�	� ,

�HS,AA
† �	�� = + 	AA

† �	� ,

�HS,AA
† �	�AB�	�� = 0, �B4�

which implies in the interaction picture

AA�t� = �
	

e−i	tAA�	� = �
	

e+i	tAA
† �	� . �B5�

With inserting the half-sided Fourier transform of the reser-
voir correlation functions �11� we obtain for the master equa-
tion in Eq. �B2� with �BA�=0,

�̇S � �2��AB
�

	,	�

ei�	�−	�t�AB�	��AB�	��S�t�,AA
† �	���

+ H.c.� . �B6�

Finally, we observe that by reinserting the definition of the
eigenoperators �B3� in Eq. �B6� and switching back to the
Schrödinger picture the time-dependent phase factors vanish
and one obtains the Born-Markov master equation �12�.

APPENDIX C: SECULAR APPROXIMATION

For large times, the terms with an oscillating prefactor in
Eq. �B6� will average out and by inserting

ei�	�−	�t�S�t� � �	,	��S�t� �C1�

in Eq. �B6� and switching to the Schrödinger picture �com-
pare also, e.g., Chap. 3.3 in �4�� we obtain

�̇S = − i�HS,�S�t�� + �2�
	

�
AB

	�AB�	��AB�	��S,AA
† �	��

+ H.c.
 . �C2�

The advantage of the secular approximation is that we can
now combine the half-sided Fourier transforms to full �even
and odd� Fourier transforms �13� of the reservoir correlation
functions. Inserting these definitions into Eq. �C2�, one ob-
tains a Lindblad �16� form

�̇S = − i�HS,�S�t�� − i��2

2i
�
	

�
AB


AB�	�AA
† �	�AB�	�,�S�t��

+ �2�
	

�
AB

�AB�	��AB�	��SAA
† �	�

−
1

2
	AA

† �	�AB�	�,�S�t�
� , �C3�

where the positivity of the �AB�	� matrix is guaranteed by
Bochners theorem �4,38�, which states that the Fourier trans-
form of a function of positive type �as are the reservoir cor-
relation functions� gives rise to a positive definite matrix. In
the above equation, the second commutator corresponds to
the unitary action of decoherence �Lamb shift�. Finally, we
can insert the operator definitions �B3� in �C3� to obtain Eq.
�14�. Naturally, if �HS ,AA�=0 �pure dephasing�, BM and
BMS approximations are equivalent.

APPENDIX D: ADIABATIC APPROXIMATION

With inserting the ansatz

U�t� = �
ab

uab�t�exp�− i�
0

t

E��t��dt��
a�t���b�0�
 ,

�D1�

where the 
a�t�� span an instantaneous basis �chosen to be
complete and orthonormal� of the system Hilbert space de-
fined via HS�t�
a�t��=Ea�t�
a�t�� in the evolution equation for
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the time evolution operator U̇�t�=−iHS�t�U�t�, one obtains
an equation for the expansion coefficients

u̇ab + uab�a
ȧ� = − �
c�a

ucbe−i�0
t gca�t��dt��a
ċ� �D2�

with the energy gap

gca�t�� = Ec�t�� − Ea�t�� . �D3�

With introducing the Berry phase �39�

�a�t� = i�
0

t

�a�t��
ȧ�t���dt� �D4�

this can also be written as

d

dt
�uabe−i�a�t�� = − �

c�a

ucbe−i�a�t�−i�0
t gca�t��dt��a
ċ� ,

which gives the general time evolution of the expansion co-
efficients uab for any �also nonadiabatic� system Hamiltonian
HS�t� if one uses the initial condition uab�0�=�ab. The full
adiabatic approximation essentially consists in setting the
right-hand side of above equation to zero: For slowly varying
system Hamiltonians, the change of the eigenvectors will be
negligible such that �a 
 ċ��0. Note however, that in the vi-
cinity of avoided crossings, the condition of adiabaticity re-
lates the maximum speed of the time evolution with the
spectral properties of the system Hamiltonian

�a
ċ� =
�a
HS
c�
Ec − Ea

, �D5�

see also, e.g., �9,10�. If �a 
 ċ��0, one obtains with the adia-
batic approximation uab

ad�t�=�abei�a�t� which implies for the
time evolution operator in the adiabatic limit

U�t� � �
a

ei�a�t�−i�0
t Ea���d�
a�t���a�0�
 . �D6�

Therefore, we obtain for the time-averaged operator in Eq.
�34�,

��ÃA�	����t,t+�� � �
ab


a�0���b�0�

1

�
�

t

t+�

�a�t��
AA
b�t���

�e−i��ab�t��−	t�−�0
t�gab���d��dt� �D7�

with �ab�t��=�a�t��−�b�t�� and gab���=Ea���−Eb���.

APPENDIX E: POSITIVITY-PRESERVING MASTER
EQUATIONS

Here we will show that master equations of the form

�̇ = − i�H�t�,��t�� + �
��=1

K

����t��L��t���t�L�
†�t�

−
1

2
	L�

†�t�L��t�,��t�
� �E1�

generally preserve the positive semidefiniteness of an initial
condition ��0� if the matrix ����t� is positive semidefinite
and the operator H�t�=H†�t� is Hermitian at all times
�smoothness of all time dependencies provided�. With dis-
cretizing the time derivative and by introducing new opera-
tors

W1�t� = 1 = W1
†�t� ,

W2�t� = iH�t� +
1

2�
��

����t�L�
†�t�L��t� ,

W3�t� = L1�t�, . . . , WK+2�t� = LK�t� �E2�

we obtain

��t + �t� = �
��=1

K+2

w���t�W��t���t�W�
†�t� , �E3�

where the w���t� matrix is given by

w�t� =�
1 − �t 0 ¯ 0

− �t 0 0 ¯ 0

0 0

] ] �t��t�
0 0

� . �E4�

This matrix has a simple block structure and it is therefore
straightforward to relate the eigenvalues of w to those
of �. In particular, one obtains the eigenvalues
w1=1 /2�1−�1+4�t2�, w2=1 /2�1+�1+4�t2�, and
wi�3�t�=�t�i−2�t�, where �i−2�t� are the non-negative eigen-
values of ��t�. With diagonalizing the matrix in Eq. �E3� via
w���t�=��u���t�u��

� �t�w��t� with a suitable �time-dependent�
unitary transformation U�t� we obtain from Eq. �E3�
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��t + �t� = �
�

w��t�W̃��t���t�W̃�
†�t� ,

W̃��t� = �
�

u���t�W��t� . �E5�

Assuming that at time t we have a valid density matrix with
0����t��1 we obtain by inserting the spectral decomposi-
tion ��t�=�����t�
���t������t�
,

��
��t + �t�
�� = �
��

w��t����t�
��
W̃�
���t��
2

�
1

2
�1 − �1 + 4�t2��

�

���t�
��
W̃1
���t��
2

� − �t2�
�

���t�
��
W̃1
���t��
2 �
�t→0

0, �E6�

such that in the limit �t→0 �which defines the original dif-
ferential Eq. �E1��, the smallest eigenvalue of the density
matrix at time t+�t approaches zero faster than the discreti-
zation width �t. Therefore, in this limit the matrix w�t� be-
comes positive semidefinite and the differential equation
�E3� becomes a positivity-preserving map.

APPENDIX F: SINC DISTRIBUTION

For discrete a ,b, and continuous 	 we would like to ana-
lyze

f�	,a,b� � lim
�→


� sinc��	 + a�
�

2
�sinc��	 + b�

�

2
�

= lim
�→


4 sin��	 + a�
�

2
�sin��	 + b�

�

2
�

�	 + a��	 + b��
. �F1�

Under an integral with a smooth function g�	� one can con-
sider the case a�b by a partial fraction expansion where

without loss of generality we find for the first term �due to
the symmetry the second term can be treated in a completely
analogous way�

Ia�b = �
−


+


g�	�
sin��	 + a�

�

2
�sin��	 + b�

�

2
�

��	 + a�
d	

= cos��b − a�
�

2
��

−


+


g�	�
sin2��	 + a�

�

2
�

��	 + a�
d	

+
1

2
sin��b − a�

�

2
��

−


+


g�	�
sin��	 + a���

��	 + a�
d	 ,

where we have inserted �	+b�= �	+a�+ �b−a� to use trigo-
nometric relations for sin��+��. With a suitable transforma-
tion, this becomes

Ia�b =

cos��b − a�
�

2
�

�
�

−


+


g� x

�
− a� sin2�x/2�

x
dx

+

sin��b − a�
�

2
�

2�
�

−


+


g� x

�
− a� sin�x�

x
dx , �F2�

where for large �, the dominant integral contribution evalu-
ates the �smooth� function g�	� near g�−a� such that this
value can be taken out of the integral and we obtain
lim�→
 Ia�b=0. Using the representation

lim
�→


� sinc2���� = ����� �F3�

one can consider the general case via

f�	,a,b� � �ab lim
�→


� sinc2��w + a�
�

2
� = �ab���w + a

2
� ,

�F4�

which yields Eq. �27�.
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