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We theoretically investigate the transmission of electromagnetic radiation through a metal plate with a zero-�
metamaterial slit, where the permittivity tends towards zero over a given bandwidth. Our analytic results
demonstrate that the transmission coefficient can be substantial for a broad range of slit geometries, including
subwavelength widths that are many wavelengths long. This resonant effect has features quite unlike the
Fabry-Perot-like resonances that have been observed in conductors with deep channels. We further reveal that
ultranarrow zero-� channels can have significantly greater transmission compared to slits with no wave im-
pedance difference across them.
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With the current state of the art in nanofabrication tech-
nologies, and the recent observation of resonant optical
transmission through small metal holes �1�, there has been a
renewed interest in electromagnetic wave transmission and
diffraction in metallic nanostructures. Although diffraction
effects involving optical slits and gratings has a long history,
scientific curiosity coupled with the potential for device ap-
plications has spurred considerable research activity involv-
ing the manipulation and confinement of electromagnetic
waves in nanoscale resonant structures. With the concurrent
advent of metamaterials, or composite structures with tai-
lored electromagnetic properties, the interplay of classical
transmission systems with these new composite media has
become an important issue. By engineering metallic nano-
apertures, gratings, or channels to incorporate metamaterials,
it is anticipated that various enhanced or exotic transmission
characteristics will ensue.

Lately, there has been interest in zero-� metamaterials,
which are structures that exhibit an effective permittivity of
zero �or nearly so� in the passband, akin to the property of
some precious metals �2� near their plasma frequency. It was
shown that waveguide devices containing zero-� inclusions
could potentially be more efficient via the reduction of un-
wanted reflections if one of the physical dimensions was
made smaller �3�. This can possibly negate the ill effects of
impedance mismatch. A multilayer structure having nonlin-
ear electric and magnetic responses, and a refractive index
close to zero, was shown to effectively shield �4� electromag-
netic fields. Experimental work has verified �5,6� electro-
magnetic tunneling through zero-� metamaterials at micro-
wave frequencies. It was shown �7� that the effective
magnetic permeability � can also be resonantly tuned to van-
ish, creating a matched metamaterial with an effective zero
index of refraction. These media have been linked to appli-
cations in miniaturized resonators, highly directive antennas
�8�, delay lines with zero-phase difference I /O, and trans-
formers that convert small-curvature wave fronts into output
beams with planarlike wave fronts �9�.

A fundamental system in which to investigate zero-� dif-
fraction and transmission effects is a subwavelength channel
through a metal film. If the slit is filled with air, it has been
established that for light polarized perpendicular to the slit in
an optically thick perfect metal of length l, Fabry-Perot-like
waveguide modes arise when l is approximately a half inte-

ger number of wavelengths: l�n� /2. These harmonic
modes, which follow from geometrical arguments, result in
transmission peaks when the waves coherently superimpose
over the given path length. As the geometrical parameters
vary, the resonant wavelength can shift �10,11� in metals
with slit perforations, as observed with microwaves �12�. For
ultrashort incident pulses, the Fabry-Perot-like modes can be
resonantly activated �13� through the Fourier components of
the wave packet inside the slit, leading in some cases to
enhanced transmission. The resonant enhancement of a nan-
ometer scale electromagnetic pulse was also shown to be
spatially and temporally localized �14� in the near field. For
perfect metals with holes rather than slits, transmission is
strictly limited to incident wavelengths that are less than
twice the diameter of the openings.

In this Rapid Communication we reveal some unexpected
and exotic transmission behavior of light through a subwave-
length zero-� slit. Our theoretical framework demonstrates
that significant transmission can occur in these structures for
a considerable range of ultranarrow widths that are suffi-
ciently deep. The inverse relationship between the slit length
and width that achieves maximal transmission is shown to be
highly nontrivial. We show that zero-� metamaterials with
inherently large intrinsic impedances can have greater trans-
mission than matched zero index slits, where � is also van-
ishingly small. We also take advantage of the subwavelength
geometry �that is, the slit width is smaller than about half the
incident wavelength� to invoke the single mode approxima-
tion, which has been shown to yield valuable physical insight
into resonance phenomena for perfect �15� and real �16� met-
als. Our analytic results thus permit one to efficiently map
out the relevant sector of parameter space deemed appropri-
ate for any future experimental endeavors.

We consider a planar perfect metallic structure that is
translationally invariant in the x−z plane and has channel
length l normal to the plane with width p �along x�. The
incident beam is TM polarized, so that the magnetic field H
is directed along z. The wave vector, k, forms an angle �
with the normal to the plane. For this configuration, the z
component of the magnetic field, Hz, must satisfy the scalar
Helmholtz equation,
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�2Hz

�x2 +
�2Hz

�y2 + ��k0
2Hz = 0, �1�

where k0=� /c. Our focus is primarily metamaterial slits
very near the characteristic plasma frequency and, as in re-
cent works, represents the frequency dispersive electrical re-
sponse by an effective Drude model, �=1−�p

2 / ����+ i���,
where � is correlated to the mean-free path in the filling
material. Other than when discussing absorption loss, we
generally take � equal to zero in order to isolate the electro-
magnetic effects inherent to vanishing constitutive relations.

We solve Eq. �1� in a given region and then match each
solution at the corresponding interfaces using the appropriate
boundary conditions. To construct the solution in the “con-
tinuum” regions of free space surrounding the metal sheet,
we Fourier transform Eq. �1� along x and use separation of
variables. This renders an expression written in terms of
plane wave expansions,

Hz,1 = ei�k0xx−k0yy� +
1

�2�
�

−�

�

d	R�	�ei	xei
y , �2�

Hz,3 =
1

�2�
�

−�

�

d	T�	�ei	xe−i
y , �3�

where k0x=k0 sin �, k0y =k0 cos �, and 
=�k0
2−	2. Here the

subscripts 1 and 3 denote the entrance and exit regions, re-
spectively. The unknown coefficients R�	� and T�	� are de-
termined below. The general eigenmode expansion for the
field within the slit region is �10�

Hz,2 = �
m=0

�

cos�km�x − p/2���amei�my + bme−i�my� , �4�

where km	m� / p, and �m	���k0
2−km

2 . The summation is
over a single index m reflecting the interconnection among
the wave numbers consistent with the wave equation. The
electric field is obtained directly via application of Max-
well’s equation: E= i / ��k0�� �H. It is generally valid to
retain only the lowest order mode in the expansion �4� for the
ultranarrow channels considered in this Rapid Communica-
tion. Moreover, as � goes to zero, the summation results in
higher order evanescent fields that have a negligible contri-
bution to the time-averaged energy flux. Thus for the electric
field we have

Ex,2 = �− aei�y + be−i�y���x� , �5�

where �	�0, =�� /� is the intrinsic impedance, and the
function ��x� is unity in the slit and vanishes elsewhere.

Matching the electric field at the entrance and exit inter-
faces yields the R and T coefficients:

R�	� =
�2�k0y��k0x − 	�



+

w



�a − b���	p� , �6a�

T�	� =
w



�− ae−i�l + bei�l�e−i
l��	p� , �6b�

where we define ��x�	�2 /� sin�x /2� /x. A convenient tech-
nique �15� that utilizes the boundary conditions to determine
the remaining unknown a and b coefficients is the use of the
following relationships at the appropriate openings:

Hz,1�x ,0� ,��x��= 
Hz,2�x ,0� ,��x��, and 
Hz,2�x ,−l� ,��x��
= 
Hz,3�x ,−l� ,��x��. After some tedious algebra, we have for
b,

b =
2�2���k0xp��1 + wI0�

�1 + wI0�2 − e2i��1 − wI0�2 , �7�

where w	k0p, �	�l, and a=be2i��wI0−1� / �wI0+1�. The
complex valued integral I0 is a function solely of q:

I0 =
1

�q2�
0

�

du
sin2�uq�

u2�1 − u2
, �8�

where q	k0p /2 is the dimensionless measure characterizing
the slit width. The series expansion for the imaginary com-
ponent of I0 has the following leading terms:

Im�I0� � −
1

6�
��q2 − 6��� + ln q� + 9 −

19

12
q2 , �9�

where � is Euler’s constant. Similarly for the real part of I0,
we have �to fourth order�, Re�I0�� 1

2 − 1
12q2+ 1

120q4. It will be
seen shortly that I0 is a very important quantity in the deter-
mination of the transmission. The accuracy of these expan-
sions is demonstrated graphically in Fig. 1, where the trun-
cated expansions are plotted alongside the numerically
integrated I0 �Eq. �8��. Clearly, the approximations for I0 are
satisfactory for the small q of interest here, deviating only
slightly for the larger q, as would be expected for a power
series centered about the origin.

Next, we insert the calculated a and b coefficients into Eq.
�5� to determine the electric field at the bottom of the slit,

0.2 0.4 0.6 0.8 1 1.2 1.4
0.3

0.35

0.4

0.45

0.5

q

R
e

[I
0
]

−4

−3

−2

−1

0

Im
[I

0
]

Re [I0] (exact)
Re [I0] (approx.)
Im [I0] (exact)
Im [I0] (approx.)

FIG. 1. �Color online� Real and imaginary components of I0 as
a function of the dimensionless width q	�p /�. The approximate
solutions and exact integral �Eq. �8�� have good agreement over the
relevant range of widths. As q vanishes, the imaginary component
has a slow divergence �see Eq. �9��.
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Ex
bot =

2i sin�q sin ��
q sin ��sin � + 4I0q2�i cos � + I0q2 sin ���

,

�10�

which is valid for arbitrary � and �. The magnetic field is
easily obtained via the relationship Hz

bot=2qI0Ex
bot. The trans-

mission coefficient, �, is defined as the time-averaged Poyn-
ting vector at the bottom of the slit, 
Sy�y=−l, integrated over
the exit opening, and divided by the Poynting vector of the
incident plane wave:

� =
16q2 Re�I0���2F���

�sin � + 4I0q�i cos � + I0q sin ���2
, �11�

which is dimensionless after incorporating a normalization
factor, k0. The angular dependence is encapsulated entirely
by the expression F���=sinc2�q sin �� /cos �, which depends
weakly on q for subwavelength slits, and is close to unity for
source waves near normal incidence. For small q, we can
further write �for sin ��0�: ��8�� /��q2 csc2�k0l����, oth-
erwise if we consider channels with some integer multiple of
the Fabry-Perot length, l=� / �2����, Eq. �11� approximately
reduces to �� 1

2 �I0�−2, which clearly only depends on the ra-
tio of the slit width to the wavelength �see Eq. �8��.

Having derived the general expression for transmission of
electromagnetic fields through a subwavelength channel con-
taining, to this point, conventional material parameters, we
now examine the effects of taking the limit of vanishing �. It
is relatively straightforward to show that Eq. �10� for the
electric field at the slit exit now reduces to the succinct form

Ex
bot =��

2

��2q sin ��
qI0�1 − iI0k0lq��

, �12�

giving a transmission of

� =
Re�I0�

�I0�2�1 − iI0k0lq��2
, �13�

where Hz=2qI0Ex
bot, and is spatially constant in the slit. It can

be deduced from Faraday’s law, H=−i / ��k0�� �E, that Ex
must therefore be a linear function of the coordinate y within
the slit: Ex= �y / l��Ex+Ex

top, where �Ex	Ex
top−Ex

bot. The elec-
tric field at the top of the slit, Ex

top, is simply Ex
top= �1

−2iqI0k0l��Ex
bot. For q�1, we can write Eq. �13� strictly in

terms of elementary functions,

� �
2��� + k0l�q�3 − 2� − 2 ln q��

4 ln q�2� − 3 + ln q� + �2 + �2� − 3�2 , �14�

demonstrating that for a given ratio of slit width to wave-
length, � is simply a linear function of the channel length l
and permeability �.

To illustrate how the transmission depends upon the ge-
ometry of the slit, we present in Fig. 2 a three-dimensional
representation of � �Eq. �13�� as a function of the slit dimen-
sions, l and p, scaled by the wavelength. In this figure, the
source field is normally incident with wavelength, �=5 �m,
which is very close to the resonant plasma wavelength, so
that the frequency dispersive � nearly vanishes. It is evident
from the plot that the transmission does not possess Fabry-

Perot-like resonant oscillations as a function of l, as would
be expected from a slit with conventional material. The fig-
ure shows that energy flow is generally restricted unless the
geometrical parameters coincide with the brightly peaked re-
gions that can decay quite rapidly.

The wave impedance, Z, defined as Z=Ex /Hz, is calcu-
lated from the field expressions above to yield the following
impedance relation between the top and bottom of the open-
ings, Ztop=Zbot− ik0l�, with Zbot=1 / �2qI0�. A remarkable
property of a narrow zero-� slit is that despite the consider-
able wave impedance for p��, energy can still be transmit-
ted if the slit length l is increased. This behavior is further
illustrated in Fig. 3, where the transmission is shown to be
robust for an extended range of channel lengths and widths.
The maximum transmission, �max, seen contained within the
continuous bright curve, is determined by examining the ex-
trema of Eq. �13�. By taking the appropriate derivative of the
denominator, we find that �max is determined by the transcen-
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FIG. 2. �Color online� Transmission � through a zero-� slit as a
function of the dimensionless geometrical parameters l /� and p /�.
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FIG. 3. �Color online� Transmission characteristics for a zero-�
metamaterial slit, demonstrating the l and p that give the optimal
transmission at a given wavelength. Brighter regions indicate higher
transmission. Relatively high transmission can persevere in deep
slits �l��� and small openings �p���.
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dental equation, �qk0l=��q�, where ��q�=−Im�I0� / �I0�2 is a
gradually increasing monotonic function of q. Thus as a
function of q, and for each l, the intercept of ��q� with lines
of slope �k0l yields the permissible electrical slit widths that
achieve peak light transmission. This technique is shown
graphically in the inset of Fig. 4, where the inverse relation-
ship between slit width and length are clearly seen.

It is also of interest to determine if the transmission can
be enhanced for light incident upon a matched zero index
material, whereby both � and � are vanishingly small. In the

main plot of Fig. 4, the transmission is therefore plotted as a
function of slit width for a zero-� slit �with �=1 as usual�,
and matched zero index slit. Surprisingly, for zero-� media,
the shown subwavelength widths support transmission reso-
nances that are absent in matched zero index slits. Although
the l dependence washes out for matched zero index chan-
nels, � still depends strongly on the width dimension, and Eq.
�13� approximately reduces to the expression for a slit filled
with a conventional dielectric and length satisfying the
Fabry-Perot geometric resonance condition. We can thus
conclude that for zero-� media and narrow enough openings,
energy flow can be much greater than for slits loaded with
metamaterials having no wave impedance mismatch between
the ends of the slit. We also considered the effects of finite �
and concluded that the presence of absorption loss simply
reduces the overall magnitude of � by a factor that becomes
greater with increasing slit depth, but having no effect on the
geometrical parameters leading to the particular resonance
location. This bodes well for future development of minia-
turized devices used for energy transport and narrow band
frequency selective surfaces.

In conclusion, we have shown that significant transmis-
sion arises for a range of subwavelength widths in suffi-
ciently deep slits containing zero-� inclusions. We also dem-
onstrated that these resonant channels can transmit greater
energy compared to the corresponding matched zero index
slits. Although there is currently limited metamaterial fabri-
cation in the ir and optical frequencies, some recent progress
has been made with negative-index metamaterials involving
metal layers separated by a dielectric �17�, alternating layers
of InGaAs and AlInAs semiconductors �18�, and photonic
crystals in the near-infrared range �19�.
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FIG. 4. �Color online� Transmission through deep metamaterial
slits as a function of p /�. A considerable resonance peak emerges
for a small subwavelength width of zero-� material. Also shown is
a matched zero index medium where � and � are both nearly zero.
The inset shows the intersections of the lines with the ��q� curve,
corresponding to electrical widths that yield peak transmission. Dif-
fering ratios of l /� �see legend� yield lines with different slopes.
These results are consistent with the main plot, where the channel
length corresponds to l=50�.
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