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A theoretical framework is developed that combines the systematic many-body cluster-expansion approach
with the standard quantum-optical representations. A cluster-expansion transformation is derived to obtain a
flexible one-to-one mapping between correlated clusters and the usual phase-space and marginal distributions
discussed in quantum optics. The convergence and correlation properties of this transformation are explored
through several quantum-field examples including coherent, thermal, squeezed, Fock, and Schrödinger cat
states. The resulting correlation properties can be used as a basis to characterize and control many-body
correlations when quantum light interacts with matter. As an application, a cluster-expansion-restoration
scheme is developed that allows for the retrieval of the true quantum statistics of light from realistic measure-
ments that are deteriorated by the reduced quantum efficiency of the detectors.
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I. INTRODUCTION

Quantum-optical investigations can often be reduced to
the analysis of a model system where one isolates a few light
modes that interact with a simple quantized material such as
a two-level atom �1–3�. This approach yields the well-known
Jaynes-Cummings model �4� and its straightforward exten-
sions including multiple atoms �5� and light modes �6�. Fur-
thermore, one can introduce the coupling to one or more
reservoirs �7–9� introducing decay processes. With the help
of these models, one can explain a wide variety of phenom-
ena ranging from reversible spontaneous emission �10,11�
and quantum-Rabi flopping �12� to intriguing entanglement
effects and their applications �13–20�. For the rigorous
analysis of these effects, one needs to know the quantum
statistics, i.e., the fundamental distribution function charac-
terizing all quantum fluctuation aspects of the studied light.
Practically, the quantum statistics can be described via the
density matrix �or wave function if it exists�, the Wigner
function, or many alternative equivalent forms. In general,
the quantum-statistical analysis of single-mode light fields is
well established �21–23�. Especially, there are several criteria
for nonclassical behavior such as squeezing below the
Heisenberg minimum-uncertainty limit �24�, antibunching
�25,26�, emergence of negative values in the Wigner function
�27�, or the violation of Bell’s inequalities �28�.

The standard quantum-statistical analysis of light-matter
interaction often becomes impractical in situations where a
few-level description of the matter part of the system is no
longer adequate and a genuine many-body approach has to
be used. It is difficult—if not impossible—to use wave func-
tions, density matrices, or the Wigner function simply be-
cause the dimension of these objects becomes unmanageably
large, as far as current numerical resources are concerned.
Hence, one has to resort to an alternative approach where
one determines the quantum statistics via expectation values
and eventually via different levels of correlations. For ex-
ample, one can apply the so-called cluster-expansion scheme
to systematically include correlations up to a desired level.
Since the dimension of the included clusters is typically
much smaller than that of the system, this scheme allows for

a computationally feasible description of the coupled light-
matter quantum statistics. The cluster-expansion approach
has already been applied �29� in systematic treatments of the
combined quantum-optical and semiconductor many-body
correlations yielding, e.g., a microscopic description of pho-
toluminescence �30,31�, squeezing �32�, and entanglement
effects �33–35�. On this basis, we introduced the quantum-
optical spectroscopy �36� in semiconductors where the quan-
tum statistics of light is utilized, e.g., to directly create de-
sired many-body states with modified interaction properties.

In this paper, we analyze how the cluster-expansion ap-
proach is connected to well-established quantum-optical con-
cepts for single-mode systems by developing the cluster-
expansion-based representation for the quantum statistics of
light. In particular, we extend the cumulant-expansion ap-
proaches �37� beyond the diagonal occupation of number
states. Besides verifying that our approach can be reduced to
known quantum-statistical representations, we show that it
also provides a simple description of many relevant quantum
fields. In addition, we demonstrate that the cluster-expansion
method can be applied to remove quantum-efficiency dete-
rioration effects that are often present in realistic quantum-
statistics measurements, allowing us to restore the true
quantum-statistical information from actual measurements.

This paper is organized as follows. We first discuss in Sec.
II how the cluster expansion provides a systematic scheme
for both the many-body and quantum-optical problems. The
formalism is then applied for a single-mode light field in Sec.
III. In Sec. IV, the results are then developed into an opera-
tional cluster expansion for a single-mode light with a ge-
neric quantum statistics. The derived cluster-expansion trans-
formation �CET� is analyzed thoroughly in Sec. V, where the
convergence criteria are derived and tested via several nu-
merical examples. Finally in Sec. VI, we formulate the
cluster-expansion restoration �CER� transformation that can
be applied directly to experimental data to restore the true
quantum statistics from corrupted measurements.

II. QUANTUM OPTICS AND CLUSTER EXPANSION

The quantization of the transversal electromagnetic field
can be performed in several equivalent ways. Here, we resort
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to the mode-expansion formulation where the first step is to
find the complete set of orthogonal and transversal mode
functions uq�r� that are steady-state solutions of the wave
equation, i.e., uq�r� fulfills the Helmholtz equation without
the optically active matter. In free space, the mode functions
are plane waves, uq�r�= 1

�Veq·req, where V is the quantization
volume, q is the wave vector, and eq is the unit vector of the
polarization direction. The quantized light field is expressed
as �38,39�

E�r� = �
q

�iEquq�r�B̂q + H.c.� , �1�

where the mode index q also contains the polarization direc-
tion. The actual quantization of the multimode field follows
after one demands �38� that each coefficient obey the bosonic

commutation rules �B̂q , B̂q�
† �−= B̂qB̂q�

† − B̂q�
† B̂q=�q,q� and

�B̂q , B̂q�−= �B̂q
† , B̂q�

† �−=0. The quantization procedure also
fixes the vacuum-field amplitude, Eq=���q / �2�0�, where
�q=c�q� is the frequency of the mode, �0 is the permittivity
of the vacuum, and c is the speed of light in free space.

A. Hierarchy problem arising from light-matter
coupling

The coupling of matter to the multimode light field can be
formulated with the help of the dipole-interaction Hamil-
tonian,

Ĥsys = �
q

��q�B̂q
†B̂q +

1

2
	 − �

q
�gq

�B̂q
†P̂q + gqB̂qP̂q

†� + Ĥmat,

�2�

where gq determines the coupling strength of light to the

matter polarization P̂q while the pure mater contributions are

implicitly given by Ĥmat; for the explicit forms, we refer to
Ref. �40�. The Hamiltonian �2� can be reduced to the familiar
Jaynes-Cummings form by restricting the analysis to the

single mode B̂
 B̂q and identifying the polarization P̂q
�−
via the usual lowering operator for the two-level system. In
the same way, the semiconductor form is found by introduc-

ing the polarization operator P̂q=�k,����â�,k
† â��,k+q, which

describes electronic interband coherences. Since the elec-
trons are fermions, they obey the usual anticommutation re-
lations �â�,k

† â��,k��+=��,���k,k�. The resulting light-matter in-
teraction conserves the total momentum since the photon
momentum is always balanced by the corresponding recoil
momentum in the carrier system. In low-dimensional semi-
conductors, the momentum conservation is only partial since
only some of its components—corresponding to the uncon-
fined space dimensions—are conserved. One can easily gen-
eralize the light-matter interaction also for cases in which the
coupling strength depends on both band and momentum in-
dices.

Since the density-matrix- or wave-function-based solu-
tions are impractical for multimode fields and/or semicon-
ductor investigations, we adopt an equation-of-motion ap-
proach that can be generally applied. Hence, we evaluate the

Heisenberg equation of motion for the relevant operators,

i�
�

�t
Ô = �Ô,Ĥsys�−, �Ô� 
 Tr�Ô�̂� , �3�

and compute the observables using the density matrix �̂. The
time evolution for the light is then obtained from the photon-
operator dynamics,

i�
�

�t
B̂q = ��qB̂q − gq

�P̂q,

i�
�

�t
B̂q

† = − ��qB̂q
† + gqPq

† . �4�

To complete these equations, we also need the polarization-
operator dynamics,

i�
�

�t
P̂q = − �

q�

�gq�
� B̂q

†�P̂q, P̂q��− + gq�B̂q�P̂q, P̂q�
† �−�

+ �P̂q,Hmat�−. �5�

The polarization dynamics due to light-matter coupling
yields a simple closed form as long as the polarizaton opera-
tors obey fully bosonic commutation relations, i.e.,

�P̂q , P̂q��−=0 and �P̂q , P̂q�
† �−=�q,q�. In this bosonic scenario,

the light-matter coupling Hamiltonian leads to a direct trans-
fer of the light quantum statistics to the matter system. This

transfer also works reasonably well even when P̂q is weakly
nonbosonic. For example, we have shown �36� that the light
quantum statistics can be transferred to a sufficiently dilute
exciton system where scattering and phase-space effects are
only of minor importance.

For systems in which the polarization operators are non-
bosonic, such as �� or the interband polarization in semicon-
ductors, one actually has to include the nontrivial forms of

�P̂q , P̂q��− and �P̂q , P̂q�
† �− in the analysis. In general, when

working out the equations of motions, these commutations
lead to the appearance of new operator combinations, other
than polarization. Thus, one actually needs to solve the equa-
tion of motion for these new objects. Since new operator
combinations emerge for each new equation, one ends up
with an infinite hierarchy of operator equations. It is notable
that this hierarchy problem already arises from the quantum-
optical light-matter coupling, which can be verified even for
the simplest Jaynes-Cummings-model analysis. Besides this
quantum-optical hierarchy problem, semiconductor investi-
gations involve additional hierarchical couplings, e.g., due to
the Coulomb many-body interaction resulting from the

�P̂q ,Hmat�− contribution.

B. Cluster-expansion solution

A systematic way to treat the quantum-mechanical hierar-
chy problem is provided by the cluster-expansion method
�29,41–46�. This approach is well established, e.g., in quan-
tum chemistry, where it has been applied to solve the many-
body eigenstates of molecules �43–45�. In semiconductor
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systems, this formalism has successfully been used to ex-
plain a variety of many-body and quantum-optical phenom-
ena �32,36,39,46–55�. In the following, we briefly summa-
rize the main aspects of the cluster-expansion scheme based
on the discussion in Ref. �29�.

From a purely formal point of view, both a photon and a
polarization operator constitute a single-particle operator. If
we use the semiconductor as an example, a general
N-particle operator has the form

N̂ = B̂1
†
¯ B̂N1

† â1
†
¯ âN2

† âN2
¯ â1B̂N3

¯ B̂1 �6�

with all possible combinations of Nj fulfilling N1+N2+N3

=N. We have used here a compact notation where the j in B̂j
is a generic photon index q j. Based on the identification �6�,
we notice that the light-matter interaction in Eq. �2� consti-
tutes a genuine two-particle interaction for systems with a
nonbosonic polarization. Thus, it is not surprising that we
end up with formally identical hierarchy problems, connect-
ing N- and �N+1�-particle expectation values via

i�
�

�t
�N̂� = Ffree��N̂�� + Fhier��N̂ + 1�� �7�

for both the light-matter and the electronic two-particle Cou-
lomb interactions. In Eq. �7�, the functional Ffree results from
the noninteracting part while Fhier originates from the two-
particle interactions.

Identifying the dominant contributions for many-body and
quantum-optical systems, one can often identify a finite num-
ber of correlated clusters that correspond to the low-rank
momenta of simple distributions. In these cases, one can de-
scribe the quantum statistics with quantities whose number is
significantly reduced relative to the original, often infinite-
dimensional, distribution. For example, when the many-body
and the quantum-optical properties are accurately described
by the C lowest clusters, the hierarchy problem can be sys-
tematically truncated based on the cluster order appearing in
Eq. �7�.

To operationalize the cluster-expansion truncation, we
have to determine all the consistent factorizations of an

N-particle quantity �N̂� in terms of �i� independent single
particles �singlets�, �ii� correlated pairs �doublets�, �iii� cor-
related three-particle clusters �triplets�, up to �iv� correlated
N-particle clusters. For example, the pure photon terms have
a simple singlet factorization

�B̂1
†
¯ B̂M

† B̂M+1 ¯ B̂1�S = �B̂1
†� ¯ �B̂M

† ��B̂M+1� ¯ �B̂1� ,

�8�

which is identical to the classical factorization since each
bosonic operator is simply replaced by a complex-valued
quantity. At the next level, the system may display pairwise
correlations in the form of doublets,

	�B̂1
†B̂1�� 
 �B̂1

†B̂1�� − �B̂1
†B̂1��S,

	�B̂1B̂1�� 
 �B̂1B̂1�� − �B̂1B̂1��S. �9�

These contributions already describe the onset of quantum-
optical correlations. The expansion can be continued up to
the desired level of correlated N-particle clusters if we for-

mally know all expectation values from �1̂� to �N̂�. Then, a
specific correlated cluster can be constructed recursively us-
ing

�3̂� = �3̂�S + �1̂�	�2̂� + 	�3̂� ,

�N̂� = �N̂�S + �N̂ − 1�S	�2̂� + �N̂ − 4�S	�2̂�	�2̂� + ¯ + �N̂

− 3�S	�3̂� + ¯ + 	�N̂� . �10�

Here, the quantities with the subscript S denote the singlet

contributions and the terms 	�Ĵ� contain the purely corre-
lated parts of the J-particle cluster. In Eq. �10�, each term
includes a sum over all unique possibilities to reorganize the
N indices among singlets, doublets, and so on. Thus, one
must sum over all indistinguishable permutations of operator
indices such that each combination is included once and only
once. The fundamental fermionic and/or bosonic indistin-
guishability is guaranteed by associating the appropriate sign
with the permutations: for bosons, all permutations have a
positive sign while odd �even� permutations have a negative
�positive� sign for fermions. The schematic representation of
Eqs. �8�–�10� is shown in Fig. 1.

Even though we can associate a certain number of photon
operators with N-particle quantities, the photons should not
literally be taken as particles. In the cluster-expansion ap-
proach, the particle concept—strictly speaking—refers to a
given class of expectation values or correlations. Nonethe-
less, the formal particle concept actually allows us to system-
atically isolate the physically and intuitively important as-
pects from the full quantum statistics. In particular, the
cluster factorizations represent all possible ways “particles”
can be correlated with each other when the level of correla-
tion is limited to C. This observation allows us to apply the
systematic cluster-expansion truncation that is obtained by
decomposing any given N-particle quantity into C-particle
correlations,

�N̂�1¯C 
 �N̂�S + �N̂�D + ¯ + �N̂�C = �
J=1

C

�N̂�J, �11�

following directly from Eq. �10�. Here, �N�S contains only
singlets, �N�D contains all combinations of doublets but no
higher-order correlations, and so on. This truncation is physi-

<1> = <2> = +

< > =N
+ + ...+

FIG. 1. �Color online� Schematic factorization of bosonic
N-particle expectation values into correlated clusters.
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cally meaningful since one often excites the system with
weakly correlated light such as that emitted from most lasers.
In this situation, the higher-order correlations build up in a

strictly hierarchical order from 	�Ĵ� to 	�Ĵ+1� via the two-
particle interactions. Thus, as long as we start from an un-
correlated, Hartree-Fock-like ground state, we always find a
physically relevant time window where only clusters below
C-particle correlations determine the essential system prop-
erties. The nature of the physical problem determines the
lowest meaningful value of C. For example, if photons have
only pairwise correlations, the light can become squeezed.
The description of this process does not require clusters be-
yond C=2.

For any given light source, one can always limit the pho-
ton correlations to a phase space where correlated clusters
beyond C are less important. Thus, the hierarchy problem �7�
can systematically be truncated to the level of C-particle ex-
pectation values,

i�
�

�t
�Ĉ� = Ffree��Ĉ�� + Fhier��Ĉ + 1�1¯C� , �12�

because any �C+1�-particle expectation value is then ex-
pressed in terms of the cluster factorization scheme �11�.
Furthermore, one can describe the dynamics of any �N̂� en-
tirely via the lower-order C-particle correlations applied to-
gether with Eq. �10�. Since the cluster-expansion scheme
systematically truncates both the quantum-optical and the
many-body hierarchy problem, it constitutes an attractive ap-
proach to investigate quantum-optical effects in solids. Sev-
eral of the Coulomb-induced many-body effects and their
systematic solutions are discussed in Ref. �36�. In this paper,
our major focus is to explore how different quantum-optical
fields and their correlations are described with a finite num-
ber of clusters.

C. Explicit form of correlated clusters for boson fields

We assume that the multimode light field has formally M
modes and we know all the normally ordered expectation
values,

IK1¯KM
J1¯JM 
 ��B̂q1

† �J1
¯ �B̂qM

† �JM�B̂qM
�KM

¯ �B̂q1
�K1�

�13�

for all combinations of Jj =0,1 ,2 , . . . and Kk=0,1 ,2 , . . .,
where the modes q j and qk �j�k� are assumed to be differ-
ent. Depending on the problem analyzed, the number of
modes M does not have to be finite. At this point, we use
IK1,. . .,KM

J1,. . .,JM axiomatically as one possible presentation of the
quantum statistics while we rigorously prove the validity of
this assumption later in Sec. IV for single-mode fields.

The conversion of expectation values into clusters can be
performed explicitly by introducing a normally ordered char-
acteristic function for the multimode field,


N��1, . . . ,�M� 
 �e�j=1
M

�jB̂j
†
e−�k=1

M
�k

�B̂k� , �14�

where we again simplified the notation B̂j = B̂qj
. The intro-

duced 
N is a straightforward generalization of normally or-

dered characteristic functions that are often used to represent
the quantum statistics of a single-mode boson field �37�.

Mathematically, 
N is an analytic function that exists in
the vicinity of � j =0; especially, 
N=1 for � j =0, ∀j. Thus,
one can perform a Taylor expansion of 
N around � j =0,


N��1, . . . ,�N� = 

j=1

M � �
Jj,Kj=0

�
�− 1�Kj

Jj!Kj!
� j

Jj�� j
��Kj	IK1¯KM

J1¯JM .

�15�

For classical fields, we find IK1¯KM
J1¯JM =
 j=1

M �B̂j
†�Jj�B̂j�Kj accord-

ing to Eq. �8�. By inserting this into Eq. �15�, we observe that
the characteristics of classical fields simplifies into


N��1, . . . ,�N�S = exp��
j=1

M

� j�B̂j
†� − � j

��B̂j�	 , �16�

where the relevant singlet contributions appear in the expo-
nent.

This observation holds more generally. The correlated
clusters can always be identified by


N��1, . . . ,�N� = exp�
N��1, . . . ,�N�� ⇔ 
N��1, . . . ,�N�

= ln�
N��1, . . . ,�N�� , �17�

where 
N is the correlation-generating function. More spe-
cifically, 
N is an analytic function that exists in the vicinity
of � j =0. The Taylor expansion of 
N uniquely defines the
correlated clusters through


N��1, . . . ,�N� = 

j=1

M � �
Jj,Kj=0

�
�− 1�Kj

Jj!Kj!
� j

Jj�� j
��Kj		IK1¯KM

J1¯JM .

�18�

One can show that the Taylor-expansion coefficients,

	IK1¯KM
J1¯JM 
 	��B̂q1

† �J1
¯ �B̂qM

† �JM�B̂qM
�KM

¯ �B̂q1
�K1� ,

�19�

correspond exactly to the correlated clusters that are recur-
sively identified via Eq. �10�. The characteristic and
correlation-generation functions always allow us to evaluate
specific expectation values via a simple differentiation,

IK1¯KM
J1¯JM = �


j=1

M � �Jj+Kj

�� j
Jj��− � j

��Kj
�
N��1, . . . ,�N��

�k=0, ∀k

,

	IK1¯KM
J1¯JM = �


j=1

M � �Jj+Kj

�� j
Jj��− � j

��Kj
�
N��1, . . . ,�N��

�k=0

.

�20�

These properties make both 
 and 
 convenient functions to
present the quantum statistics.

The definition of correlations, Eqs. �17� and �18�, is for-
mally identical to the steps needed to determine cumulants
for classical distribution functions �56,57�. Thus, one often
refers to the cluster expansion as the cumulant expansion.
However, the quantum-mechanical generalization of the tra-
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ditional cumulant expansion requires an inclusion of
complex-valued averages and correlations �cumulants�. In
addition, the quantum-mechanical correlations can be asso-
ciated with physical correlations among particles, as shown
in Sec. II B.

III. QUANTUM STATISTICS OF A SINGLE-MODE LIGHT
FIELD

To explore the applicability of the cluster-expansion ap-
proach in quantum-optical problems, we now focus on the
standard single-mode analysis, which already allows us to
introduce and understand most of the quantum-optical ef-
fects. In particular, we want to show how the cluster expan-
sion describes the quantum statistics and to identify the
needed finite number of clusters. It is always one of our
goals to express the quantum statistics with the minimum
number of essential clusters.

The generic cluster-expansion description, provided by
Eqs. �13�–�19�, can be limited to the single-mode case sim-
ply by setting the number of modes M to one. In practice,
for example, balanced-homodyne detection �BHD� �58,59� is
capable of extracting exactly one mode out of the multimode
field. This measurement technique can be formulated via the
transformation �60�

B̂ =
cS
i
�2�0

��̄
� dt���t�Ê�t� , �21�

where �̄ is the central frequency related to the mode, and the

detectors collect the incoming source field Ê�t� in the area S.
This particular transformation is appropriate for a situation

where a beam splitter is used to mix Ê�t� with a well-defined
classical laser pulse, the local oscillator, having a single tem-
poral mode ���t�. When the split signals are detected with
two detectors, the difference of the output signals can be

related to one single temporal mode B̂, projected through the
local oscillator out of the characterized source field, accord-
ing to Eq. �21�. By choosing ��t�= 1

�Ve−i�qt, for instance, the

BHD picks up a single mode B̂= B̂q in the propagation direc-
tion determined by the measurement setup. This formulation
can easily be extended to include the polarization depen-
dence and/or geometric aspects of the detection, as is done,
e.g., in Ref. �61�.

A. Equivalent representations of quantum statistics

Since Eq. �21� identifies how single-mode fields can be
retrieved from multimode light, we can now concentrate on
the analysis of an arbitrary single-mode field. As the only

essential feature, we have to remember that B̂ is a bosonic
operator with the usual commutation relations. As the next
step, we connect the expectation-value representation,

IK
J 
 ��B̂†�J�B̂�K�, J and K integers, �22�

with other quantum-statistical descriptions. Generally, we
can introduce the quantum statistics via the density matrix in
the complete and orthogonal basis of quantum states. For

quantized light, we can choose the Fock-state basis �n� that
defines the density matrix,

�̂ = �
n,m

�n�C�n,m��m�, n and m integers, �23�

where the complex-valued coefficients C�n ,m� determine the
specific structure of �̂. The diagonal elements C�n ,n� define
the photon statistics that contains only a reduced amount of
information with respect to the level of the full quantum
statistics.

The algebraic properties of the Fock state produce

�B̂†�J�n� =��n + J�!
n!

�n + J�, B̂K�n� =� n!

�n − K�!
�n − K� .

�24�

By presenting the appearing factorials through the � func-
tion, one realizes that n!

�n−K�! correctly vanishes for K�n.
These relations also produce a one-to-one mapping between
IK

J and �̂ according to

IK
J = �

n=0

� ��n + J�!�n + K�!
n!

C�n + K,n + J� ⇔ C�n,m�

=
1

�n!m!
�
K=0

�
�− 1�K

K!
IK+n

K+m. �25�

This mapping relation is strictly valid for quantum-optical
fields that are limited in photon number to be below Nlim, i.e.,
C�n ,m�=0 for n ,m�Nlim. Since Nlim can be arbitrarily large
but finite, these states constitute a large subset of all possible
quantum-optical states. However, the relation �25� can pro-
duce a mathematically indefinite value for C�n ,m� for some
quantum-optical states with Nlim→�. This problem is ad-
dressed later in Sec. IV B and the convergence problem is
solved in Secs. IV C–IV E through the cluster-expansion ap-
proach. Especially, the one-to-one correspondence of the
expectation-value representation and density matrix is then
generally justified such that IK

J and �̂ provide an equivalent
description of quantum statistics. One also can write

C�n ,m�= 1
�n!m!

�:�B̂†�me−B̂†B̂�B̂�n : �, where :Ô: orders all cre-

ation operators in a generic operator sequence Ô to the left.
The resulting formal expression can be used as a starting
point of the quantum theory of photodetection �62,63�.

The connection of the cluster expansion with IK
J and �̂

follows from Eqs. �14� and �17� leading to


N��� 
 �e�B̂†
e−��B� = �

J,K=0

�
�J�− ���K

J!K!
IK

J = e
N���,


N��� = �
J,K=0

�
�J�− ���K

J!K!
	IK

J = ln�
N���� �26�

for the normally ordered characteristics and correlation-
generating functions, respectively. Both of these functions
exist and are analytic in the vicinity of �=0, with 
N�0�=1
and 
N�0�=0. Due to the uniqueness of the Taylor expansion,

N, 
N, and IK

J �or �̂� are equivalent representations of quan-
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tum statistics. Especially, 
N and 
N can be converted to the
other with a straightforward one-to-one mapping, 
N���
=e
N���.

B. The Wigner function

We introduce the quadrature operators for the quantized
single-mode light field,

x̂ =
B̂ + B̂†

2
, ŷ =

B̂ − B̂†

2i
. �27�

Using the bosonic commutation relations, we obtain �x̂ , ŷ�−

= i
2 , �x̂ , x̂�−=0= �ŷ , ŷ�− Thus, the choice of Eq. �27� allows us

to interpret x̂ to correspond to a position while ŷ is analogous
to a momentum of a particle. The simultaneous measurement
of the x̂ and ŷ quadratures is governed by the Heisenberg
uncertainty relation,

	�x̂�2 
 �x̂2� − �x̂��x̂�, 	�ŷ�2 
 �ŷ2� − �ŷ��ŷ� ,

	�x̂�	�ŷ� �
1

4
, �28�

which sets the ultimate limit to the accuracy for the detection
of electromagnetic fields.

The density matrix of the field can be presented more
explicitly using the position or momentum representation of
�̂. In other words, we may use ��x ,x��= �x��̂�x��
=�n,mC�n ,m��n�x��m

� �x��, where �n�x� are the usual
harmonic-oscillator wave functions in the real-space repre-
sentation. One can also compute the Wigner function �23,64�
with the help of the Fourier transformation,

W�x,y� =
1

�
� dr��x +

r

2
,x −

r

2
	e−i2yr. �29�

In general, W�x ,y� is a real-valued function in the xy phase
space.

We notice that there is a one-to-one mapping between
W�x ,y� and the density matrix via the Fourier transform and
its inverse. Thus, W�x ,y�, �̂, IK

J , and 	IK
J yield equivalent

presentations of the quantum statistics.
By introducing the complex number

� 
 x + iy, ⇔ x =
� + ��

2
, and y =

� − ��

2i
�30�

and using Eq. �29�, one finds another standard form of the
Wigner function �2,23�,

W��� =
1

�2 � d2�
N���e−���2/2e���−���
. �31�

Here, the integration is performed over the complex plane,
e.g., d2�=d�1d�2 with �=�1+ i�2. In the last step, we can
identify the normally ordered characteristic function with the
help of Eq. �26�.

C. Marginal distributions

Since the Wigner function is defined in the two-
dimensional xy plane, it is often convenient to introduce a
rotated Wigner function,

W���̃1,�̃2� = W���̃� 
 W��̃ei�� = W���, � 
 �̃ei�.

�32�

This allows us to define the general marginal distribution in
any arbitrary direction,

P���̃1� =� d�̃2W���̃�, �̃ = �̃1 + i�̃2. �33�

It is straightforward to show that P�=0�x�= �x��̂�x� and
P�=�/2�y�= �y��̂�y� produces probability distributions for po-
sition and momentum quadratures, respectively. These mar-
ginal distributions are always positive valued such that they
allow for the usual probabilistic interpretation.

To have a convenient description of rotated quadrature
quantities, we introduce rotated boson and quadrature opera-
tors according to

B̂� 
 Be−i�, x̂� 

B̂� + B̂�

†

2
= cos �x̂ + sin �ŷ ,

ŷ� 

B̂� − B̂�

†

2i
= − sin �x̂ + cos �ŷ . �34�

These quadratures obey the relations,

ŷ� = x̂�+��/2�, �x̂�, ŷ��− =
i

2
, �x̂�, x̂��− = 0 = �ŷ�, ŷ��−,

�35�

such that any two perpendicular quadratures constitute a ca-
nonical pair. In other words, the accuracy of measurements
in x̂� and x̂�+�/2 is limited by the Heisenberg uncertainty limit
�28�. In this context, we notice that that specific distinction
of position and momentum coordinates is not relevant for
quantum-optical fields such that it is more meaningful to
discuss quadrature quantities in a given direction.

It is a specialty of the BHD setup that it directly detects
that quadrature x� of the signal in the direction � that is
controllable via the local-oscillator phase. In particular, the
ensemble average of the BHD measurements produces

�x�� =� dx�x�P��x�� . �36�

If one makes a statistical analysis of the outcomes obtained
via repetition, the counting statistics actually constructs
P��x�� if the size of the measurement ensemble is large
enough. As shown by Vogel and Risken �65�, the Wigner
function behind the marginal distribution can be solved by
inverting Eq. �33�. This well-known problem leads to the
Radon transformation �65�

W��� =
2

�2�
0

�

d��
0

�

rdr�
−�

�

dxP��x�cos 2r�x − �1 cos �

− �2 sin �� . �37�

Thus, all measurements related to Eq. �36� can be directly
applied to construct the quantum statistics as demonstrated in
the pioneering work of Smithey et al. �60�.
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IV. CLUSTER-EXPANSION REPRESENTATION IN
QUANTUM OPTICS

By using the definition �33� and by taking an inverse Fou-
rier transformation of Eq. �31�, a straightforward derivation
produces the one-to-one mappings


N��� = e���2/2� d2�W���e−���+���

⇔ W��� =
1

�2 � d2�
N���e−���2/2e���−���
,

�38�


N
� �iq� 
 
N�iqei�� = e�1/2�q2�

−�

�

dxP��x�e+2iqx

⇔ P��x� =
1

�
� dq
N

� �iq�e−q2/2e−2iqx �39�

between the expectation-value representation and P��x� or
W���. Since both the Wigner function and the marginal dis-
tributions P��x� represent the quantum statistics of light in a
form that is accessible in experiments, we derive next the
explicit steps needed to convert the phase-space representa-
tion into the corresponding expectation-value and cluster-
expansion forms and vice versa. The resulting relations
nicely show how efficiently the cluster-expansion technique
can be applied to describe and identify quantum-optical
properties.

A. From phase space to expectation-value representation

If we assume that the Wigner function is known, we may
apply �38� directly to evaluate IK

J . More specifically, we Tay-
lor expand the function e−���+���

in terms of � and �� to find


N��� = e���2/2 �
J,K=0

�
�J�− ���K

J!K!
���K

J ,

���K
J 
� d2�W�������J�K, �40�

where we have identified the expectation values ���K
J that

simply describe the different moments of the Wigner func-
tion. If we now Taylor expand also the e���2/2 part in Eq. �40�,
we obtain


N��� = �
J,K=0

�
�J�− ���K

J!K!

� �
L=0

max�J,K�
J!K!

�J − L�!�K − L�!L!
�−

1

2
	L

���K−L
J−L

�41�

after we have properly rearranged the sums. By comparing
this result with the definition �26� of the characteristics func-
tion, we conclude that the expectation-value representation is
given by

IK
J = �

L=0

max�J,K�
J!K!

�J − L�!�K − L�!L!
�−

1

2
	L

���K−L
J−L ,

���K
J 
� d2�W�������J�K, �42�

where we have repeated the definition of ���K
J for the sake of

completeness. Since all ���K
J are finite for any physical

Wigner function �see also the discussion in Sec. V� and the
transformation �42� has only a finite number of terms, the
Wigner function can always be converted into the
expectation-value representation without any numerical con-
vergence problem.

In many physically relevant situations, one often knows
the distributions P��x� instead of W���. To convert P��x� into
the expectation-value representation, we apply the same
strategy as for the Wigner function. We Taylor expand e+2iqx

in Eq. �39� to produce


N
� �iq� 
 
N�iqei�� = e�1/2�q2�

J=0

�

�iq�J��2x̄�J�

= �
J=0

�

�iq�J �
K=0

�J/2�
��2x̄��J−2K�
�− 2�KK!

, �43�

��2x̄�� j� 
 �
−�

�

dx
�2x� j

j!
P��x� , �44�

where we identified the normalized quadrature moments
��2x̄�� j�. The Taylor expanded part, e�1/2�q2

, yields the final
form after proper reorganization of the appearing sums.
Here, we have used the notation convention � L

2 �, where the
term within the brackets is truncated to the nearest lowest
integer such that

�L

2
� = �

L

2
for even L

L − 1

2
for odd L � �45�

always gives an integer-valued result.
To convert 
N

� �y� into a similar series-expansion format,
we rearrange the sums in Eq. �26� as follows:


N�iqei�� = �
J,K=0

�
ei��J−K�

J!K!
IK

J �iq�J+K 
 �
J=0

�

�iq�JI�,J
� , �46�

I�,J
� 
 �

L=0

J
ei��2L−J�

L!�J − L�!
IJ−L

L . �47�

We notice now that I�,K
� is a collective K-particle expectation

value since it contains all different IL
J with J+L=K. This

observation becomes vitally important in Sec. VI where we
investigate how quantum statistically corrupted distributions
can be restored to their true original form. If we now com-
pare Eq. �43� with Eq. �46�, we recognize that marginal dis-
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tributions can be converted into collective K-particle expec-
tation values via

I�,L
� = �

K=0

�L/2�
��2x̄��L−2K�
�− 2�KK!

, ��2x̄�� j� 
 �
−�

�

dx
�2x� j

j!
P��x� .

�48�

In other words, we have explicitly defined how P��x� is con-
verted into the expectation-value representation. In the same
way as Eq. �42�, the transformation from I�,J to P�x� con-
tains only a finite number of terms. Thus, P can always be
converted into collective expectation values without numeri-
cal problems.

To illustrate how I�,L
� and ��2x̄�� j� describe the quantum

statistics, we analyze them for a few exemplary sources. For
a given Fock state �n�, all quadrature directions produce a
probability distribution

Pn�x� = ��x�n��2 =
1

2nn!
�Hn��2x��2� 2

�
e−2x2

, �49�

where Hn�x� is the Hermite polynomial. A coherent state has
a marginal distribution of a displaced vacuum

Pcoh�x� =� 2

�
e−2�x − X�2

, �50�

where the center of the distribution, X, depends on the
quadrature direction analyzed. Besides being displaced, the
vacuum state can additionally be either stretched or
squeezed. When all quadrature directions produce the same
width of the distribution,

Pther�x� =� 2

��1 + 2nth�
e−2�x2/1+2nth�, �51�

the characterized field has a thermal quantum statistics where
the thermal parameter nth defines the average number of pho-
tons. Alternatively, the coherent field can be squeezed to
have a width 	X such that

Psqz�x� =� 1

2�	X2e−�x − X�2/2	X2
, �52�

where both X and 	X depend on the quadrature direction.
These four field types represent the basic quantum-statistical
fields in quantum optics; see e.g., Ref. �2�.

The shaded area in Fig. 2�a� displays the thermal distri-
bution with nth=2 photons on average, in Fig. 2�c� a coherent
state with the displacement X=�2, in Fig. 2�e� a squeezed
state with X=�2 and a four-times narrower distribution than
the vacuum, and in Fig. 2�g� the Fock-state �2�, respectively.
The corresponding ��2x̄�J� �red squares� and I�,J �black
circles� values are computed with Eq. �48� and shown in the
right column. To distinguish the different index values, open
symbols indicate even J while filled symbols denote odd J.
The connecting lines just serve as a guide to the eye.

For both the thermal and the Fock state, all odd ��2x̄�2J+1�
quantities vanish. In this situation, also the odd collective
expectation values I�,2J+1 remain zero, which is a general
property of any symmetric distribution as can be concluded

from Eq. �48�. For the displaced coherent- and squeezed-
state distributions, however, the even and odd contributions
have similar values and seem to follow a “continuous” curve.

As a common property of all of the distributions investi-
gated, we note that both ��2x̄�J� and I�,J decay rapidly for
elevated J. At the same time, I�,J decreases faster than
��2x̄�J�. These observations illustrate that the expectation-
value representation can be applied to describe the quantum
statistics with a reduced number of quantities. In particular,
the strongly decaying I�,J suggests that the originally
infinite-dimensional quantum statistics can rather accurately
be described using only a finite number of parameters. In the
following, we will show that the cluster expansion allows us
to find an efficient way to express the quantum statistics with
the minimum number of physically relevant correlations.

Besides these common properties, we observe in Fig. 2 a
few distinct features for the squeezed and the Fock states,
which are both generally considered to possess strong quan-
tum characteristics. The Fock state �2� displays strictly van-
ishing I�,J above J=4. Mathematically this follows from the
fact that any J�5 particle operator, i.e., �2��B†�J−LBL�2�, in-
volves more than two destruction operators acting on a two-
photon state which automatically provides a vanishing result.
If we now follow I�,J of the squeezed state, we observe that
I�,J is slightly negative around J=6. In general, both nega-
tive I�,J and an abrupt transition to vanishing I�,J indicate
that the characterized source exhibits genuine quantum fea-
tures.

B. From expectation-value to phase-space representation

Since we can construct the expectation-value representa-
tion whenever either the Wigner function or the marginal
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FIG. 2. �Color online� Quadrature distributions vs expectation-
value representation. Different input distributions �shaded areas, left
column� are compared with the corresponding ��2x̄�J� �red squares,
right column� and I�,J �black circles, right column�. The lines are
guides to the eye. The quantum statistics of �a�, �b� thermal; �c�, �d�
coherent; �e�, �f� squeezed; and �g�, �h� Fock state �2� are analyzed.
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distributions are known, it is natural to seek the inverse
transformation. To explicitly evaluate P��x� or W��� when IK

J

is known, we simply substitute the Taylor expanded form
�26� into Eqs. �38� yielding

W��� = �
J,K=0

�

�− 1�KIK
J wK

J ��� , �53�

where we have identified

wK
J ��� 


1

�2J!K!
� d2��J����Ke−���2/2e+���−���

=
2

�
e−2���2 �

j=0

max�J,K�
2J+K−j�J−j�− ���K−j

j!�J − j�!�K − j�!
�54�

following from the explicit evaluation of the Gaussian inte-
gral. A similar explicit transformation from expectation val-
ues to marginal distributions is obtained by inserting Eq. �46�
into Eq. �39�. As a result, the collective K-particle expecta-
tion value is expressed as

P��x� = �
J=0

�

I�,J
� p�J��x� , �55�

where we identified

p�K��x� 

1

�
� dy�iy�Ke−�1/2�y2−2ixy

=
1

�2�
e−�1/2�x2 �

J=0

�K/2�
K!

J!�K − 2J�!
xK−2J

�− 2�J , �56�

which follows after a straightforward Gaussian integration.
We now notice that the conversion from IK

J into the phase-
space distributions requires a summation over infinitely
many elements, unlike the inverse transformations �42� and
�48�. Thus, Eqs. �53� and �55� may yield divergences, espe-
cially when they are implemented numerically.

In order to work around this problem, we next investigate
the stability of the transformations for IK

J into more tradi-
tional representations of the quantum statistics. For this pur-
pose, we use thermal light as one of the simplest examples
where �36�

IK
J = �J,KJ!�nth�J, �57�

and nth is the average number of photons in the thermal state.
This, together with Eqs. �53� and �55�, produces

W��� = �
J=0

�

�− nth�JJ!wJ
J��� ,

P��x� = �
K=0

�

�nth�Kp�2K��x� . �58�

Based on Eq. �54�, we have wJ
J�0�= 2J+1

�J! , such that

Wth�0� =
2

�
lim
K→�

�
J=0

K

�− 2nth�J =
2

�
lim
K→�

1 − �− 2nth�K+1

1 + 2nth
,

�59�

where we have used the finite form of the geometric series.
This relation converges to

Wth�0� =
2

�

1

1 + 2nth
, �60�

only if nth�
1
2 . This example demonstrates that the direct

transformation from the expectation-value to the Wigner-
function representation can occasionally be numerically di-
vergent. Nonetheless, the Taylor expansion of Eq. �60�
uniquely yields the same expansion as in Eq. �59�. Thus, the
functional identification via Eqs. �59� and �60� still works as
a consequence of the uniqueness of the representations. After
a straightforward calculation, one eventually finds the con-
vergence to

W��� =
2

��1 + 2nth�
e−2���2/�1+2nth� when nth �

1

2
,

P��x� =� 2

��1 + 2nth�
e−2x2/�1+2nth� when nth �

1

2
.

�61�

These are the well-known quantum-statistical forms of the
thermal state. Nonetheless, for large nth this identification can
be made only formally and the numerical evaluations of
sums �59� yield a diverging result. Besides this, we also no-
tice that Eq. �59� actually converges rapidly whenever nth is
small. The nth=0 case actually shows extreme convergence
where already the first I0

0 term produces the correct result
because the thermal state in this case is just a vacuum. This
intriguing property can be fully utilized after we consider the
cluster-expansion representation of quantum-optical fields.

The possibility to have to deal with potentially divergent
transformations is clearly undesirable. Thus, we need to find
an alternative scheme where both the identification of func-
tional forms and the numerical implementation of the trans-
formation yield uniquely convergent expressions. As we will
demonstrate in Sec. IV D, this objective is reached by in-
volving clusters in the transformation. However, before we
enter into this analysis, we first investigate the transforma-
tion �53� for the thermal and the Fock state �4� with

IK
J = �J,K

4!

�4 − J�!
. �62�

This expectation value vanishes for J�4 because �4−J�!
diverges for negative values of �4−J� that follow after fac-
torials are presented through the � function. Defining

WK�0� =
2

�
�
J=0

K
�− 1�J

J!
2JIJ

J, �63�

we introduce the ratio rK

WK�0�
W�0� , where W�0� is the actual

value of the Wigner function.
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Figure 3�a� shows the rK

WK�0�
W�0� ratio for the Fock state

�4� as a function K. The limit of the exact reconstruction rK
→1 is indicated by the solid black line. As can be seen in the
figure, we find large deviations for values of K below 4.
However, when K exceeds the photon number in the Fock
state, there is an abrupt convergence to the exact value, i.e.,
a very similar transition as already seen in Fig. 2 for the Fock
state �2�. An analogous convergence sequence actually fol-
lows for any Fock state �N� beyond the 2N-photon expecta-
tion values. Thus, a truncation to 2N-particle expectation val-
ues guarantees convergence for any state limited up to the
Fock state �N�. This approach is commonly used in quantum
optics. In other words, mapping from IK

J to W works as long
as the particular quantum statistics involves only a finite
number of photon states.

However, this approximation is unsuccessful for many
other relevant states such as coherent, squeezed, or thermal
states since they contain all possible Fock states. As an ex-
ample, we evaluate rK for the thermal states with nth=4
�circles� and nth= 1

3 in Fig. 3�b�. We see that the nth=4 case
diverges away from the exact value �black line� while nth

= 1
3 yields a fast convergence for elevated K. This observa-

tion is in full agreement with the convergence limit 2nth
�1. Thus, only thermal fields with a small enough average
photon number yield a converging result of W�r� when it is
directly evaluated from the IK

J representation.
Obviously, the thermal state is just one example whose

W�r� and P�r� have diverging representations in terms of IJ
J.

The criteria for general convergence of the direct scheme can
be derived from Eq. �63�. This series converges whenever the

normalized quantity ĪJ
J


2JIJ
J

J! decreases as J becomes large

enough. For Fock states, ĪJ
J=0 for large enough J while ĪJ

J

→0 �ĪJ
J→�� for thermal light with 2nth�1�2nth�1�, which

identifies the exact same convergence criteria as Eq. �61�.
The investigated incoherent fields have I�,2J= IJ

J, which gen-
erally follows from IK

J =�J,KIK
J and Eq. �48�. Thus, the true

convergence of the transformation from expectation-value to
phase-space representation can be obtained for the normal-

ized quantities ĪJ
J instead of I�,J presented in Fig. 2. The

general properties of the normalized I��,J will be discussed
later in Sec. IV D.

C. Quantum statistics of general singlet-doublet fields

Before we show how correlated clusters can be used in
the transformation from expectation-value to phase-space
representation, we want to determine the importance of cor-
related clusters for quantum-optical fields. For this purpose,
we start with the singlet-doublet fields, i.e., light whose
quantum statistics involves maximally �C=2�-particle corre-
lations. More mathematically, the correlation-generating
function �26� follows then from


N
SD��� = �B̂†�� − �B��� − 	�B̂†B����2 +

	�B̂†B̂†�
2

�2

+
	�BB�

2
����2, �64�

which defines the characteristic function via 
N
SD���=e
N

SD���.
We can also analyze the singlet-doublet factorization in the
quadrature direction � yielding


N,�
SD �iq� 
 
N

SD�iqei�� = 2i�x̂��q − 2q2�	�x̂�
2� −

1

4
� , �65�

according to the definitions �28� and �34�. We notice again
that 
SD is directly related to the displacement and squeezing
of a given quadrature. As we will see later, this format be-
comes particularly useful once we construct marginal distri-
butions using clusters.

We next consider an ansatz for the density matrix,

�̂SD 
 D���S����̂th�nth�S†���D†��� , �66�

that produces exactly 
N
SD���=e
N

SD���, as shown in Appendix
A. This ansatz is fully defined via the displacement and the
squeezing operators,
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FIG. 4. �Color online� Schematic representation for the contour
of a Wigner distribution. The contour for a singlet-doublet field is
generally an ellipse that is displaced from the origin to the point
��1 ,�2� indicated by an arrow. This vector defines the direction,
i.e., coherent phase, of the field. The quadrature fluctuations can
have an independent direction �.
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FIG. 3. �Color online� Convergence of the Wigner function via
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3 photons �squares� on
average. The horizontal line indicates the exact result.
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D��� = e�B̂†−��B, S��� 
 e�1/2����B̂2−�B̂2�, �67�

respectively, together with the density matrix of a thermal
state,

�̂th�N� 
 �
k

�k�pN
th�k��k�, pN

th�k� =
1

1 + N
� N

1 + N
	k

,

�68�

where pN
th�k� is the photon statistics. Physically, �, �, and

N correspond to displacement, squeezing, and thermal
parameters, respectively. Appendix A shows that by fixing

� = �B� ,

N = 2�	X	Y −
1

4
	 ,

� =
1

2

	�BB�
�	�BB��

ln
	Y

	X
, �69�

we obtain the equivalence between �̂SD and 
SD. Here, the
thermal and squeezing parameters are defined through the
maximum and minimum values for the quadrature fluctua-
tions,

	X 

1
�2
�1

2
+ 	�B̂†B� + �	�BB�� ,

	Y 

1
�2
�1

2
+ 	�B̂†B� − �	�BB�� , �70�

respectively. Note that 	X �	Y� is the maximum �minimum�
of �	�x̂�

2� as � is scanned from 0 to �. The positivity require-

ment for the thermal parameter imposes the condition

	X	Y �
1

4
, �71�

which actually is the Heisenberg uncertainty principle de-
fined earlier, Eq. �28�.

Altogether, these observations lead to a general interpre-
tation of the parameters defining the singlet-doublet trunca-
tion. The singlet contribution, i.e., � defines the classical
amplitude of the field. Similarly, the doublets determine 	X
and 	Y, which fulfill the Heisenberg uncertainty relation,
while the thermal parameter N defines the degree to which
the minimum-uncertainty limit of 1

4 is exceeded by the quan-
tum field. Once the quadrature fluctuations are different, �

becomes nonzero such that ln 	Y
	X defines the level of squeez-

ing while arg�	�BB�� determines the direction of squeezing.

Consequently, any physical combination of �B̂�, 	�B̂†B̂�, and

	�B̂B̂� can always be traced back to a singlet-doublet
factorization and a physical density matrix of elementary
quantum-optical fields. In general, the manifold of coherent-
thermal-squeezed fields is very important in quantum
optics since it allows us to analyze properties all the way
from classical to truly quantum-mechanical sources. It is
interesting to notice that the simple singlet-doublet
clusters define these states with a minimum amount of pa-
rameters.

We now continue to evaluate the Wigner function for the
singlet-doublet fields. For this purpose, we start from the
normally ordered characteristic function 
SD in the singlet-
doublet factorization. Especially, if we insert Eq. �64� into
Eq. �38�, we get

WSD��� =
1

�2 � d2�e��B̂†�−����−��B̂�−����−�	�B̂†B̂�+�1/2�����+�	�B̂B̂�/2�����2+�	�B̂†B̂†�/2��2
. �72�

This integral is fully convergent due to its Gaussian form. By
applying the definitions �69� and �70�, we eventually obtain

WSD��� =
1

2�	X	Y
e−1/2��	�1

2/	X2�+�	�2
2/	Y2��,

	�1 
 ��1 − �1�cos � − ��2 − �2�sin � ,

	�2 
 ��1 − �1�sin � + ��2 − �2�cos � , �73�

i.e., a Gaussian function whose width is determined by Eq.
�70� while the angle � follows from ei2�= 	�BB�

�	�BB�� . From Eq.
�72�, we conclude that the contour lines of the singlet-
doublet Wigner function are determined by an ellipse that is
centered at ��1 ,�2�= ��1 ,�2� and whose main axes are ro-
tated by the angle −� with respect to the �1 axis as shown in

Fig. 4. The main axes of the ellipse are determined by 	X
and 	Y such that the Wigner function can have different
extensions into the �1 and �2 directions. Since 	X and 	Y
are directly related to the maximum and minimum fluctua-
tions of the quadratures corresponding to the momentum and
position quadratures, the main axes of the ellipse present the
physical extreme values of the quadrature fluctuations. At
this point, we also observe that WSD��� is fully positive such
that quantum fields with negative values in some phase-
space regions must follow from clusters beyond doublets.

D. From correlated clusters to the phase-space
representation

The singlet-doublet example demonstrates that one gets a
converging transformation from correlated clusters to the

CLUSTER-EXPANSION REPRESENTATION IN QUANTUM … PHYSICAL REVIEW A 78, 022102 �2008�

022102-11



phase-space representation for any physical Gaussian field,
described by coherent-thermal-squeezed states, which is not
generally possible when starting from the IK

J representation
alone. Even the description of the thermal state is conver-
gent, despite the numerical instability for the IK

J -to-W map-
ping identified in Sec. IV B. As a key element, the clusters
represent the characteristic function with a finite number of
terms instead of the possibly infinite IK

J terms.
As a next step, we explore how well clusters describe

fields with correlations of higher orders than doublets. It is
rather easy to see that, e.g., the inclusion of triplets does not
work if one applies the simplest implementation in the form

SDT���=e
SDT��� in Eq. �38� because the cubic term does not
yield converging integrals. Thus, we need to apply a more
sophisticated approach to fully benefit from the convergence
provided by the singlet-doublet contributions. For this pur-
pose, we introduce a splitting between the singlet-doublet
and the higher-order correlations via the cluster-expansion
separation,


N��� 
 e
SD���A��� = 
SD���A��� ,

A��� =

N���

SD���

= �
J,K=0

�
�J�− ���K

J!K!
aK

J . �74�

In this form, the singlet-doublet contributions are included
via their correlation-generating function while all higher-
order clusters are seprated and described with a Taylor ex-
pansion. Since 
SD��� is a nonvanishing analytic function for
all values of �, also A��� remains analytic and exists in the
vicinity of �=0. Thus, the Taylor-expansion form can always
be identified. At this point, we utilize this fact only formally
and work out explicit expressions related to the coefficients
aK

J later.
If we perform the systematic truncation to the cluster C

�2, Eq. �74� becomes


1¯C��� = e
SD���AC��� ,

AC��� = �
J,K=0

C
�J�− ���K

J!K!
aK

J . �75�

This systematic truncation describes all expectation values
up to C particles exactly. Beyond these C-particle expecta-
tion values, all singlet-doublet factorizations and the domi-
nant �3. . .C�-particle correlations are included, whereas clus-
ters beyond C are neglected. Obviously, this approximation
can be systematically improved by increasing C. If we now
insert Eq. �75� into Eq. �38�, we find

W��� =
1

�2 � d2�AC���

�e−�	�B̂†B�+�1/2�����2+�	�B̂†B̂†�/2��2+�	�BB�/2�����2

�e����−�B��−����−�B̂†��, �76�

after we express 
SD��� with the help of Eq. �64�. We now
notice a large difference in comparison to Eq. �53�: With the
help of the cluster-expansion formulation, the transformation

obtains an additional Gaussian convergence factor 	�B̂†B̂�
that will make the approach �76� fully convergent for physi-
cal sources, as shown later in Sec. V.

The explicit evaluation of Eq. �76� is performed in Ap-
pendix B, where we introduce an auxiliary phase-space dis-
tribution and a correlation-generating function

W̄��� 
 4	X	YW��2	X�1 + i2	Y�2�ei� + �B�� ,

Ā��� 
 A�� �1

2	Y
+ i

�2

2	X
�ei�	 = �

J,K

�− 1�J+K

J!K!
āK

J �J�− ���K,

�77�

respectively, where 	X and 	Y are defined by Eq. �70�. As a

general property, the cluster orders appearing in Ā and A are
identical. Especially, the truncation to C clusters is per-
formed in the same manner. With these ingredients, Eq. �76�
can be reformulated into

W̄C��� =
1

�2 � d2�ĀC���e−�1/2����2e−���+���

= �
J,K=0

C
�− 1�K

J!K!
āK

J 1

�2 � d2��J�− ���Ke−���+���
,

�78�

as shown in Appendix B. We now recognize that this expres-
sion has exactly the same functional form as the direct trans-
formation �53�. Thus, the separation of singlet-doublet clus-
ters, via Eq. �74�, simply corresponds to a geometric
transformation �77� where the Wigner function is suitably
translated and then squeezed and stretched in the perpendicu-
lar quadrature directions.

At first glance, one might think that the old convergence

problem still remains. However, W̄��� has the unusual prop-
erties

� d2�W̄��� = 1, � d2��W̄��� = 0,

� d2����2W̄��� =
1

2
, � d2��2W̄��� = 0, �79�

that differ considerably from averages of generic Wigner
functions. In fact, only a vacuum state W��� has a phase-

space distribution fulfilling all of the relations �79�. Thus, W̄
is not necessarily a phase-space distribution of a physical
field, however it is a vacuumlike distribution with respect to
its lowest momenta. Since the transformations �53� and �78�
exhibit extreme convergence for the vacuum state, we may
expect that the vacuumlike properties �79� guarantee the
convergence for the cluster-expansion form �78�. In other
words, the geometric transformation �77� rescales the Wigner
function to a format where it resembles the vacuum as much
as possible, which produces a numerically stable mapping
from expectation values to the Wigner function. In practice,
the coefficients āK

J can be computed from Eq. �42� if we

make the simple identification W̄↔W and āK
J ↔ IK

J .
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Since experiments often access the marginal distributions
rather than Wigner functions, we modify the cluster-
expansion separation such that it can easily be applied to
convert clusters into P��x�. For this purpose, we start from


N
� �iy� 
 
N�iyei�� = �

J,K=0

�
�iy�J+K

J!K!
	IK

J ei��J−K� = �
L=0

�

�iy�L	I�,L
� ,

�80�

	I�,L
� 
 �

J=0

L
ei��2J−L�

J!�L − J�!
	IL−J

J , �81�

where the last step of Eq. �80� follows from the same kind of
derivation as that performed in connection with Eq. �47�.
This procedure introduces a collective L-particle correlation
	I�,L

� in analog to Eq. �47�. It is straightforward to show that
each 	I�,L

� contains products of expectation values that to-
gether have exactly L photon operators. In particular, the
singlet-doublet clusters can be defined via

	I�,0
� = 0, 	I�,1

� = I�,1
� = ��2x̂��� 
 2X�,

	I�,2
� = I�,2

� −
1

2
I�,1

� I�,1
� =

��2x̂��2� − ��2x̂���2 − 1

2

 2	X�

2 −
1

2
,

�82�

where we have also applied Eq. �34� to unravel the direct
connection to the quadrature fluctuations. If we now evaluate
Eq. �80� with singlet-doublet contributions only, the identifi-
cation �82� produces Eq. �65� as derived earlier.

By applying the basic idea of the cluster-expansion sepa-
ration, we next include the singlet L=1 and doublet L=2
correlations to all orders in the characteristic function while
higher-order clusters are described with a Taylor expansion.
This goal can be reached as we modify Eq. �80� by introduc-
ing the cluster-expansion separation,


N
� �iy� = e
SD

� �iy�AN
� �iy�, y � R

AN
� �iy� 
 �

J=0

�

a�,J�iy�J, 
SD
� �iy� = 2iyX� − 2y2�	X�

2 − 1
2� .

�83�

Here, we have applied Eqs. �65� and �80�–�82� and identified
the collective Taylor-expansion coefficients a�,J. If we now
truncate this sum at the level of a C-particle cluster, the
singlet-doublet correlations are included to all orders while
the higher-order correlations are systematically truncated at
the C-particle correlations.

As expression �83� is inserted back into Eq. �39�, we now
get

P��x� = �
J=0

�

a�,J
1

�
� dq�iq�Je2i�x−X��q−2	X�

2q2
. �84�

For the Wigner function, we find the geometric transforma-
tion

P̄��x� = 2	X�P�2	X�x + X��, ā�,J 

a�,J

�2	X��J �85�

for the singlet-doublet separation �83�. With these results, we
can simplify Eq. �84� into

P̄��x� = �
J=0

�

ā�,Jp
�J��x� . �86�

We notice that this transformation has the same form as Eq.
�55� when we identify ā�,J to correspond to I�,J. Thus, the
cluster-expansion separation is essentially a simple geomet-
ric transformation �85� where the probability distribution is
displaced by X� while the x coordinate is additionally res-
caled by the width of the distribution. Due to this exact anal-
ogy, the coefficients ā�,J can be evaluated from a known
distribution function using Eq. �48� in a form where I�,J is

replaced by ā�,J and P is replaced by P̄, respectively.
The cluster-expansion separation introduces a major ad-

vantage in comparison to the direct transformation �55�. The
rescaled distribution has a form whose lowest moments are
identical to that of the vacuum state, i.e.,

� dxP̄��x� = 1, � dxxP̄��x� = 0, � dxx2P̄��x� =
1

4
.

�87�

In other words, P̄��x� is a distribution that is centered at the
origin with the quadrature fluctuations of the vacuum. Since
the direct transformation close to the vacuum state shows
extreme convergence, the cluster-expansion separation pro-
duces a converging transformation from expectation values
and correlations into the phase-space representation.

E. Cluster-expansion transformation (CET)

We may now summarize the transformation between the
cluster-expansion separation and the phase-space representa-
tion into a simple algorithm. First of all, we can drop the
quadrature-index label since the same index appears in all
terms. We then start from a generic marginal distribution
P�x� that produces the average and variance via

X =� dxxP�x�, 	X2 
� dxx2P�x� − X2. �88�

The obtained X and 	X introduce the geometric transforma-
tion

P̄�x� = 2	XP�2	Xx + X� �89�

to the rescaled distribution according to Eq. �85�. This is the
central relation following from the separation of singlet-
doublet contributions from the higher-order clusters. The ob-

tained P̄�x� defines then the moments and the ā�,J correla-
tions,
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��2x̄� j� 
 �
−�

�

dx
�2x� j

j!
P̄�x�, ā�,L = �

K=0

�L/2�
��2x̄�L−2K�
�− 2�KK!

,

�90�

where we have used Eqs. �48� and �86�. The inverse trans-
formation follows from

P̄�x� = �
J=0

�

ā�,Jp
�J��x� ,

p�K��x� =
1

�2�
e−�1/2�x2 �

J=0

�K/2�
K!

J!�K − 2J�!
xK−2J

�− 2�J , �91�

where we have combined Eqs. �56� and �86�. This can now
be converted back to the form of the original distribution by
applying

P�x� =
1

2	X
P̄� x − X

2	X
	 , �92�

which completes the cycle from probability distribution to
correlated clusters and back. The steps �88�–�92� constitute
the cluster-expansion transformation �CET�. It can be per-
formed for all relevant quadrature directions allowing us to
construct the Wigner function from clusters by applying the
Radon transformation �37� after step �92�.

To have a practical scheme to test the convergence of the
transformation �91�, we investigate how fast the correspond-
ing sum approaches the original input distribution when only

a finite number of clusters C is included. Since P̄�x� is cen-

tered at x=0, it is natural to follow P̄�x� at its central value,

P̄�0� =� 2

�
�
J=0

C

a��,2J, a��,2J 

�2J�!ā�,2J

�− 2�JJ!
,

� dP̄�x�
dx

�
x=0

= 2� 2

�
�
J=0

C

a��,2J+1,

a��,2J+1 

�2J + 1�!ā�,2J+1

�− 2�JJ!
, �93�

where we used Eq. �91�. It is interesting to notice that only

even coefficients a��,2J contribute to P̄�x=0� while only the
odd coefficients appear in its derivative. Additionally, we
have evaluated p�J��x=0� using Eq. �56� to obtain the pref-
actors. We combine these factors into a� J, which is the quan-
tity of interest for the convergence analysis. The convergence
of the cluster-expansion approach requires that a��,J forms a
series that decays faster than 1 /J for large enough J. Even
though convergence at one point formally does not guarantee
the most general convergence at an arbitrary x, the reference
point at x=0 has a special significance: �i� the form of the

distribution P̄�x=0� in the vicinity of the center is definitely
the most decisive region to determine the quantum statistics,
and �ii� the p�J��x� functions in Eq. �91� have a Gaussian
decay away from x=0. Thus, convergence at x=0 must be an
extremely sensitive indicator whether Eq. �91� is capable of

converging everywhere. We will show numerically that Eq.
�93� indeed quantifies the general convergence properties.

The same convergence analysis can be repeated for the
direct expectation-value conversion �55�. Here, we find the
normalized collective expectation values

I��,2J 

�2J�!

�− 2�JJ!
I�,2J,

I��,2J+1 

�2J + 1�!
�− 2�JJ!

I�,2J+1. �94�

This result is very similar to Eq. �93� due to the close anal-
ogy provided by the cluster-expansion separation. The
expectation-value representation can be converted into the

phase space in a numerically feasible manner whenever I��,J

produces a series that decays faster than 1
J .

To investigate the convergence of the cluster-expansion

implementation, we have evaluated both I��,J and a��,J for a
Fock state �2� and a thermal state with nth=2 photons on
average. More specifically, we use the distributions �49� and
�51� as an input and then perform the CET �88�–�92�. In the

process, we obtain I��,J and a��,J as well as the distribution
constructed explicitly via the cluster expansion. Figure 5 pre-
sents the original input distributions �shaded area� as well as
the CET results �squares� for �a� the thermal state and �b� the
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FIG. 5. �Color online� Convergence of normalized expectation
value and correlation quantities in the quantum-state reconstruction.
�a� A marginal distribution of the two-photon thermal state �shaded
area� is shown together with the cluster-expansion reconstruction

�filled squares�. The CET has C=20 terms. The corresponding I��,J

and a��,J are shown in �c� and �e�, respectively. �The dashed line is
a guide to the eye.� The same quantities are presented in �b�, �d�,
and �f� for the Fock state �2�. Here, the CET has C=80 terms.
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Fock state �2�. The corresponding normalized I��,J are shown
in Figs. 5�c� and 5�d� while the cluster-expansion coefficients
are plotted in Figs. 5�e� and 5�f�.

In contrast to the direct-transformation results of Fig. 4,
the cluster-expansion transformation fully reproduces the
original input distribution in a numerically feasible manner
even for the thermal state with nth�

1
2 . In fact, one needs

only clusters up to doublets �C=2� for any value of nth. The
same level of accuracy is obtained for any coherent or
squeezed state distribution defined by Eqs. �50� and �52�,
respectively. For the Fock state, C=80 clusters reproduce
P�x� with extreme accuracy. The minimum number of actu-
ally needed C is studied later in Sec. V.

The collective expectation values and correlations are
evaluated using the CET and Eqs. �92�–�94�. The results are

shown in the middle frames of Fig. 5 for I��,J and the lowest

frames for a��,J, respectively. As in Fig. 2, I��,J diverges rap-
idly for the thermal state, which implies a diverging numeri-
cal transformation from expectation values to marginal dis-
tributions. However, the corresponding correlations produce
a series that converges so well that a��,J=0 is the only nonva-
nishing term. An identical a��,J series is found for any Gauss-
ian field because the cluster-expansion separation, especially
Eq. �90�, transforms the distribution to the same vacuum
distribution. As observed before in Sec. IV D, this transfor-
mation produces extreme convergence for the a��,J series and
its conversion into a marginal distribution, Eq. �92�.

At the same time, the Fock state displays a I��,J that first
seems to diverge. As before, we observe an abrupt conver-

gence in I��,J as J is increased above J=4 �note that both a��,J

and I��,J vanish for odd J�. Thus, the expectation values can
be converted into marginal distributions of a Fock state such
that one does not necessarily need the clusters in the numeri-
cal analysis. When the cluster-expansion implementation is
applied for the Fock state, we find that a��,J remains small
and converges smoothly toward a��,J=0 for large enough J.
This result indicates that we may indeed truncate the sum
�92� into a finite number of terms and still expect an excel-
lent representation of the distribution. As discussed above,
C=80 clusters produce �2� accurately. The relatively large
number of needed clusters indicates that a Fock state is a true
quantum field with a high degree of correlations.

These examples illustrate several general aspects of the
cluster-expansion transformation. Especially, a��,J forms a

converging series even when I��,J is diverging. We show later,
in Sec. V A, that this observation holds for generic physical
distributions. As a result, we may truncate the expansion into
a finite number of terms, which directly implies that the
infinite-dimensional quantum statistics can accurately be rep-
resented by a finite number of correlations. This property
makes the cluster expansion an attractive scheme to describe
quantum-optical fields. For the important quantum-statistical
subgroup of coherent-thermal-squeezed states, one only
needs the singlet-doublet clusters for the high-quality, nu-
merically stable description of the light.

Generally, these observations do not yet define how large
J must be for a given source. Thus, it is often beneficial to

analyze how both I��,J and a��,J behave as a function of J. In

the case in which I��,J drops to very low values after some
threshold J, we may want to use the direct implementation
while the cluster-expansion transformation is the only viable

solution when I��,J diverges.

V. CONVERGENCE OF CLUSTER EXPANSION

Based on the results in Sec. IV D, the cluster expansion
provides a useful transformation to convert expectation value
and correlation representations into the phase-space repre-
sentation. Since the Wigner function can always be recon-
structed topographically whenever we know the relevant
marginal distributions, we investigate next how the mapping
of the cluster expansion into phase-space representations—
and vice versa—generally converges for any physically rel-
evant marginal distribution. Since P� and W are connected
via the Radon transformation �37�, this analysis tells us di-
rectly how the cluster-expansion approach and the phase-
space representation are connected in practice.

We investigate the convergence of the cluster expansion
by performing the full CET cycle �88�–�92� with an arbitrary
P�x� as an input. To isolate different convergence aspects, it
is convenient to use a subdivision

P�x� = �
�

P��x�, P̄�x� = �
�

P̄��x� �95�

of the probability distribution into different components la-
beled by �. This subdivision can, e.g., represent a decompo-
sition into different functional bases or the division of P�x�
into intervals. We notice that the CET Eqs. �88�–�91� provide
a linear transformation. In other words, each component

P̄��x� produces its own cluster-expansion coefficients giving

independent ā�,J
� correlations for each P̄�. If we now apply

a��,J
� to transform back to the phase-space picture, the linear

sum of resulting functions is then the original probability
distribution. By analyzing the convergence of the cluster ex-

pansion against the corresponding P̄��x�, we can conclude
which of the isolated parts converges.

A. Cluster expansion for central parts of distributions

If one considers physically relevant marginal distribu-
tions, they clearly have to be analytic functions. Further-
more, they decay toward zero sufficiently far away from their
central peak value. Especially, if P is a measured quantity, it
is bound to approach zero outside a given region of interest.

Thus, the rescaled P̄�x� decays rapidly beyond its half-width
value, i.e., �x�� 1

2 , for all physically relevant probability dis-
tributions.

To analyze the convergence related to the central parts of

any given distribution, we subdivide an arbitrary P̄�x� into
separate parts using a boxlike function

T�̄�x,R̄� = E�̄�x + R̄� − E�̄�x − R̄� ,
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E�̄�x� =
1

���̄2�
−�

x

dye−y2/�̄2
, �96�

where the error function E�̄�x� provides a smooth step at x
=0 while the steepness of the step is controlled by �̄. Note

that both R̄ and �̄ are presented in scaled units that are pro-
vided by the geometric transformation �89�. The central and
tail parts of any given distribution can be extracted by intro-
ducing

P̄�x� = P̄cent�x� + P̄tail�x� ,

P̄cent�x� = T�̄�x,R̄�P̄�x� ,

P̄tail�x� = �1 − T�̄�x,R̄��P̄�x� . �97�

When R̄ is chosen large enough, P̄cent�x� always contains the
experimentally accessible parts of the distribution while

P̄tail�x� contains only the physically insignificant tails.
Using this subdivision, we next study what kind of gen-

eral convergence follows from the central part alone. We
may conclude from Eq. �93� that the convergence of the
cluster-expansion approach depends critically on how the
a��,J coefficients behave for large values of J. Thus, we in-

vestigate how these coefficients, which are related to P̄cent�x�,
converge asymptotically. We start from Eq. �90� giving

��2x̄�2j�cent 
 �
−�

�

dx
�2x�2j

�2j�!
P̄cent�x� = �

0

�

dx
�2x�2j

�2j�!
T�̄�x,R̄�

��P̄�x� + P̄�− x�� , �98�

which follows since �2x�2j and T�̄�x , R̄� are symmetric func-
tions. If we consider the case with �̄=0, we realize that

T�̄�x , R̄� is a step function whose value is 1 for �x��R while
it vanishes everywhere else. For this situation, the integrand

in Eq. �98� is strongly peaked close to x= � R̄ when j is large

enough. In other words, the integrand �2x�2j

�2j�! T�̄�x , R̄� behaves
much like two � functions located at the borders of the inte-
gration interval. This property also holds for not too large
values of �̄ since �̄�0 just implies a smooth step. By making
use of this observation, we may evaluate Eq. �98� through

��2x̄�2j�cent 
 �
−�

�

dx
�2x�2j

�2j�!
P̄cent�x� = �

0

�

dx
�2x�2j

�2j�!
T�̄�x,R̄�

��P̄cent�x� + P̄cent�− x��

= 2P̄cent
E �R̄��

0

�

dx
�2x�2j

�2j�!
T�̄�x,R̄�, j � 1, �99�

where we have identified the even part of the function

P̄cent�x� via P̄cent
E �x�


P̄cent�x�+P̄cent�−x�
2 . The resulting expression

�99� is accurate as long as j is large enough, the P̄cent��R̄�
are nonvanishing, and they represent P̄cent�x� well in the vi-

cinity of x= � R̄. The remaining integral can be evaluated
analytically giving

��2x̄�2j�cent = P̄cent
E �R̄��

k=0

j
�2R̄�2k+1�̄2�j−k�

�2k + 1�!�j − k�!
, j � 1.

�100�

In general, ā�,2L
cent for large L is dominated by ��2x̄�2j� at large

values of j. Thus, the convergence of any particular cluster
expansion can be studied by applying the large j-value limit
of Eq. �100� for all j. In other words, Eq. �100� isolates that
contribution which is critical for the convergence. This con-
tribution can then be inserted into Eqs. �90� and �93�, giving
the convergence-critical contributions

a��,2L
conv = 2R̄P̄cent

E �R̄��
J=0

L
�2R̄�J

�2J + 1�!�L − J�!��̄2 −
1

2
	L−J

.

�101�

We notice that the choice �̄2= 1
2 simplifies the result into the

single term J=L, yielding

a��,2L
conv = P̄cent

E �R̄�
�2R̄�2L+1

�2L + 1�!
,

a��,2L+1
conv = 2P̄cent

E �R̄�
�− 2�L

L!

R̄2L+1

�2L + 1�!
, �102�

where a��,2L
conv follows from the definition �93�. Hence, the po-

tentially diverging terms in the cluster expansion actually
produce a convergent series

P̄cent
conv�0� =� 2

�
2P̄cent

E �R̄��
L=0

�
�− 2�L

L!

R2L+1

�2L + 1�

= P̄cent
E �R̄�T�̄=1/�2�x = 0,R̄� , �103�

where Eq. �102� has been inserted into Eq. �93�. This result
has an interesting interpretation: The cluster expansion of an
arbitrary probability distribution always converges as far as
its central parts are concerned. The convergence of the
cluster-expansion approach, therefore, only depends on the
tail parts of the distribution. The truncated tails contribute to
the central value with a weight that is the average of the
distribution at the borders. Since the remaining tail parts can
be made vanishingly small for physically relevant sources,
we do not need to even consider what happens to these
physically insignificant contributions. Thus, we have shown
that the CET always converges for physical distributions be-
cause it automatically accesses the physically important
parts of the distribution while the physically insignificant
parts, with apossible divergent behavior, are filtered out.

Even though the sum in Eq. �103� is convergent, we have
not yet determined how many clusters are needed to produce
an accurate CET. If we limit the L sum to the C-particle
cluster, the highest index of summation in Eq. �103� is � C

2 �.
Since the first omitted sum term determines the level of error
in truncation for converging sums, we get an error estimate
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	�cent
C 
 a��,2��C/2�+1� =� 2

�
P̄cent

even�R̄�

��− 1��C/2�+1 �− 2R̄2��C/2�+1

��C/2� + 1�!
R̄

C + 3
�104�

for the truncation to C-particle clusters; note that C is as-
sumed to be even. By using the relation

NJ

J!
e−N =

1
�2�N

e−�J − N�2/2N for large J , �105�

we can rewrite the error in the form

	�cent
C = P̄cent

even�R̄�
�− 1��C/2�+1

�2�

1

C + 3
e−��C + 2�2−8�C+2�R̄2−16R̄4�/16R̄2

.

�106�

It is now straightforward to show that the appearing expo-

nential function is maximized at C=4R̄2−2 giving

	�cent
4R̄2

=
1

�2�

1

4R̄2 + 1
e+2R̄2

P̄cent
even�R̄� . �107�

We notice that for a small number of terms, the error be-

comes large if P̄cent
even�R̄� decays slower than e−2R̄2

. Thus,
slowly decaying probability distributions can show a slow
convergence even when truncated. However, as the cluster
number grows beyond the limit

C � 4R̄2�1 + �2� � 10R̄2, �108�

the cluster expansion produces very convergent results. We
can therefore use this relation to estimate the needed cluster
number to reproduce the region of interest specified for the
scaled distribution.

Most of the physically relevant marginal distributions
have a Gaussian decay such that the investigated tail-related
convergence problems do not appear. To get insight into how
tails contribute in a worst-case scenario, we consider a
Lorentzian marginal distribution,

PLor�x� =
1

�

1

1 + x2 . �109�

This distribution yields a diverging �x2�, which also implies
an infinite photon number and energy within the field. Thus,
PLor�x� is not a possible distribution for physical fields.
Nonetheless, if we now truncate PLor�x� sharply at R and
renormalize it, the rescaled distribution is limited within

R̄Lor 

R

2	X
=

1

2
� R

arctan R
. �110�

We notice that R̄ increases without a bound as R is elevated,
which makes PLor�x� an ideal distribution to explore how
tails contribute to the CET.

Figure 6 presents the Lorentzian input distribution as a
light �yellow� shaded area for three representative R: �a�-�c�
R=3 �R̄Lor=0.775�, �d�-�f� R=6 �R̄Lor=1.033�, and �g�-�i� R

=12 �R̄Lor=1.42�, where the normalized truncation limits are

given in the parentheses. We have used a sharp truncation �̄
for the sake of simplicity. The dark �blue� shaded rectangle
indicates the position of the sharp truncation, i.e., the corre-
sponding T�̄=0�x� function. We have then applied the cluster-
expansion transformation �88�–�92� and reproduced the dis-
tributions with C=20 clusters �white dashed line�, C=40
clusters �red dashed line�, and C=80 clusters �black line�.

We note that the cluster expansion generally reproduces
the distribution with a relatively small number of clusters. As
a general trend, we need more clusters for elevated R in
agreement with Eq. �108�. In particular, the largest R=12
starts to show some oscillations when only a low number of
clusters is included in the transformation. As C is increased,
the oscillations become smaller and a clearly converging
trend is observed even for the largest R used. As a visual
estimate, Fig. 6 displays converging CET results for C=20,

40, and 80 for R̄=0.775, 1.033, and 1.42, respectively. If a
smooth truncation with �̄= 1

�2
were used, C�6, C�11, and

C�21 should produce an accurate CET for R̄=0.775, 1.033,
and 1.42, respectively, according to Eq. �108�. We have veri-
fied �not shown� that Eq. �108� accurately predicts the
needed C-cluster number when a smooth truncation with �̄
= 1

�2
is applied. Thus, as to be expected, a sharp truncation of

tails produces a weaker convergence than a smooth trunca-
tion. An even better convergence can be reached by elevating
�̄ to 1

2 . In general, �̄ can be used as a parameter to search for
the best possible truncation of unphysical tails. Once the op-
timum �̄ is found, the limit given in Eq. �108� can be con-
sidered as an upper cluster number that guarantees conver-
gence for a suitably chosen �̄.

To see the convergence of the cluster-expansion transfor-
mation directly, we have also evaluated the corresponding

a��,J as well as I��,J; see the middle and right-hand column of

C = 20
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FIG. 6. �Color online� Convergence of cluster-expansion trans-
formation for Lorentzian distributions. �a� The input P�x�, shown as
the light �yellow� shaded area, is sharply truncated at R=3 indicated
by the dark �blue� shaded area. The CET result with C=20 is shown
as a white dashed line, for C=40 as �red� a dashed line, and for
C=80 as a black line. �b� The corresponding a��,J correlations and
�c� a��,J are plotted as filled circles. The dashed line is a guide to the
eye. The same results are presented for the Lorentzian distributions,
cut at R=6 �c�–�e� and at R=12 �f�–�i�.
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Fig. 6. As for the previously studied physical distributions,
a��,J forms a converging series. We also see that the conver-
gence limits of C, discussed above, match very well with the
regimes when a��,J becomes small. As a general trend, the
oscillations in a��,J increase for elevated R. Especially, the
long-living oscillations for R=12 can be associated with the
elongated tails of the distribution. At the same time, a��,J
either diverges or shows a poor convergence.

B. Cluster expansion for narrow features

Even though we have shown that the cluster expansion
yields an accurate description for the physically relevant
parts of the distribution, we do not yet know how accurately
possible fine features within the region of interest are repro-
duced. To study this, we investigate how a narrow feature

P̄F̄�x� = P̄0e−2�x2/F̄2�, 0 � F̄ � 1, �111�

is reproduced by the CET. We assume here that the original

distribution, P̄�x�= P̄F̄�x�+ P̄S�x�, can be decomposed into
parts including the investigated narrow feature and the re-

maining smooth distribution P̄S�x�. It is natural to assume
that the feature has a narrower width than the average width
of the overall distribution �i.e., F�1�. Otherwise, it just con-
tributes to the tails, i.e., the scenario investigated already in
Sec. V A.

Based on the general additivity of the different compo-
nents in probability distributions �see discussion in Sec. V�,
the convergence properties of the P̄F̄�x� part can be investi-
gated independent of the other parts. In principle, this narrow
feature can be shifted away from the origin, however this
does not essentially change the investigation because trivial
displacements do not change the efficiency of the cluster-
expansion approach. Thus, for the sake of simplicity, we as-
sume that the feature is centralized at the origin.

When we start from a given P̄F̄�x�, we compute ��2x̄�2J�
and convert it to a��,2L

F following the steps performed in Sec.
V A. This procedure yields the normalized cluster-expansion
coefficient,

a��,2L
F = P̄0��F̄

2

�2L�!
4LL!L!

�1 − F̄2�L, �112�

which yields a converging cluster-expansion series

P̄F̄�0� =� 2

�
�
J=0

�

a��,2J
F = P̄0, �113�

where Eq. �93� is applied. Here, the narrowness of the fea-

ture �F̄�1� guarantees the convergence, in particular to the
correct peak value of the feature. This result has also broader
implications. Since we can isolate a narrow part anywhere
within the distribution and reproduce its central value accu-
rately, it is obvious that any narrow feature, and the probabil-
ity distribution itself, can be reproduced with the cluster-
expansion approach.

To see how rapidly the cluster expansion approaches its
limiting value, we can analyze Eq. �113�, which is truncated

at the cluster C, i.e., the upper limit of J sum is set to C
2 .

Since the first omitted term yields an estimate for the error,
we find that the cluster expansion has a relative accuracy of

	�C
F 


a��,C+2
F̄

P̄0

=��F̄

2

�C + 2�!

2C+2�C + 1

2
	!�C + 1

2
	!

�1 − F̄2�C+1.

�114�

We are particularly interested in cases in which the narrow
feature is significantly smaller than the overall width of the

entire distribution �F�1�. If we consider cases in which F̄

�
1
3 , we may approximate �1− F̄2�C+1 by e−F̄2�C+1�. Then, the

functional form of Eq. �114� suggests that one needs a rela-
tively large number of clusters to make �C

F small. Thus, we
apply the large-C limit

�2C�!
22CC!C!

=
1

��C
for C � 1 �115�

to simplify the error estimate into

	�C
F =� F̄

�C + 1�
e−F̄2�C+1� �

1

8
e−F̄2C, �116�

where we have assumed F�
1
3 and C�22. For these cases,

we find a better than 1% accuracy whenever

C �
2.5

F̄2
for F̄ �

1

3
. �117�

At the limit of F= 1
3 , we find the limit C�22.5 such that all

of our above assumptions are valid.
To see how the condition �114� can be applied in practice,

we consider the cluster-expansion representation of different
Fock states. The corresponding probability distributions
Pn�x� are defined by Eq. �49�. In general, Pn�x� has n+1
peaks where the furthermost peaks are close to x= ��n. The
n−1 peaks within these extremes are spaced roughly equi-
distantly, separated by 	r= 2

�n
. The different peaks are well

isolated since their width can be estimated by

	xn =
	r

4
� n

n + 1
=

1

2�n + 1
, �118�

showing that the separation of two consecutive peaks is
roughly 4	xn. If we now approximate each peak with a
Gaussian of the width 	xn,

Pn
F�x� =

0.64
�n + 1

e−4�n+1�x2
, n � 1, �119�

gives a good approximation for the narrowest feature. Figure
7 presents several different Fock states �solid lines� together
with the approximation Pn

F�x� �shaded area� for the narrow
feature. We see that the approximation reproduces the narrow
feature very well.

The overall width of the Fock state is given by 	X

= 1
2
�1+2�B̂†B�= 1

2
�1+2n. At the same time, the average of

the quadratures vanishes for any given Fock state �X=0�.
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Combining these results with Eqs. �89� and �119�, we find

P̄n
F�x� 
 2	XPn

F�2	Xx� = 0.64�1 + 2n

1 + n
e−2�x2/F̄n

2�,

F̄n
2 =

1

2�1 + n��1 + 2n�
, �120�

where F̄n defines the ratio of the narrowest feature and the
overall width for the Fock state �n�. With the help of Eq.
�117�, we can estimate the number of clusters needed to de-
scribe a given feature. Using Eq. �120�, we find that the
peaks within the Fock state �n� are correctly reproduced
whenever the upper cluster number satisfies

C � 5�1 + n��1 + 2n�, n � 1. �121�

This estimate predicts that an accurate CET of Fock state �1�
requires C�30, �2� with C�75, �3� with C�140, and �4�
with C�225 clusters. Thus, the quantum-statistical com-
plexity of the Fock states increases the number of clusters
needed in the cluster-expansion representation.

C. General convergence criteria for the cluster expansion

The results in Secs. V A and V B determine clear and
simple guidelines for judging how many clusters are needed
to accurately describe a given quantum-statistical distribu-
tion. In a practical application, we first identify the central
value of the distribution X
�dxxP�x� and define its fluctua-
tions 	X2
�dxxP�x�−X2. We then determine the region of
interest �x−X��	R where all the physically relevant features

of the distributions are located. Furthermore, we need to
know the width 	F of the narrowest feature, Pfeat�x�
�e−2��x − x0�2/	F�, centered at x0. As we apply the CET, the
geometric transformation �89� determines the normalized
widths

R̄ =
	R

2	X
, F̄ =

	F

2	X
. �122�

By combining these results with Eqs. �108� and �117�, we
find the lower limit for the number of needed clusters,

C � max�40
	R2

	X2 ,10
	X2

	F2� . �123�

The first condition makes sure that enough clusters are in-
cluded for slowly decaying distributions truncated smoothly

with T�̄�x , R̄� while the second one describes the minimum
number of clusters needed to describe a narrow feature
within the region of interest. If the distribution has weakly
decaying tails, it is often beneficial to test different �̄ values

in the T�̄�x , R̄� truncation since one can often find truncations
that provide a smaller upper value C. Even when we do not
know more details of the characterized distribution, the con-
dition �123� guarantees a high level of convergence as well
as an accurate mapping from the cluster expansion to the
phase space. Naturally, the actual cluster expansion may con-
verge with fewer clusters, especially when physical distribu-
tions with rapidly decaying tails are considered.

As discussed in Sec. V A, physical distributions usually
have a Gaussian decay far away from their central value such
that the tails of the distribution do not cause a convergence
problem. Thus, the main concern is how well features within
the central regions of the physical distribution can be repro-
duced. As a result, mostly the second condition in Eq. �123�,
i.e., C�10	F2

	X2 , is relevant for actual distributions. This ob-
servation can immediately be transformed into a simple iden-
tification rule to qualitatively recognize which distributions
may be highly correlated. From Eq. �123�, we only need the
quantity

Cphys 
 10
	X2

	F2 �124�

to determine the level of correlations in a given distribution
showing that the ratio between the width of the narrowest
feature and that of the overall distribution typically defines
how correlated a physical distribution is.

For physical probability distributions with only one peak,
such as the Gaussian thermal-coherent-squeezed states, the
relevant features cannot be very narrow in comparison with
	X. As a result, such fields can always be described with
relatively few clusters. Note that unphysical distributions
with slowly decaying non-Gaussian tails can be single-
peaked and at the same time display an appreciable 	F2

	X2 ; see
Fig. 6. Thus, they obviously need a large C for the cluster
expansion to be accurate. The level of correlation increases
when P�x� contains multiple peaks, especially when the
peaks become narrow with respect to the overall width of the
distribution.

-2

-3

-10

0

0

0

2

3

10

0.5

0.4

0.2

0.0

0.0

0.0

P
ro

b
a
b
ili

ty
d
is

tr
ib

u
ti
o
n

(
)

P
x

x quadrature

a

b

c

FIG. 7. �Color online� Probability distributions P�x� for differ-
ent Fock states. The overall P�x� �shaded area� is compared with the
result of Eq. �119� including only one narrow feature �solid line�.
The Fock states �a� �2�, �b� �10�, and �c� �100� are shown. The
probability distributions follow from Eq. �49�.

CLUSTER-EXPANSION REPRESENTATION IN QUANTUM … PHYSICAL REVIEW A 78, 022102 �2008�

022102-19



To investigate how the CET works for such highly corre-
lated physical fields, we need to consider distributions with
multiple peaks and narrow features. We already know that
the Fock state �n� is an excellent candidate for such a highly
correlated state since it has n+1 narrow peaks �see Fig. 7�.
We also consider the so-called Schrödinger-cat state �66–70�,

���cat 

��� + �− ��

�2 + 2e−2���2
, �125�

as another highly correlated state. If we now align the dis-
placement along the x axis, the probability distributions in
the x and y directions are

P�x� =� 2

�

e−2�x − ����2
+ e−2�x + ����2

+ 2e−2�x2+���2�

2 + 2e−2���2
,

�126�

P�y� =� 2

�
e−2y2 1 + cos 4���y

1 + e−2���2
, �127�

respectively. Both of these quadrature directions have mul-
tiple peaks. In the x direction, we find two separate peaks
displaced by 2���. In the y direction, we note an interesting
interference term, 1+cos 4���y, whose fringe separation is
also controlled by the displacement.

We next apply the CET for the Fock states �2� and �4�. As
discussed in Sec. V B, we anticipate that the features in the
state �2� ��4�� are accurately described with Cphys=75 �Cphys
=225� clusters. We also investigate a Schrödinger-cat state
with �=3. In the x direction, the feature width is 	F=1
while we find width 	X=3.042. According to Eq. �124�, we
expect that Cphys=93 clusters are needed. The narrowest fea-
ture in the y direction now has the width 	F=0.21 while
	X= 1

2 . Together, these criteria predict that Cphys=57 clusters
are needed.

The left column of Fig. 8 presents the original probability
distributions �shaded area� for �2�, �4�, and the cat state ���cat
in the x and y directions, from top to bottom. Each frame
contains also the corresponding CET with a low �blue line�,
medium �dashed line�, and high �black circles� number of
clusters included. The analysis is completed by showing the
corresponding a��,J correlations in the right-hand column.

For all distributions analyzed here, the overall width is
correctly reproduced even for a small C �blue lines�. How-
ever, the narrow features within the region of interest are
accurately described only when an elevated number of clus-
ters is used. For all cases, the largest C �black filled squares�
reproduces excellently the original distribution �shaded area�.
If we now look at the Cphys qualifiers given above, we notice
that the CET indeed converges for values close to Cphys. This
result verifies that the smallest feature size within the physi-
cal distribution determines the level of correlation of the
characterized source. At the same time, we can conclude that
the Fock and the Schrödinger cat states exhibit strong quan-
tum features via strong correlations up to large cluster num-
bers.

As a special feature of the Schrödinger-cat state, we rec-
ognize that a correlation “packet” is formed around a��,J at

intermediate C. However, these correlations remain rela-
tively small even though the physical field is strongly corre-
lated. Thus, the cluster-expansion representation not only
produces a converging series of correlations, but the low-
order correlations typically have more physical significance.

In Sec. V A, we have shown that physically irrelevant
tails of a distribution can produce large a��,J, even though the
eventual CET convergence is reached with high enough C.
The increase of a��,J is associated with the slowly decaying
tails. Thus, it is interesting to consider how well the CET
works for distributions that have no tails while they are
nonanalytic; for example, P�x� or its derivative could be dis-
continuous. We have tested the CET for several such distri-
butions �not shown� and always find that it works excellently
even in these extreme situations. As a general trend, the CET
always produces a continuous distribution that approaches
the discontinuous distribution as the number of clusters is
increased. The mathematical convergence of the CET very
much resembles how the finite Fourier transformation and its
inverse reproduce a nonanalytic function as a function of the
number of discrete points used in the transformation.

VI. RESTORATION OF QUANTUM-EFFICIENCY
DETERIORATED DISTRIBUTIONS

As discussed in Sec. III, the marginal distribution of a
light source can be directly measured using the balanced-
homodyne-detection �BHD� setup �60,65�. As an experimen-
tal detail, any measurement can record an arriving photon
only with an imperfect probability, ��1, that determines the
quantum efficiency of the photodetectors. It is a well-
established fact in quantum-state tomography that the quan-
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tum efficiency of detectors � can deteriorate considerably the
measured quadrature distributions P��x� from their true
quantum-statistical form P�x� �71,72�. Vogel and Grabow
formulated �71� the deterioration using

P�
��x� =� dyg��y −

x
��

	P�
��y� ,

g��y� =� 2

��1 − ��
e−�2�/�1−���y2

, �128�

where the original and the measured distributions are con-
nected to the true quantum statistics via a Gaussian convo-
lution. Since the result of a Gaussian convolution depends
strongly on the integrated statistical function, the connection
between measured and true quantum statistics is nontrivial
when only P� is known.

Since the measured P� can completely mask the actual
quantum features of the true P distribution, considerable re-
search efforts have been invested to understand how the �
deterioration could be removed. In particular, several papers
have concluded that the restoration of the true quantum sta-
tistics from measurements is “extremely difficult”
�61,72–74� when � decreases much below 1. Thus, as an
alternative to measuring P�x� directly with a BHD setup,
several interesting suggestions and new setups have emerged
to remove the � deterioration employing sequences of corre-
lation measurements �75,76� or careful iterative optimization
�77–80� of photon-statistics-resolving �81� measurements. In
the following, we investigate how our cluster-expansion ap-
proach can be used to restore the true quantum-statistical
distribution directly from the deteriorated P� when � is
known. In other words, we develop a scheme that allows us
to use BHD measurement data to characterize the true quan-
tum statistics for a wide range of �.

As shown by Herzog �82�, the quantum-efficiency dete-
rioration has a simple functional form

�IK
J �� 
 ��J+K�/2IK

J = ��J+K�/2��B̂†�JB̂K� �129�

within the expectation-value representation. In any realistic
measurement, a single photon creates a signal only with an
imperfect probability defined by the quantum efficiency �
�1. Since IK

J actually contains �J+K� photon operators, the
inaccuracy of the measurement attenuates it by ��J+K�/2 cor-
responding to the total number of photon operators. Thus, we
find an equally simple transformation,

I�,J
�,� = �J/2I�,J

� , �130�

for the collective J-photon operator.
We may now analyze what happens with the characteris-

tics function when it is quantum statistically deteriorated. For
this purpose, we insert Eq. �130� into Eq. �46�, yielding


N
�,��iq� 
 �

J=0

�

�iq�JI�,J
�,� = �

J=0

�

�iq���JI�,J
� = 
N

� �iq��� .

�131�

Consequently, the quantum-statistical deterioration can be
presented via a simple rescaling of q when described via the
characteristic function. Similarly, we obtain for the CER


N
�,��iq� = e
SD

�,��iq�AN
�,��iq� ,


SD
�,��iq� = 
SD

� �iq���, AN
�,��iq� = AN

� �iq��� , �132�

which follow by combining Eqs. �74� and �131�. As a result,
all relevant quantities in the cluster-expansion representation
can be restored to their true quantum-statistical form by
implementing


SD
� �iq� = 
SD

�,��i
q

��
	, AN

� �iq� = AN
�,��i

q
��

	 . �133�

Thus, we have all ingredients needed to convert the deterio-
rated P� into AN

�,� and 
SD
�,� to first restore the true AN

� and 
SD
�

and then the true P. More explicitly, we use the CET Eqs.
�88�–�90� to produce 
SD

�,� and AN
� from the deteriorated input

distribution P��x�. In the next step, we apply Eq. �133� to
restore the correlated clusters. Since AN

� 
SD
� are now known,

we apply the steps �91� and �92� to restore the true form of
the distribution function. This scheme basically defines the
essential steps of the cluster expansion restoration transfor-
mation for quantum statistically deteriorated distributions.

To illustrate the CER transformation, we consider as an
example how accurately the Fock-state �2� can be restored
when the assumed measurement setup has the very low
quantum efficiency, �=10%. By using Eqs. �49� and �128�,
we find the deteriorated distribution P��x� �light, shaded
area� shown in Fig. 9�a�. In comparison with the true distri-
bution �dark, shaded area�, basically all of the characteristic
features of a Fock state are washed out beyond recognition.
In particular, P��x� has neither nodes nor clear peaks; in-
stead, it is a featureless distribution resembling the vacuum
state more than a two-photon Fock state. Clearly, such low-
quantum-efficiency data cannot be used directly for a mean-
ingful characterization of light sources.

We proceed by constructing the ā�,J
−� coefficients from

P��x� and then purify them following the steps explained
above. The numerically generated a��,J

� �circles� and the re-
stored a��,J �squares� are shown in Fig. 9�b� for the first C
=80 clusters. In order to check that C is large enough, we
have reconstructed the input P��x� from a��,J

� ; the result
�filled circles in Fig. 9�a�� agrees excellently with the input
distribution. Besides this, the restoration yields the a��,J for-
mat typical for the Fock state �2�, as analyzed earlier in Fig.
8. In the last phase of CER, we use the restored correlations
a��,J to convert the cluster-expasion representation back into
the true distribution. The resulting P�x� �squares� is shown
together with the true distribution �shaded area� in Fig. 9�c�.
We observe that the CER produces an excellent restoration
of the true quantum statistics.
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This example demonstrates that our CER scheme can in-
deed be applied to restore the true quantum statistics from
corrupted measurements once the level of quantum-statistical
deterioration is known. In our computation, we have dis-
cretized the input distributions into equidistant pieces sepa-
rated by 	x= 1

30. We have then applied a simple linear inter-
polation in evaluating the integrals �90�. Thus, the solution
contains the inherent numerical inaccuracy and error propor-
tional to 	x2. Obviously, the CER can fully overcome this
numerical error since we find the true original distribution
with extreme accuracy. The benefits of the CER go much
beyond that; the CER can even overcome a substantial
amount of experimental scatter in the input distributions to
recover the true quantum statistics of the characterized
source. In our future work, we will focus on exploring many
of the aspects of this remarkable property.

VII. SUMMARY

We have presented how the standard quantum-optical rep-
resentations of light can be defined through the concept of
correlated clusters, i.e., particlelike correlations. The devel-
oped cluster-expansion transformation allows us to effi-
ciently evaluate the one-to-one mapping between clusters
and the usual phase-space and marginal distributions. In this
context, our numerical examples illustrate that physical dis-
tribution can be represented through a finite number of clus-
ters while the lower-order correlations typically dominate the

properties. Especially, the manifold of coherent-, thermal-,
and squeezed-state light sources can be expressed using cor-
relations only up to two particles.

We also have performed a detailed analysis of the conver-
gence of the cluster expansion and found two main criteria
based on �i� the extension of the tails of the distribution and
�ii� the width of the narrowest feature within the distribution.
We observed that the cluster expansion converges rapidly
when the tails decay fast enough. For slowly decaying dis-
tributions, a smooth truncation of physically irrelevant tails
provides a converging cluster expansion. When the physi-
cally relevant central part of the distribution contains fea-
tures that are narrow in comparison with the average width
of the distribution, the analyzed source has strong correla-
tions. As examples, we have studied Fock and Schrödinger-
cat states. In both cases, the singlet-doublet correlations are
still dominant even though significant correlations appear up
to relatively high clusters before they eventually decay.

As the first application of the CET, we have developed the
cluster-expansion restoration scheme, which allows for the
retrieval of the true quantum statistics from corrupted prob-
ability distributions resulting from measurements with a low
quantum efficiency. The CER can even overcome appre-
ciable numerical inaccuracies such that it is well suited to
restore quantum-tomographic measurements �60�. The fun-
damental reason for this remarkable property stems from
CET’s ability to describe the physically relevant parts of a
given distribution with as few parameters as possible.

The developed CET formalism can be generalized to mul-
timode light by following the guidelines presented in Sec.
II C The found correlated clusters have a one-to-one corre-
spondence to many-body correlations �29�. In particular, the
hierarchy problem—resulting from both quantum optical and
Coulombic many-body interaction—can now be solved sys-
tematically by applying the same cluster-expansion approach
for quantized light and matter. We have shown what kind of
correlations emerge for several relevant light fields. This in-
formation is particularly useful when quantum statistics of
light is converted from light to matter, according to the prin-
ciples of quantum-optical spectroscopy in semiconduc-
tors�36�. One of the major future goals will be to study how
matter correlations can be controlled and characterized by
the correlations imprinted to the light field.
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APPENDIX A: SINGLET-DOUBLET FIELDS

Equation �66� introduces an ansatz for the density matrix
�̂SD that is supposed to describe the generic singlet-doublet
�SD� fields, defined by Eq. �64�. We show in this appendix
that the proposed �̂SD actually produces the singlet-doublet
factorization �64�. For this purpose, we start from the defini-
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=10% is shown as the light �yellow� shaded area. The correspond-
ing cluster-expansion transformation result is plotted as the black
squares before the restoration, The true distribution is represented
by the dark �blue� shaded area. �b� The corresponding deteriorated
�circles� a��,J correlations are compared with the restored ones
�squares�. �c� The result of the cluster-expansion restoration �red
squares� is compared with the true distribution �shaded area�.
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ton �26� to evaluate the characteristic function corresponding
to �̂SD,


SD��� 
 Tr�e�B†
e−��B�̂SD�

= Tr�e�B†
e−��BD†���S†����̂th�N�S���D���� ,

�A1�

where the definitions �67� and �68� have been used. By ap-
plying cyclic permutations within a trace together with the
basic properties of the unitary transformations S and D, we
find


SD��� = Tr�S���D���e�B†
e−��BD†���S†����̂th�N��

= Tr�e�S���D���B†D†���S†���e−��S���D���BD†���S†����̂th�N��

= Tr�e�G†
e−��G�̂th�N�� . �A2�

Here, we introduce the unitary-transformed operators

G† 
 S���D���B†D†���S†��� = �� + B† cosh r − Be−i� sinh r ,

G 
 S���D���BD†���S†��� = � + B cosh r − B†ei� sinh r ,

�A3�

where we used the polar representation �=rei� for the
squeezing parameter.

To evaluate 
SD��� further, we utilize a general operator
relation

eÂeB̂ = e�1/2��Â, B̂�−eÂ+B̂ if †A,�A,B�−‡− = †B,�A,B�−‡− = 0,

�A4�

which simplifies Eq. �A2� into


SD��� = e�1/2����2+���−���Tr�D����̂th�N�� , �A5�

� 
 � cosh r + ��ei� sinh r . �A6�

This trace can be evaluated, leading to


SD��� = e�1/2����2+���−���e��−1+2N�/2����2. �A7�

By inserting the definition of �, Eq. �A6�, into this expres-
sion, we obtain


SD��� = e���−���−���2�−�1/2�+�1/2��1+2N�cosh 2r�e�2/2�−�1/2��1+2N�e−i� sinh 2r�+�����2/2��−�1/2��1+2N�ei� sinh 2r�, �A8�

which essentially has the same form as Eq. �64�.
After these considerations, we may now determine the

parameters �, 
, and N. By comparing Eq. �64� with Eq.
�A8�, we can identify

�B� = � , �A9�

	�B†B� = −
1

2
+

1

2
�1 + 2N�cosh 2r , �A10�

	�BB� = −
1

2
�1 + 2N�ei� sinh 2r , �A11�

where we utilized the basic properties of the hyperbolic
trigonometric functions. This set of equations can be inverted
yielding

� = �B� , �A12�

N =��	�B†B� +
1

2
	2

− �	�BB��2 −
1

2
, �A13�

r =
1

2
ln

�	�B†B� +
1

2
+ �	�BB��

�	�B†B� +
1

2
− �	�BB��

, ei� = −
	�BB�
�	�BB��

.

�A14�

Since N must be positive for physical fields, we find the
general restriction

�	�BB�� � �	�B†B��	�B†B� + 1� . �A15�

The identification �A12�–�A14� is rather mathematical such
that we seek a more physical connection between the clusters
and coherent, thermal, as well as squeezing parameters. For
this purpose, we consider the Heisenberg uncertainty rela-
tion,

	x	y �
1

4
, �A16�

where 	x
�	�x̂x̂�=��x2�− �x̂��x̂� �and 	y
�	�ŷŷ�� is the
variance fluctuation of the quadrature x �y� defined by Eq.
�27�. After a straightforward application of Eq. �27�, we find

CLUSTER-EXPANSION REPRESENTATION IN QUANTUM … PHYSICAL REVIEW A 78, 022102 �2008�

022102-23



	x2 =
1

4
+

1

2
�	�B†B� + Re�	�BB��� , �A17�

	y2 =
1

4
+

1

2
�	�B†B� − Re�	�BB��� . �A18�

The quadrature squeezing is characterized by the maximum
and minimum values

	X 
 �	x�max =
1
�2
��	�B†B� +

1

2
	 + �	�BB�� ,

�A19�

	Y 
 �	y�min =
1
�2
��	�B†B� +

1

2
	 − �	�BB�� ,

�A20�

respectively. With the help of these, the connections
�A12�–�A14� simplify into

� = �B� , �A21�

N = 2�	X	Y −
1

4
	 , �A22�

� =
1

2

	�BB�
�	�BB��

ln
	Y

	X
. �A23�

APPENDIX B: GEOMETRIC TRANSFORMATION FROM
CLUSTER-EXPANSION SEPARATION

The cluster-expansion separation �74� leads us to the
Wigner function �76�, which can be converted into

W��ei� + �B�� =
1

�2 � d2�AC���e−��1/2�+	�B†B�−�	�BB����1
2−��1/2�+	�B†B�+�	�BB����2

2
e���−���

, �B1�

once we implement a suitable change of integration variable,
�→�ei�. The phase � is defined by the doublet correlation
	�BB�= �	�BB��e2i�. When we identify the maximum and
minimun quadrature fluctuations by using Eqs. �A19� and
�A20�, the Wigner function simplifies to

W��ei� + �B��

=
1

�2 � d2�AC��ei��e−2	Y2�1
2−2	X2�2

2
e2i��2�1−�1�2�.

�B2�

We may now introduce two new changes in integration vari-
ables �1→

�1

2	Y and �2→
�2

2	X , to obtain

W��ei� + �B�� =
1

�24	X	Y
� d2�AC�� �1

2	Y

+ i
�2

2	X
	ei��e−�1/2����2e2i���2/2	Y��1−��1/2	X��2�.

�B3�

This result can be used to identify the scaled Wigner function
and the correlation A,

W̄��� 
 4	X	YW��2	X�1 + i2	Y�2�ei� + �B�� ,

ĀC��� 
 AC�� �1

2	Y
+ i

�2

2	X
�ei�	; �B4�

compare Eq. �77�. With these identifications, the scaled
quantities are connected via

W̄��� =
1

�2 � d2�Ā���e−�1/2����2e−���+���
, �B5�

which has the same form as Eq. �78�. In particular, we have
shown that the singlet-doublet separation corresponds to a
simple geometric transformation �B4�. A very similar deriva-
tion can be repeated for marginal distributions, eventually
leading to Eqs. �85� and �86�.
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