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A quantum state is nonclassical if its Glauber-Sudarshan P function fails to be interpreted as a probability
density. This quantity is often highly singular, so that its reconstruction is a demanding task. Here we present
the experimental determination of a well-behaved P function showing negativities for a single-photon-added
thermal state. This is a direct visualization of the original definition of nonclassicality. The method can be
useful under conditions for which many other signatures of nonclassicality would not persist.
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Einstein’s hypothetical introduction of light quanta, the
photons, was the first step toward the consideration of non-
classical properties of radiation �1�. But what does nonclas-
sicality mean in a general sense? A radiation field is called
nonclassical when its properties cannot be understood within
the framework of the classical stochastic theory of electro-
magnetism. For other systems, nonclassicality can be defined
accordingly. Here we will focus our attention on harmonic
quantum systems, such as radiation fields or quantum-
mechanical oscillators, for example, trapped atoms.

In this context the coherent states, first considered by
Schrödinger in the form of wave packets �2�, play an impor-
tant role. They represent those quantum states that are most
closely related to the classical behavior of an oscillator or an
electromagnetic wave. For a single radiation mode, the co-
herent states ��� are defined as the right-hand eigenstates of
the non-Hermitian photon annihilation operator â, â���
=����; cf., e.g., �3�. A general mixed quantum state �̂,

�̂ =� d2� P��������� , �1�

can be characterized by the Glauber-Sudarshan P function
�3,4�. In this form the quantum statistical averages of nor-
mally ordered operator functions can be written as

�: f̂�â, â†�:� =� d2� P���f��,�*� , �2�

where the normal ordering prescription : f̂�â , â†�: means that
all creation operators â† are to be ordered to the left of all
annihilation operators â.

Formally, the resulting expressions �2� for expectation
values are equivalent to classical statistical mean values.
However, in general, the P function does not exhibit all the
properties of a classical probability density. It can become
negative or even highly singular. Within the chosen represen-
tation of the theory, the failure of the Glauber-Sudarshan P

function to show the properties of a probability density is
taken as the key signature of quantumness �5,6�.

In this Rapid Communication we demonstrate the experi-
mental determination of a nonclassical P function. Within
the experimental precision it clearly attains negative values.
This is a direct demonstration of nonclassicality: the negativ-
ity of the P function prevents its interpretation as a classical
probability density.

Why is it so difficult to demonstrate the nonclassicality
directly on the basis of this original definition? Let us go
back to a single photon as postulated by Einstein. Its P func-
tion is

P��� = 	1 +
�

��

�

��*

����; �3�

cf., e.g., �7�. Already in this case we get a highly singular
distribution in terms of derivatives of the � distribution,
which cannot be interpreted as a classical probability. Due to
these properties, it is difficult to experimentally determine
nonclassical P functions in general.

How can one realize nonclassical states whose properties
can be demonstrated directly in terms of the original defini-
tion, that the P function fails to be a probability density?
This question is not trivial: for instance, losses introduced by
imperfect experimental efficiencies lead only to rescaling of
the quadrature variable; cf., e.g., �8�. The P function obtained
by perfect detection is related to P����, obtained with the
quantum efficiency � via

P��� = �P������ . �4�

Consequently, singularities in the P function are then pre-
served. Most of the nonclassical states experimentally gener-
ated so far have highly singular P functions, whose recon-
struction is impossible. However, one may start with a
thermal state �̂th with mean photon number n̄. By photon
creation one gets a single-photon-added thermal state
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�SPATS�, �̂=Nâ†�̂thâ, where N denotes the normalization.
Its P function is now well behaved, but violates the proper-
ties of a classical probability density �9�,

P��� =
1

�n̄3 ��1 + n̄����2 − n̄�e−���2/n̄, �5�

giving rise to the question of whether its experimental deter-
mination could be possible �10�. In the zero-temperature
limit, the SPATS includes the special case of the one-photon
Fock state with the highly singular P function given in Eq.
�3�. In this sense the SPATS represents a single photon whose
P function is regularized by a controlled thermal back-
ground.

Recently, SPATSs could be realized experimentally and
some of their nonclassical signatures have been verified �11�.
Nevertheless, the reconstruction of a nonclassical P function
remains a challenging problem which goes beyond the stan-
dard procedures of quantum state reconstruction; for the lat-
ter, see, e.g., �7�. A successful determination of the P func-
tion of a SPATS would visualize the basic definition of
nonclassicality for a quantum state that lies at the heart of
Einstein’s hypothesis: a regularized version of a single pho-
ton.

The core of the experimental apparatus used to produce
SPATSs is an optical parametric amplifier based on a type-I
�–barium borate �BBO� crystal pumped by radiation at
393 nm �see Fig. 1�. The pump is obtained by second har-
monic generation in a lithium triborate �LBO� crystal of a
mode-locked Ti:sapphire laser emitting 1.5 ps pulses with a
repetition rate of 82 MHz. When the parametric amplifier is
not injected, spontaneous parametric down-conversion takes
place, generating pairs of photons at the same wavelength as
the laser source along two directions commonly called the
signal and idler channels. We perform a conditional prepara-
tion of the quantum states by placing an on-off photodetector
�D� after narrow spectral-spatial filters �F� along the idler
channel �11,12�.

A click of the idler detector prepares the signal state,
whose quadratures are measured on a pulse-to-pulse basis
using an ultrafast balanced homodyne detection scheme �13�.
After verifying the phase independence of the quadrature dis-
tributions, the state is then analyzed by acquiring quadrature
values with random local oscillator phases. When no fields
are present at the inputs of the parametric amplifier, condi-

tioned single-photon Fock states are spontaneously generated
in the signal channel �12,14�. On the other hand, we have
recently shown that the injection of pure or mixed states
results in the conditional production of their single-photon-
added versions, always converting the initial states into non-
classical ones �11,15,16�.

Here we use a pseudothermal source, obtained by insert-
ing a rotating ground glass disk in a portion of the laser
beam, for injecting the parametric amplifier and producing
SPATSs. The scattered light forms a random spatial distribu-
tion of speckles whose average size is larger than the core
diameter of a single-mode fiber used to collect it. When the
ground glass disk rotates, light exits the fiber in a clean col-
limated spatial mode with random amplitude and phase fluc-
tuations, yielding the photon distribution typical of a thermal
source �17�. The product between the SPATS preparation rate
and the coherence time of the injected thermal state �a few
microseconds, and depending on the rotation speed of the
disk� is kept much smaller than 1. This condition assures that
each state is prepared by adding a single photon to a coherent
state having an amplitude and phase which are completely
uncorrelated with respect to those of the previous one. This
experimental realization of a thermal state directly recalls its
P function definition, i.e., a statistical mixture of coherent
states weighted by a Gaussian distribution: P���
=exp�−���2 / n̄� / �n̄��.

By performing measurements on single-photon Fock
states and on unconditioned thermal ones, we have estimated
an overall experimental efficiency of 0.62�0.04. Both the
limited efficiency in the state preparation ��0.92� and in
homodyne detection ��0.67� degrade the expected final state
by introducing unwanted losses. This does not contaminate
the obtained P function; cf. Eq. �4�.

Let us now proceed with the reconstruction of the P func-
tion. Its characteristic function ���� is related to that of the
quadrature x̂�	� �7�,

���� = �:D̂���:� = �ei���x̂��/2−arg�����e���2/2, �6�

where D̂��� is the displacement operator. Since the measured
state is independent of phase, we may neglect the arguments
of � and x̂. The expectation value on the right-hand side
represents the characteristic function of the observable
quadrature. It can be estimated from the sample of N mea-
sured quadrature values 
xj� j=1

N via �cf. �18��

�ei���x̂� �
1

N
�
j=1

N

ei���xj . �7�

Inserting Eq. �7� into �6�, we get an estimation �̄��� of
����. The variance of this quantity can be estimated as


2
�̄���� =
1

N
�e���2 − ��̄����2� . �8�

The inverse Fourier transform of ���� yields the P func-
tion, which for many nonclassical states does not exist as a
well-behaved function. However, the sampled characteristic
function converges stochastically toward the theoretical one.
In our case its Fourier transform is an analytical function.

F

BBO
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FIG. 1. �Color online� Scheme for the conditional excitation of a
thermal light state �denoted by �̂in� by a single photon. A click in the
on-off detector D prepares the photon-added thermal state �̂out and
triggers its balanced homodyne detection �BHD�.

KIESEL et al. PHYSICAL REVIEW A 78, 021804�R� �2008�

RAPID COMMUNICATIONS

021804-2



For radial symmetry of the state the two-dimensional Fourier
transform reduces to the Hankel transform �19�,

P��� =
2

�
�

0

�

bJ0�2b������b�db . �9�

In our treatment we set the experimental curve to zero for
arguments greater than a cutoff value ���c, where the graph
becomes small. This limits the disturbing sampling noise on
the reconstructed function

P̄��� =
2

�
�

0

���c
bJ0�2b�����̄�b�db �10�

to a reasonable level. The corresponding variance has been
calculated as


2
P̄���� =
1

N	 4

�2 � �
0

���c
bb�J0�2b����J0�2b������̄�b − b��

�ebb�db db� − P̄���2
 . �11�

The systematic error


P��� =
2

�
�

���c

�

bJ0�2b������b�db �12�

is estimated with the help of the fitted theoretical function.
In Fig. 2 we show experimental curves for characteristic

functions. Curve �a� is in good agreement with the expected
characteristic function ���� for a SPATS,

���� = �1 − �1 + n̄����2�e−n̄���2, �13�

for the mean thermal photon number n̄=1.11 and the global
quantum efficiency �=0.60. Curve �b� shows the character-
istic function for a mixture of a SPATS and its thermal back-
ground with weights of 0.81 and 0.19, respectively, for n̄
=3.71 and �=0.62. For sampling these functions, we have
acquired 105 and 5�105 data points for the curves �a� and

�b�, respectively. We note that both curves are suited to re-
construct the corresponding P functions by properly choos-
ing cutoff values ���c of their arguments.

The reconstructed P function, shown in Fig. 3, is derived
from the experimental characteristic function given in Fig.
2�a�. Since the measured states are independent of the phase,
the reconstructed P representation is phase independent as
well. It is clearly seen that the P function attains negative
values, so that it fails to have the properties of a classical
probability density. This is direct proof of the nonclassicality
of the experimentally realized SPATS, based on the original
definition of nonclassicality �5,6�.

For a more careful discussion, we also examine a cross
section along a radial line, as shown in Fig. 4�a�. The experi-
mentally determined curve is drawn with the solid line. Ob-
viously, it is in good agreement with the theoretical expecta-
tion �dashed curve�. The distance between the minimum
value and the ��� axis is approximately equal to five standard
deviations, which is not diminished by the systematic error
of �
P�����0.07�P�0��, obtained by the cutoff ���c=2.8. The
statistically significant negativity of the P function prevents
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FIG. 2. �Color online� Experimental characteristic functions
�solid lines� and best fit to theoretical curves �dashed lines�: �a�
SPATS, with n̄=1.11 and �=0.60, �b� mixture of SPATS with 19%
of the thermal background, with n̄=3.71 and �=0.62. The shaded
areas show the standard deviations.

FIG. 3. �Color online� Experimentally reconstructed P function
of a SPATS, as obtained from Fig. 2�a�.
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FIG. 4. �Color online� P functions �solid lines� in parts �a� and
�b� are obtained from the experimental characteristic functions in
Figs. 2�a� and 2�b�, respectively. They are compared with the cor-
responding theoretical fits �dashed curves�. The standard deviations
�light shaded areas� and the systematic errors �dark shaded areas�
are also given.
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it from being interpreted as a classical probability density.
This provides clear evidence of nonclassicality per defini-
tion.

Special nonclassical signatures of SPATSs, which are con-
sequences of the negativities of the P function, have been
experimentally demonstrated recently �11�. It is important to
note that the reconstruction of the P function is just possible
for sufficiently large thermal photon number n̄. On the con-
trary, other criteria for nonclassicality, such as negativities of
the Wigner function, the Klyshko criterion, and the entangle-
ment potential, start to fail for increasing values of n̄. To
show the power of the reconstruction of the P function under
such conditions, we have demonstrated its use at the limits:
for a SPATS with n̄=3.71, which is additionally contami-
nated with a 19% admixture of the corresponding thermal
background. By using a cutoff ���c=1.9, we still obtain a P
function being negative within one standard deviation, cf.
Fig. 4�b�. Other nonclassical effects, as discussed above, do
not survive for this state.

Criteria for the characteristic functions are known, which
are equivalent to the negativity of the P function �20�. For
many states the characteristic function displays their nonclas-
sicality by violating the condition �������1; cf. �21�. If the
condition is satisfied, ���� may be integrable and then the P
function can be obtained to directly verify nonclassicality.
SPATSs belong to this category: for sufficiently high n̄ most
criteria for nonclassicality �including the lowest-order one

based on the characteristic function� fail �11�, but it is still
possible to retrieve a negative P function.

Let us consider how sensitively the negativities of the P
function depend on the overall efficiency �. Balanced homo-
dyne detection measures the “true” state quadratures when
the efficiency is unity. For imperfect detection ���1� one
records a convolution of the quadrature distribution with
Gaussian noise, whose variance increases with decreasing �;
cf. �22�. In the Wigner function, this increasing noise
smooths out its structures and may destroy their negativities.
As can be seen from Eq. �4�, the shape and the relative noise
level of the reconstructed P function do not depend on the
efficiency. Hence the negativities of P��� are in principle
preserved even for a small efficiency, whereas for other
phase-space distributions, such as the Wigner function, they
are quickly lost.

In conclusion, we have reconstructed the Glauber-
Sudarshan P function of an experimentally prepared single-
photon-added thermal state. We obtain a well-behaved func-
tion with statistically significant negativities, so that it fails
to show the properties of a classical probability density. This
is a direct demonstration of nonclassicality according to its
original definition. The approach works well, just when
many other methods of demonstrating nonclassicality fail.
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parmio di Firenze and CNR, under the RSTL initiative.
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