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We find exact solutions to the nonlinear Schrödinger equation �NLSE� in the presence of self-steepening and
a self-frequency shift. These include periodic solutions and localized solutions of dark-bright type which can
be chiral, the chirality being controlled by the sign of the self-steepening term. A form of self-phase-
modulation that can be tuned by higher-order nonlinearities as well as by the initial conditions, distinct from
the nonlinear Schrödinger equation, characterizes these solutions. In certain nontrivial parameter domains,
solutions are found to satisfy the linear Schrödinger equation, indicating the possibility of linear superposition
in this nonlinear system. Dark and bright solitons exist in both the anomalous and normal dispersion regimes,
and a duality between the dark-bright type of solution and kinematic higher-order chirping is also seen.
Localized kink solutions similar to NLSE solitons, but with very different self-phase-modulation, are
identified.
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The nonlinear Schrödinger equation �NLSE�

i�x + a1�tt + a2���2� = 0 �1�

governs the dynamics of picosecond pulse propagation in
optical fibers �1�, where a1 is the group velocity dispersion
�GVD� parameter and a2 specifies the strength of Kerr non-
linearity. As predicted by Hasegawa and Tappert �2� and ex-
perimentally observed by Mollenauer et al. �3�, this system
supports stable soliton solutions owing their existence to
complete integrability �4�. With the advent of high-intensity
laser beams, it has become possible to generate optical
pulses with width of the order of 10 fs. Higher-order effects
like third-order dispersion, self-steepening of the pulse due
to the dependence of the slowly varying part of the nonlinear
polarization on time, and the self-frequency shift arising
from the delayed Raman response become important in the
study of the propagation of these pulses. In order to account
for them, Kodama �5� and Kodama and Hasegawa �6� pro-
posed a higher-order nonlinear Schrödinger equation as a
generalization of the NLSE:

i�x + a1�tt + a2���2� + i�a3�ttt + a4����2��t + a5�����2�t� = 0,

�2�

where a third-order dispersion with coefficient a3, a self-
steepening term with coefficient a4, and a self-frequency
shift effect with coefficient a5 have been added. This model,
unlike the NLSE, is not integrable in general. A few inte-
grable cases have been identified: �i� the Sasa-Satsuma case
�a3 :a4 : �a4+a5�=1:6 :3� �7�, �ii� the Hirota case �a3 :a4 : �a4

+a5�=1:6 :0� �8�, and �iii� derivative NLSEs of types I and
II �9�. Many restrictive special solutions of bright and dark
type have been obtained �10–12�.

The effect of third-order dispersion is significant for fem-
tosecond pulses when the GVD is close to zero. It is negli-
gible for optical pulses whose width is of the order of 100 fs
or more, having power of the order of 1 W and GVD far
away from zero. However, in this case self-steepening as
well as self-frequency shift terms are still dominant and
should be retained. The effects of these higher-order terms on
pulse propagation have been extensively studied numerically
�1,13�, and some special solutions to this system are also
known �14�.

In this Rapid Communication, we report the existence of a
different class of localized as well as periodic solutions for
the NLSE in the presence of self-steepening and self-
frequency shift. The localized solutions include dark, bright,
and kink-type solitons. These complex solitons are generally
chirped and show a different form of self-phase-modulation.
Unlike the NLSE, where chirping is of kinematic origin
�controlled by initial conditions�, the chirping in the present
case has both kinematic and dynamic origin. The former var-
ies as the reciprocal of the intensity, whereas the latter is
directly proportional to the intensity and depends upon
higher-order nonlinearities only. It is evident that kinematic
chirping plays a significant role for dark solitons, whereas
the dynamical chirping would be important for bright soli-
tons. We found that for certain special values of parameters
the intensity profiles of these solitons are similar to those of
NLSE solitons, while retaining the nontrivial phase structure
due to higher-order nonlinear terms. It is also seen that, in
the same regime, kink solitons exist which otherwise are not
allowed in this system. For certain parameter values, this
model mimics the NLSE; however, the presence of higher-
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order nonlinearities crucially affects the dynamics. And as a
consequence one sees that the fundamental bright soliton of
the NLSE is no longer a valid solution. Further, trivial phase
dark solitons exist in the anomalous dispersion regime and
are found to be chiral, with the direction of propagation set
by the self-steepening term. Chirped dark and bright solitons
are found to exist in the normal as well as the anomalous
dispersion regime. Chirped dark solitons in the anomalous
regime, whereas chirped bright solitons in the normal disper-
sion regime, exhibit chirality, which is controlled by the self-
steepening term. Observation of chiral solitons is one of the
main results of this Rapid Communication. Very interest-
ingly, it is seen that for some nontrivial choice of parameters,
this system behaves like the free-particle Schrödinger equa-
tion with appropriate constants, making this system ame-
nable to linear superposition, which is otherwise forbidden in
this nonlinear system. This system is found to be Painlevé
integrable, thereby establishing the existence of regular solu-
tions.

Modulo a trivial kinematic phase, the complex envelope
traveling wave solutions can be generally represented as

��x,t� = ����ei����, �3�

where �=��t−ux� is the traveling coordinate, and � and �
are real functions of �. Here, � is a scale parameter and u
=1 /v with v being the group velocity of the wave packet.
The ansatz solution leads to the compatibility conditions

− �u�� + 2�2a1���� + �2a1��� + 3�a4�2�� + 2�a5�2�� = 0,

�4�

�u��� + �2a1�� − �2a1��2� + a2�3 − �a4���3 = 0. �5�

Equation �4� can be exactly integrated to yield

�� =
u

2�a1
+

c

�a1�2 −
�3a4 + 2a5�

4�a1
�2, �6�

where c is to be determined by the initial conditions. It is to
be noted that the phase has a nontrivial form and has two
intensity-dependent chirping terms, apart from the kinematic
first term. As is evident, the second term is of kinematic
origin and is common to the Schrödinger equation as well.
The last term is due to higher nonlinearities and leads to
chirping that is exactly inverse to that of the former. This is
a form of self-phase-modulation that is controlled by inter-
action. The amplitude equation �5� reduces to

�1�� + �2� + �3�3 + �4�5 =
c2

�3 �7�

with �1=�2a1
2, �2= �u2−ca4+2ca5� /4, �3= �2a1a2−ua4� /2,

and �4= �4a4−1��3a4+2a5� /16. We note that the nontrivial
contribution from higher-order nonlinear terms is through �4,
which is zero for a4=1 /4 or a4 :a5=−2:3 �assuming a4�0
and a5�0�, and as we shall soon show, this results in inter-
esting physical consequences. In the case when a4 :a5
=−2:3, both the intensity as well as the phase will not have
any new features due to higher-order nonlinearities and the
solutions will exactly resemble NLSE solutions. However,
unlike in the NLSE, both dark and bright solitons exist, in

both the normal and anomalous dispersion regimes. When
c=0, the existence of fundamental bright solitons with �
=A sech��� is forbidden, and only dark solitons with �
=A tanh��� exist, with �2=u2 /2a1

2. Furthermore, these dark
solitons in the anomalous dispersion regime, i.e., a1�0, re-
spect the inequality a4u�2�a1��a2�, which restricts them to
travel only along one direction, given by the sign of a4. This
is an example of a chiral soliton which is absent in the
NLSE. When c�0, both bright and dark solitons exist, and
satisfy 2a1a2�ua4 and 2a1a2	ua4, respectively, showing
that both have mutually exclusive velocity space. As a con-
sequence, in the anomalous dispersion regime, dark solitons
obey the inequality 2�a1��a2�	ua4 and hence are chiral,
whereas in the normal dispersion regime bright solitons sat-
isfy −2�a1��a2��ua4 and hence are also chiral. Notice that the
directionality of these solitons is due to the presence of
higher-order terms; the sign of a4 decides the direction in
which solitons are allowed to propagate. For a4=1 /4, the
intensity profile will be the same as for the NLSE, whereas
the phase will still show nontrivial chirping. In this case also
both dark and bright solitons can be chiral, and can exist in
the normal and anomalous dispersion regimes, which is in
sharp contrast to the NLSE.

It is very intriguing to see that, when a4=−2a5 /3 and u
=−3a1a2 /a5, Eq. �7� combined with Eq. �6� reduces to the
free-particle Schrödinger equation in �. So for this choice of
parameters, in the presence of both Kerr and higher-order
nonlinearities, the effective evolution equation for � is linear,
and one would expect to see phenomena like interference,
which is forbidden otherwise in this system.

Equation �7� can be cast into a convenient form using �
=�
:

�1

2

� + 2�2
 +

3�3

2

2 +

4�4

3

3 = k , �8�

where k is a constant fixed by initial conditions. Solutions for
this equation, with �4�0, can be found by a conformal
Möbius transformation:


 =
A + Bf

C + Df
, �9�

which for some suitable A, B, C, and D connects 
 to the
elliptic function f . These elliptic functions, as is known, are
generalizations of trigonometric and hyperbolic functions
and appear in the solutions of many nonlinear equations.

Considering the importance of localized solutions, we set
f���=sech���, and look for allowed values of A, B, C, and D
for which �9� is a solution of Eq. �8�. The consistency con-

dition leads to A=8�4Ã−3�3, B=8�4B̃−3�3D̃, C=8�4, and

D=8�4D̃, where Ã, B̃, D̃, and � are given by

�1024�4
4�Ã3 + �1536�2�4

3 + 432�3
3�4

2 − 864�3
2�4

2�Ã

+ �− 3�3
4 + 162�3

3�4 − 576�2�3�4
2 − 768k�4

2� = 0,

B̃ = − �D̃�− 54�3
2 + 27�3

3 + 96�2�4 + 128�4
4Ã2��/64Ã�4

2,
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D̃ = � 8�2Ã�4/�54�3
2 − 27�3

3 − 96�2�4 − 64�4
2Ã2,

and

�2 = �18�3
2 − 9�3

2 − 32�2�4 − 64Ã�4
2�/8a1

2�4.

Since the exact closed form solution is known, a simple
maxima-minima analysis is sufficient to distinguish param-
eter regimes supporting dark and bright solitary waves �15�.
In this case, when AD�BC one gets a bright soliton,
whereas if AD	BC then a dark soliton exists. Figure 1 de-
picts the intensity profile of a typical dark soliton. It is inter-
esting to note that for dark solitons, from Eq. �6�, the kine-
matic chirping is dominant at the center of the pulse, whereas
the higher-order chirping is dominant away from the center
�see Fig. 2�. However, exactly the opposite is true for bright
solitons where the center is dominated by higher-order chirp-
ing and kinematic chirping is important away from the cen-
ter. This shows that there is duality between dark soliton–
kinematic chirping and bright soliton–higher-order chirping.

A mutual cancellation will occur at some point�s� when both
kinematic chirping and higher-order chirping are comparable
and have opposite signs, and will result in chirp reversal at
the point�s� of cancellation. Chirp reversal plays a significant
role in fiber optics, and has attracted considerable attention
recently in the context of pulse retrieval in dispersion-
nonlinearity-managed optical fibers �16–19�. Chirp reversal
occurs at �r= �cosh−1��D
c−B� / �A−
cC��, provided
−4c / �3a4+2a5��0 and �D
c−B� / �A−
cC��1, where 
c

=�−4c / �3a4+2a5�. We have plotted �� against � in Fig. 2
where the chirp reversal is clearly seen as two maxima in the
profile.

It should be noted that Eq. �8� with �4�0 has no kink
solutions, which are of the type


 =
A + B tanh���
C + D tanh���

. �10�

However, for a4=1 /4, �4 is zero, allowing the existence of
this kind of solution. In this case, k=−��1

2+2�2
2� /3�3, A

=−�2��1+�2���12��1
2−�2

2�−18�2k� /3�3, B=�D where �
=−�2�1A+3�3A2+8�2A−6k� / �6�3A+4�2−2�1�, C=1, and
D= ���2k−4�2A−3�3A2� /2�1�A−��. Figure 1 shows the
intensity profile of a typical kink solution. These solutions,
being asymmetric around �=0, have an interesting phase
profile which shows chirp reversal only once along the pro-
file. The condition for existence of this reversal is given by
−4c / �3a4+2a5��0 and −1 �A−
cC� / �D
c−B�1, and
the point of reversal is �r=tanh−1��A−
cC� / �D
c−B��.

Solutions to Eq. �8� via �9� are not restricted to localized
ones alone; periodic solutions also exist. In fact, it is easy to
show that


 =
− 3�3

8�4
�

C cos���
�2 � cos���

�11�

is a periodic solution of Eq. �8�, provided �1
3+2�1

2�2�2

−
9�3

2

8�4
+

9�3
2

16�4
�+

8�4

3 �
−3�2�3

2�4
+

27�3
3

64�2 −
�3

4

128�4
3 �2=0 and C=−2�1

2�2�2

−
9�3

2

8�4
+

9�3
2

16�4
�.

Apart from the solutions discussed above, the amplitude
equation �7�, albeit with different parameters, has been care-
fully studied in the context of the cubic quintic nonlinear
Schrödinger equation �20,21�. It has been shown that this
equation possesses a rich solution space, where the solutions
are expressible in terms of Weierstrass functions, and the
nature of the solution crucially depends upon initial condi-
tions. A similar analysis for this system would be relevant,
and will shed light on the structure of the solution space.

A natural question arises whether the model is integrable
in this regime or not. Following the Ablowitz-Ramani-Segur
algorithm, we investigate the singularity structure of the or-
dinary differential equation �8�, which is obtained from an
exact reduction of the original partial differential equation
�2� �22,23�. Interestingly, we found that the ordinary differ-
ential equation represented by �8� possesses poles as the only
movable singularities, which implies that this system indeed
has the Painlevé �P� property �22,23�. Hence, we see that this
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FIG. 1. �Color online� Intensity profile of few solutions: �i� Dark
soliton �in red color� for a1=1.6001, a2=−2.6885, a3=−2.8302,
a4=0.308 14, a5=0.766 04, u=4.1185, c=−3.1186, k=−77.965, A
=35.36, �=4.7421, B=−11.912, C=4.5702, and D=17.855; �ii�
kink soliton �in blue color� for a1=−11.197, a2=44.778, a3

=6.219, a4=19.066, a5=37.301, u=884.36, c=−13 810, k=4360.2,
A=0.940 14, �=8.6548, B=0.067 45, and D=−0.979 21.
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FIG. 2. �Color online� Phase profile of the dark soliton plotted in
Fig. 1 �in red color�. The blue curve shows the contribution from
kinematic chirp whereas the green curve shows the contribution
from higher-order chirp. The chirp reversal is clearly seen as peaks
in the red curve.
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system passes the Painlevé test, and is Painlevé integrable,
which guarantees the existence of regular solutions in gen-
eral.

In conclusion, we have found a class of exact solutions to
the NLSE system in the presence of self-steepening and self-
frequency shift terms. These include localized solutions of
dark-bright type, kink solutions, and periodic solutions.
These solutions have nontrivial phase chirping which varies
as a function of intensity and are different from that in Ref.
�10� where the solutions had a trivial phase. A nontrivial
connection of this system with the linear Schrödinger equa-
tion in appropriate limits is pointed out. A duality is seen
between the dark-bright type of solution and kinematic
higher-order chirping. A form of self-phase-modulation has
been observed in this case that shows chirp reversal across
the pulse profile. It is known that prechirping of pulses often
leads to a better quality of pulse; in particular it is quite
effective with a distributed GVD and nonlinearity

�16,19,24,25�. In this context, the solutions having chirping
due to initial conditions as well as dynamical conditions will
provide a better control. It is noted that for some parameter
values the intensity and phase of these solitons will exactly
be the same as NLSE solitons, and are found to be chiral,
with the direction of propagation controlled by self-
steepening term. Both dark and bright solitons are found to
exist in both the normal and anomalous dispersion regimes.
It is seen in some cases that the intensity of these solitons
will be like NLSE solitons and only the phase structure will
be different. Kink solutions are found to exist in this system
for special choices of parameters. The system is seen to pos-
sess the P property and hence is Painlevé integrable.

C.N.K. would like to thank DAAD for the research stay in
Germany and FIAS for warm hospitality. Part of the work
was also supported by CSIR, India, through a research
project.

�1� G. P. Agrawal, Nonlinear Fiber Optics �Academic, Boston,
2001�.

�2� A. Hasegawa and F. Tappert, Appl. Phys. Lett. 23, 142 �1973�.
�3� L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, Phys. Rev.

Lett. 45, 1095 �1980�.
�4� V. E. Zakharov and A. B. Shabat, Sov. Phys. JETP 34, 62

�1972�.
�5� Y. Kodama, J. Stat. Phys. 39, 597 �1985�.
�6� Y. Kodama and A. Hasegawa, IEEE J. Quantum Electron. 23,

510 �1987�.
�7� N. Sasa and J. Satsuma, J. Phys. Soc. Jpn. 60, 409 �1991�.
�8� R. Hirota, J. Math. Phys. 14, 805 �1973�.
�9� D. Anderson and M. Lisak, Phys. Rev. A 27, 1393 �1983�.

�10� S. L. Palacios, A. Guinea, J. M. Fernandez-Diaz, and R. D.
Crespo, Phys. Rev. E 60, R45 �1999�.

�11� Z. Li, L. Li, H. Tian, and G. Zhou, Phys. Rev. Lett. 84, 4096
�2000�.

�12� C. N. Kumar and P. Durganandini, Pramana, J. Phys. 53, 271
�1999�.

�13� M. Trippenbach and Y. B. Band, Phys. Rev. A 57, 4791
�1998�.

�14� J. R. de Oliveira, M. A. de Moura, J. M. Hickmann, and A. S.
L. Gomes, J. Opt. Soc. Am. B 9, 2025 �1992�.

�15� V. M. Vyas, T. S. Raju, C. N. Kumar, and P. K. Panigrahi, J.
Phys. A 39, 9151 �2006�.

�16� J. D. Moores, Opt. Lett. 21, 555 �1996�.
�17� V. I. Kruglov, A. C. Peacock, and J. D. Harvey, Phys. Rev.

Lett. 90, 113902 �2003�.
�18� S. Kumar and A. Hasegawa, Opt. Lett. 22, 372 �1997�.
�19� R. Atre and P. K. Panigrahi, Phys. Rev. A 76, 043838 �2007�.
�20� L. Gagnon and P. Winternitz, J. Phys. A 21, 1493 �1988�.
�21� H. W. Schurmann, Phys. Rev. E 54, 4312 �1996�.
�22� M. J. Ablowitz and A. S. Fokas, Complex Variables: Introduc-

tion and Applications �Cambridge University Press, Cam-
bridge, UK, 2003�.

�23� B. Grammaticos and A. Ramani, in Integrability of Nonlinear
Systems, edited by Y. Kosmann-Schwarzbach, B. Grammati-
cos, and K. M. Tamizhmani, Lecture Notes in Physics Vol. 638
�Springer-Verlag, Berlin, 2004�, and references therein.

�24� I. Gabitov and S. K. Turitsyn, JETP Lett. 63, 861 �1996�.
�25� I. R. Gabitov and S. K. Turitsyn, Opt. Lett. 21, 327 �1996�.

VYAS et al. PHYSICAL REVIEW A 78, 021803�R� �2008�

RAPID COMMUNICATIONS

021803-4


