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We demonstrate that laser beam collapse in highly nonlinear media can be described, for a large number of
experimental conditions, by the geometrical optics approximation within high accuracy. Taking into account
this fact we succeed in constructing analytical solutions of the eikonal equation, which are exact on the beam
axis and provide �i� a first-principles determination of the self-focusing position, thus replacing the widely used
empirical Marburger formula, �ii� a mathematical condition for obtaining the filament intensity, �iii� a bench-
mark solution for numerical simulations, and �iv� a tool for the experimental determination of the high-order
nonlinear susceptibility. Successful comparison with experiment is presented.
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Nonlinear light self-focusing is a self-induced modifica-
tion of the optical properties of a material which leads to
beam collapse at a certain point zsf in the media. This effect,
first observed in the 1960s, plays nowadays a key role in all
scientific and technological applications related to the propa-
gation of intense light beams �1�, such as material processing
�2�, environmental sciences �3�, femtochemistry in solutions
�4�, macromolecule chromatography �5�, medicine �6�, etc.

Usually, zsf is estimated using the empirical Marburger
formula �1,7,8�, which has been constructed via fitting the
results of extensive numerical simulations obtained for the
case when the refractive index n is a linear function of the
electric field intensity n=n�I�=n0+n2I �n2�0� �9�. Under
the geometrical optics approximation, and for the same form
of refractive index, exact analytical expressions for zsf have
been obtained in Refs. �10–13�. In most modern experiments,
however, high beam intensities are used for which the linear
approximation breaks down, and further contributions to n�I�
must be considered �7,8,14�. For these cases no general
mathematical condition for the behavior of zsf and the fila-
ment intensity has been derived so far. Most theoretical re-
sults are based on numerical studies, or on variational calcu-
lations assuming a fixed beam profile inside the medium
�see, e.g., �7�, and references therein�. An analytical theory,
able to accurately describe beam collapse in highly nonlinear
optics, is still missing. Moreover, it is widely believed that
the exact treatment of beam propagation in a highly nonlin-
ear medium can only be done numerically �1�.

In this paper, we construct analytical solutions for the
eikonal equations with highly nonlinear forms of the refrac-
tive index avoiding any a priori assumptions on the form of
the beam during propagation. The results obtained are exact
on the beam axis within the geometrical optics approxima-
tion, which we demonstrate to be accurate for many of the
situations taking place in modern experiments. Our approach
permits not only to obtain exact expressions for zsf for dif-
ferent nonlinear functions n�I� in �1+1� and �1+2� dimen-
sions, but also to find a general mathematical framework
which corrects traditionally used formulas for the filament
intensity �7� and approximate expression for zsf �15�. Since
the accuracy of the semiclassical approximation can be easily
estimated, we can determine and control the error in our

calculations, which is not possible in the case of the Mar-
burger formula.

Based on these results we are also able to propose experi-
ments to precisely determine the high-order nonlinear sus-
ceptibility of different materials.

We consider the propagation of a linearly polarized laser
beam of initially Gaussian shape. Starting from the nonlinear
wave equation and assuming that the light beam is almost
monochromatic and that the envelope varies slowly in space
and time, one obtains a generalized nonlinear Schrödinger
equation �NLSE� of the form �1�

i�zE +
1

2k0
��

2 E + k0n��E�2�E = 0, �1�

where E is the electric field, z is the propagation length, and
k0 is the wave vector. The second term describes wave dif-
fraction on the transverse plane. n��E�2� is the nonlinear re-
fractive index. The magnitude of the contributions of the
diffraction and the nonlinear effects to the beam propagation
can be estimated through the comparison of the characteristic
distances Ldiff and Lnl, at which the beam suffers consider-
able changes �7�. Then, L�Lnl /Ldiff is a measure of the error
of the geometrical optics approximation: If L�1, diffraction
can be neglected.

The main contribution to n��E�2� is usually given by the
Kerr cubic term n2�E�2. Therefore it is natural to define a
nonlinear length Lnl=1 / �k0n2I0�, where I0 is the intensity of
the beam at the entry plane of the nonlinear medium. The
diffraction length is defined as Ldiff=n0k0w0

2 /2, where w0 is
the initial beam radius �7�. In Fig. 1 we plot L as a function
of the initial beam power Pin �Pin= I0w0

2� /2� for different
media. In many recent experiments L�0.05 or smaller �see
�7�, and references therein�, thus making the geometrical op-
tics approximation valid �16,17�.

Thus we consider Eq. �1� under the semiclassical approxi-
mation. We represent the electric field E in Eq. �1� in the
eikonal form E=�Iexp�ik0S�, and introduce a dimensionless
variable v���S. The operator �� acts in the plane perpen-
dicular to the z axis; the vector v has a single nonzero com-
ponent v in this plane. Omitting the high-order derivative
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term related to diffraction, we get the boundary value prob-
lem

�zI + v�xI + I�xv + �� − 1�Iv/x = 0,

�zv + v�xv − ��I��xI = 0,

I�0,x� = I0 exp�− x2/win
2 �, v�0,x� = 0, �2�

where � is related to the refractive index by ��I���In�I�.
�=1 and �=2 correspond to the �1+1�- and
�1+2�-dimensional case, respectively. Equations �2� describe
the propagation of an initially collimated Gaussian beam
with waist win=w0 /�2 �8� in an arbitrary nonlinear medium.
Solutions of Eqs. �2� and their derivatives can exhibit singu-
larities for particular values of z. Analyzing these points, we
obtain the nonlinear self-focusing position zsf of the laser
beam �18�.

For convenience we introduce dimensionless variables Ĩ

� I / I0, x̃�x /win, z̃�z /win, a function �̃�Ĩ����I� /n2, and a
parameter a�n2I0. The order of magnitude of a in a large
number of modern experiments lies below 10−5 �7�. It is
therefore reasonable to view a as a small parameter. First, we
consider �1+1� dimensions ��=1�. Following Ref. �10�, one
can notice that in �1+1� dimensions the system of Eqs. �2� is
linear with respect to the first-order derivatives. Therefore, it
is convenient to use a hodograph transformation �19� in order
to transform it into a linear system of the form

�w� − Ĩ�̃−1�Ĩ� = 0, �w� + a�Ĩ� = 0, �3�

where �= Ĩz̃, �= x̃−vz̃, w=v /a. The boundary conditions are

transformed as w=0, �= �ln�1 / Ĩ��1/2, and �=0.
We solve Eqs. �3� by proceeding in two steps �20,21�.

First, setting a=0 and assuming that �w�=0, we find � as a

function of �, Ĩ, and w from the first of Eqs. �3�,

� = − w/�2��̃� . �4�

Then, substituting Eq. �4� into the second of Eqs. �3�, we
obtain a closed partial differential equation for the variable
�,

�w� +
aw

2�2�̃
�Ĩ� +

aw

2��̃2�Ĩ�̃ = 0. �5�

Integration of Eq. �5� results in two invariants

��̃ = 	1, 	 �̃−1dĨ − a�2 = 	2. �6�

With the help of Eqs. �6� we express Ĩ and � as functions of

the integration invariants: Ĩ= Ĩ�	1 ,	2� and �=��	1 ,	2�.
Then, we require that, according to the boundary conditions,

for �=0 the equation Ĩ�	1 ,	2�=exp�−��	1 ,	2�2� must be
fulfilled.

The scheme presented above allows us to find analytical
solutions of the optics equations for different types of non-

linearities �̃�Ĩ�. For high field intensity, the refractive index
of most materials contains nonlinear contributions additional
to the Kerr term n2I. Usually, they are modeled as a power
function of the intensity in the general form 
IK. Physically,
this term can be attributed to the fifth-order nonlinear sus-
ceptibility n4I2 �8,24� or to the material ionization �KIK,
where K is the number of photons absorbed, and �K is the
multiphoton ionization �MPI� cross section �7�.

Let us first consider a system having a nonlinear part of
the refractive index of the form n�I�=n2I−n4I2 �i.e., K=2�.
In this case �̃=1−
Ĩ, where 
�2n4I0 /n2. Substituting �̃

into Eqs. �6�, we obtain 	2=−1 /
 ln�1−
Ĩ�−a�2 and 	1

=��1−
Ĩ�. Thus, the solution to Eqs. �2� in two dimensions
reads as

�1 − e−
	2� = 
e	1e
	2. �7�

We return to the original variables in Eqs. �4� and �7�, dif-
ferentiate them with respect to x̃ and z̃, and solve the ob-

tained system of four algebraic equations with respect to �x̃Ĩ,
�z̃v, etc. Substituting the obtained expressions into Eqs. �2�
for �=1, one can verify that the obtained approximate solu-
tions �Eqs. �4� and �7�� are exact on the beam axis �x=0,
�v�x=0=0�. As a rule, due to the symmetry, the behavior on

the beam axis reflect the major properties of the beam such
as self-focusing, defocusing, filamentation, etc. �22�.

Based on the results of the renormalization-group analysis
of Refs. �10,13� �for �̃=1�, we make the Ansatz that, when
going from �1+1� to �1+2� dimensions, the variables scale
as z→z /�2, v→v�2; thus the solution reads as

1 − �1 − 
Ĩ�eaĨ2z̃2
/2 = 
 exp
 − x̃2e−a
Ĩ2z̃2

�1 − aĨz̃2�1 − 
Ĩ��2
� ,

v = − aĨz̃x̃�1 − 
Ĩ�/�2 − 2aĨz̃2�1 − 
Ĩ�� . �8�

Again, after direct substitution of Eqs. �8� into Eqs. �2� for
�=2, we can verify that this solution is exact at the beam
axis.

The on-axial beam intensity distribution in �1+2� dimen-
sions is given by

FIG. 1. �Color online� Error L�Lnl /Ldiff of the geometrical op-
tics approximation for different media as a function of the laser
pulse power Pin. The green, black, and blue curves refer to water,
air, and fused silica, respectively. The pulse wavelength is assumed
to be 800 nm. Pin is given in units of TW for air, and of GW for
water and fused silica.
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aĨ2z̃2 =
2



ln
 1 − 


1 − 
Ĩ
� . �9�

Analyzing the function z̃�Ĩ� in Eq. �9� one finds points where

�Ĩz̃�Ĩ�=0 corresponding to self-focusing. There is only one
such point when 
=
c�0.175. For 
�0.175, Eq. �9� has no
special points; the on-axial intensity monotonically increases

approaching a saturation value Ĩsat. By studying the

asymptotic behavior of Ĩ= Ĩ�z̃�, we obtain Ĩsat=1 /
. Note that

this value fulfills the condition 1−
Ĩsat= �̃�Ĩsat�=0. For 

�0.175 there is an interval �z̃1 , z̃2� on the beam axis where

the solution Ĩ�z̃� is not unique. The first point z̃1 corresponds
to the development of a short-range modulational instability
in the beam. At this point, several filaments can appear,

which further merge into a single filament with Ĩsat at the
point z̃2.

For materials described by n�I�=n2I−n6I3, we have K

=3, �̃=1−
Ĩ2, 
=3n6I0
2 /n2, and the on-axial intensity distri-

bution is given by

2 arctanh��
Ĩ� − aĨ2z̃2�
 = 2 arctanh��
� . �10�

From the analysis of the asymptotic behavior �z̃→� we

obtain 
c�0.05, Ĩsat=1 /�
. By inspection, we realize again
that, as for K=2, the intensity of the beam saturates when
�̃=0.

Notice that the values of Isat for K=2 and 3 obtained here
are different from previous theoretical estimates �7,8,15�,
which were obtained assuming that the intensity in the fila-
ment saturates when the nonlinear terms in n�I� compensate
each other �7�. From the present results we see, however, that
this is not the case. Upon propagation, the beam tends to
reach the on-axial value of the intensity which maximizes the
index of refraction at the beam axis. In other words, not the
nonlinear refractive index, but its variation should be zero,

��In�I��Isat
= 0. �11�

This condition to obtain the filament intensity is general,
independent of the medium or material, and represents one
of the central predictions of this paper, which should serve as
a basis for future calculations. Note that such a general math-
ematical condition cannot be obtained from the numerical
simulations.

We now apply our theoretical scheme to study the con-
crete problem of femtosecond laser pulse propagation in air,
which is relevant due to a large number of applications and
whose description is still a subject of discussion �see, e.g.,
Refs. �7,8�, and references therein�. The nonlinear refractive
index of air is taken in the following widely used form;

n = n2R�t� − n4I2 −
��I�
2�c

, �12�

where the first term describes the Kerr response
involving a delayed �Raman� contribution R�t�= �1−��I
+��1+�R

2�d
2��R

−1�d
−2�−

t e−�t−t��/�d sin��R�t− t���I�t��dt�, with �
0.5, �R1.6�1013 s−1 and �d77 fs �23�. The magnitude

of n4 for air is unknown, its most accepted estimates lie
around �10−32 cm4 /W2 �7,24�. In the last term of Eq. �12�,
��I� refers to the density of free electrons and �c=1.7
�1021 cm−3 denotes the critical density above which
the plasma becomes opaque. A rough estimate yields ��I�
��KIK�attp, where �at is the atom density �at=2
�1019 cm−3 and tp the pulse duration. K=8 for the MPI with
a pulse of 800 nm, and �8=3.7�10−96 �cm16 /W8� /s �7,27�.

A numerical solution of the NLSE for the focused beam
with f =2 m, Pin�0.08 TW, and w0=3 mm using n�I� given
by Eq. �12� with n2=3.2�10−19 cm /W2, n4=0 and �=0
gives zsf,f=128.2 cm �25�. Note that if n�I�=n2I, the self-
focusing distance is given by the Kovalev formula �11,13�
zsf=win /�2n2I0, which is exact under the geometrical optics
approximation and for initially Gaussian beam shape. For the
experimental conditions of Ref. �25� it yields zsf,f
=127.6 cm. This confirms our initial statement that for many
experiments diffraction �and in this case also the plasma de-
focusing� can be neglected.

Now we compare our results with the recent experiment
and numerical results of Refs. �23,26�, where a collimated
beam with full width at half-maximum �FWHM� diameter of
d�4–5 mm �w0=d /�2 ln 2�, with a pulse energy Ein
�20 mJ and different pulse durations �FWHM� was used. In
Ref. �23�, n2 was taken to be n2=2.5�10−19 cm2 /W for the
pulse duration 50 fs, and n2=6�10−19 cm2 /W for 450 fs,
n4=2.5�10−33 cm4 /W were fixed and independent on the
pulse duration. Substituting this set of parameters into Eq.
�9� and estimating the delayed response as an integral over
the pulse duration, we obtain zsf and the on-axial fluence F
�F=�I�t�dt� which are presented in Table I.

From Table I, one can see that in spite of used simplifi-
cations, our results are in good agreement with experimental
and numerical results.

It is important to point out that the values of all param-
eters in Eq. �12� are the subject of controversy. For example,
the magnitude of n2 is taken as n2=3.2�10−19 cm /W2 in
Refs. �7,27� and as n2=4�10−19 cm /W2 in Ref. �8�. The
value �8=2.9�10−99 �cm16 /W8� /s from Ref. �8� is three or-
ders of magnitude larger than the one used in Ref. �7�. With
such an uncertainty in these parameters and fluctuations of
the experimental data �compare the results of Refs. �23,26�
by the same group�, a single experiment is probably not suf-
ficient in order to adjust all the parameters of the refractive
index equation �12�.

Therefore, and based on Eq. �9�, we suggest the following
scaling measurement. In Fig. 2 we show our results for the

TABLE I. Comparison of the predictions for zsf and the filament
fluence in air calculated using Eq. �9� and Eq. �11� with the results
of experiments and numerical simulations.

Pulse duration

zsf �m�
Fluence �J /cm2�

50 fs50 fs 450 fs

Experiment �26� 3 5.5 0.6

Numerical �23� 3 6.5 0.6–1.4

This work 3 6.2 0.66
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dependence of zsf on the initial pulse intensity. We obtain
considerable qualitative �and quantitative� differences de-
pending on the sign and magnitude of n4. One can use this
result to design an experiment with varying beam power to
find accurate values of n2 and n4 by fitting the measured
experimental curve zsf�I0� with zsf obtained from Eq. �9�.
Afterwards, Eq. �11� derived from first principles can be used
for determining the plasma response by fitting the value of
Isat.

Finally, and for the sake of completeness, we present re-
sults obtained by applying our theory to other types of non-
linearities in order to predict the behavior of self-focusing for

other cases of current physical interest �14�. If the nonlinear
refractive index has the form n�I�=n2I / �1+
I�, the on-axial
intensity distribution in �1+1� dimensions is given by the
expression

��1 + 
Ĩ�3 − a3
Ĩ2z̃2�1/3 − 1 = 
 .

For n�I�=n2�1−e−
I�, the on-axial intensity is given by

e
Ĩ − az̃2
2Ĩ2 = e
,

and for a polynomial form n�I�=n2KIK �K�2� by

Ĩ2�I−K + aK�K − 2�z̃2� = 1.

No intensity saturation has been observed. The singularities
in the solutions of the above equations correspond to the zsf
for the given n�I�. Note that our approach can be generalized
to arbitrary forms of n�I�. In general, the solutions can be
found semianalytically by interpolation of the integrals in
Eqs. �6�.

Summarizing, exact solutions for the self-focusing length
zsf and the filament intensity Isat for several different forms of
the nonlinear refractive index in the framework of geometri-
cal optics were obtained. Depending on the experimental
conditions, these solutions can be very accurate, describe the
essential physics of the problem, and explain different inde-
pendent measurements. The analytical expressions obtained
for the dependence I= I�z� constitute a clear improvement
with respect to the empirical Marburger formula.
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FIG. 2. �Color online� Dependence of the self-focusing position
on the beam intensity. The blue dashed curve refers to the depen-
dence 1 /�I0 �obtained for low intensities�, whereas the black and
green curves show the deviation for high intensities due to influence
of the fifth-order nonlinearity n4= �10−32 cm4 /W2. The solid black
curve ends at a point for which the sharp self-focusing is no longer
observed, since the derivative Iz becomes positive.
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