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The concept of mutually unbiased bases is studied for N pairs of continuous variables. To find mutually
unbiased bases reduces, for specific states related to the Heisenberg-Weyl group, to a problem of symplectic
geometry. Given a single pair of continuous variables, three mutually unbiased bases are identified while five
such bases are exhibited for two pairs of continuous variables. For N=2, the golden ratio occurs in the
definition of these mutually unbiased bases suggesting the relevance of number theory not only in the finite-
dimensional setting.
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Mutually unbiased �MU� bases of Hilbert spaces with fi-
nite dimension d �as defined by Eq. �1� below� are a useful
tool. If you want to experimentally determine the state of a
quantum system, given only a limited supply of identical
copies, the optimal strategy is to perform measurements with
respect to MU bases �1�. To pass a secret message to a sec-
ond party, you could use quantum cryptography to establish a
shared key, a procedure which relies on MU bases in the
space C2 �2,3� or Cd �4�. Sending a physical system carrying
a spin through a noisy environment, the effect of the inter-
actions on the state of the spin might be modeled by a spe-
cific quantum channel, conveniently described in terms of
MU bases �5�. Finally, if you happen to be captured by a
mean king, you might be able to meet his challenge by
knowing about entangled states and MU bases �6,7�.

Many of the ideas which underlie physical concepts de-
fined for discrete variables, that is, in a Hilbert space of finite
dimension, survive the transition from spin operators to po-
sition and momentum operators. Quantum key distribution
�8� and quantum teleportation �9�, for example, possess
counterparts for continuous variables �10� which act on an
infinite-dimensional Hilbert space. It is thus natural to in-
quire into MU bases for continuous variables which, in fact,
naturally occur in Feynman’s path integral formulation of
quantum mechanics �11�. The properties of MU bases in an
infinite-dimensional space might also provide new insights
into the existence of complete sets of MU bases in spaces of
finite dimension not equal to the power of a prime.

Let us recall the definition of MU bases in Cd and some of
their properties. Two orthonormal bases Bb= ��� j

b�� j=1,. . .,d and

Bb�= ��� j
b��� j=1,. . .,d are called MU if

�	� j
b�� j�

b��� = 
 � j j� if b = b�

� � 0 if b � b�,
� �1�

since each state of one basis gives rise to the same probabil-
ity distribution when measured with respect to the other ba-
sis. The value of the overlap � is not arbitrary but one de-
rives from Eq. �1� that ��1 /
d by using the completeness
of the basis Bb, say.

Schwinger �12� describes how to construct two MU bases
from any orthonormal basis of Cd. They are found to be the

eigenbases of two operators Û and V̂ each shifting cyclically

the elements of the other basis. These operators satisfy com-

mutation relations of Heisenberg-Weyl type, ÛV̂=e2�i/dV̂Û,
describing finite translations in a discrete phase space �13�.
This approach has been generalized in �14�, where it is
shown that if one finds n unitaries each cyclically shifting the
eigenbases of all other unitaries then these n bases are MU.

The number of MU bases in Cd is limited to d+1. Such
complete sets of MU bases were constructed first in the case
of d being a prime number �15� and subsequently for d being
a power of a prime �1�. For composite dimensions d
=d1 d2¯dk, the factors being �powers of� different primes, it
is currently unknown whether complete sets of MU bases
exist �16�. Interestingly, composite dimensions are rare for
small values of d but predominate for large d. While it is
possible to construct three MU bases for any d�2, numeri-
cal evidence for d=6 �the smallest composite integer� sug-
gests that no four MU bases exist �17� and that many of their
subsets are missing as well �18�.

Let us now turn to continuous variables p̂ and q̂, with
�q̂ , p̂�= i�, acting on the Hilbert space L2�R� of square-
integrable functions on the real line. The �generalized� eigen-
states of position and momentum �q� ,q�R, and �p� , p�R,
respectively, are known to satisfy

	q�p� =
1


2��
eiqp/�. �2�

Thus, a natural generalization of Eq. �1� for bases ���s
b��s�R

of an infinite-dimensional Hilbert space takes the form

�	�s
b��s�

b��� = 
��s − s�� if b = b�

k � 0 if b � b�,
� �3�

where the � normalization of the states reflects the fact that
the labels s ,s� are continuous. Consequently, the eigenstates
of the position and momentum operators provide an example
of MU bases with k=1 /
2��. The appearance of general-
ized eigenstates is inevitable, because no normalizable state
exists which has a nonzero overlap with all elements of a
countable orthonormal basis.

Is it possible to find three or more MU bases for one pair
of continuous variables? The momentum basis Bp results
from a rotation of the position basis Bq by an angle � /2.
Thus, a third MU basis might be given by B�= ��q���q��R,
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the eigenbasis of the operator q̂�= q̂ cos �+ p̂ sin � with ei-
genvalue q�, �� �0,� /2�. Using Wigner functions, one
finds that the modulus of the overlap between states of Bq
and B� is

�	q��q��2 =
1

2���sin ��
�

1

2��
. �4�

Thus, no basis B� with �� �0,� /2� combines with Bq and
Bp to give a triple of MU bases.

There is, however, a symmetric choice of operators which
does provide three MU bases. Consider the bases B	

= ��q	��q	�R, where q̂	= q̂ cos�2� /3�	 p̂ sin�2� /3�, ob-
tained from rotating the position basis by the angles 	2� /3,
respectively. One finds

�	q�q+��2 = �	q+�q−��2 = �	q−�q��2 =
1

2���sin�2�/3��
, �5�

so that the triple B+, B−, and Bq is MU with overlap k
=1 /
��
3 in �3�. Comparing this result with Eq. �2�, we
realize that, for continuous variables, the constant k in Eq.
�3� may take different values for different MU bases.

In spite of Eq. �4�, it is possible to complement Bq and Bp
with a third basis resulting in an asymmetric triple of MU
bases. Consider Bq−p consisting of the eigenstates of the op-
erator q̂− p̂�
2q̂�/4, which cannot be obtained from q̂ by a
rotation due to the factor 
2. Nevertheless, one finds �as
stated in �19�� that

�	q�q − p��2 = �	q − p�p��2 = �	p�q��2 =
1

2��
, �6�

providing us with an asymmetric triple of MU bases.
We now develop a systematic approach to MU bases for

N pairs of continuous variables residing in product states.
For N=1, we will be able to explain the observations above.
For N�2, we will derive geometric conditions which ex-
press whether product-state bases are MU or not. A set of
five MU bases will be found explicitly for two continuous
variables. Subsequently, we will formulate conditions to be
MU for bases which do not have to consist of product states
only.

The Heisenberg-Weyl operator

T̂�a� = exp�i�Pq̂ − Qp̂�/�� , �7�

which translates the position of a wave function by Q and
boosts its momentum by P, will play a central role. We con-
sider the generator x̂a of an infinitesimal translation in the
direction at= �Q , P�, using the notation

x̂a � Pq̂ − Qp̂ � at · j · x̂ with j = �0 − 1

1 0
� , �8�

where x̂= �q̂ , p̂�t. Denote the eigenstates of x̂a by �a ,
�,
where a identifies a particular family of states and 
 labels
an element of this family. They satisfy

x̂a�a,
� = 
�a,
�, 
 � R , �9�

forming complete and �-orthonormal families of states Ba.
Their position representations are given by

	q�a,
� =
1


2���Q�
eiP�q − 
/P�2/2�Q, �10�

if both P and Q are nonzero �20�. The scalar product between
states from bases with labels a and b ��a� is found to be

�	b,��a,
��2 =
1

2���bt · j · a�
. �11�

It is crucial for the following that the right-hand side of Eq.
�11� depends only on the modulus of the symplectic product
of the vectors a and b, which is equal to the �unsigned� area
of the parallelogram defined by these vectors. The particular
class of states considered here thus picks up the symplectic
structure related to the commutation relations �x̂a , x̂b�=
−i�at · j ·b. Note that Eq. �10� is consistent with Eq. �11�
since one has �q���eP ,
�, with eP

t ��0,1�.
We are now in a position to derive sufficient conditions to

have MU bases for N pairs of continuous variables x̂n
= �q̂n , p̂n�, n=1, . . . ,N, with �q̂n , p̂n��= i��nn�, each pair x̂n
acting on a copy of L2�R�.

In a first step, we restrict the candidates for MU bases to
N-fold tensor products of the states in Eq. �9�,

�a� ,
� � � �a1,
1� � ¯ � �aN,
N� � �
n=1

N

�an,
n� , �12�

which define a complete and �-orthonormal basis Ba�. Using
Eq. �11�, the modulus of the scalar product of �a� ,
� � and

�b� ,�� � is given by

�	a� ,
� �b� ,�� ��2 = �
n=1

N

�	an,
n�bn,�n��2 =
1

�2���N �
n=1

N
1

�an
t · j · bn�

,

�13�

which can be written as

�	a� ,
� �b� ,�� ��2 = �2���−N�a� t · jN · b� �−1, �14�

where

a� = a1 � ¯ � aN, jN = j�N, �15�

etc. Thus, in order that some bases Ba� ,Bb� , . . ., be MU, the
unsigned symplectic products between any pairs of the vec-

tors a� ,b� , . . . must take one and the same value,

�a� t · jN · b� � = �b� t · jN · c�� = ¯ = K � 0, �16�

reducing the search for MU bases of product form �12� to the

search of product vectors a� ,b� , . . . in R2N
satisfying Eq. �16�.

Having found a solution �a� ,b� , . . . � for some value of the
constant K, one finds a solution for any other positive K� by
rescaling each vector with the factor 
K /K�.

What is the maximal number of vectors satisfying Eq.
�16� for N pairs of continuous variables? Lacking a general
solution, we consider this problem of symplectic geometry in
some detail for N=1 and N=2.

N=1. The constraints �16� now read �at · j ·b�= �bt · j ·c�
= �ct · j ·a�=k�0. In fact, only three vectors need to be written
here since one can show that it is impossible to have a fourth
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vector d of symplectic product k with a, b, and c satisfying
these conditions. This does not exclude, however, the exis-
tence of four or more MU bases built from an entirely dif-
ferent set of states.

Working out the unsigned symplectic product of the vec-
tors �0,−1�, �1, 0�, and �1, 1� leads to k=1, correctly repro-
ducing the asymmetric solution presented in Eq. �6�. Simi-
larly, the set of unit vectors �0,−1� and �	
3 /2,1�, which is
invariant under threefold rotations, describes the symmetric
configuration �5�, with k=
3 /2. These apparently different
solutions are, in fact, closely related. Consider all real 2�2
matrices m with unit determinant which, under conjugation,
leave the matrix j invariant up to a sign,

mt · j · m = 	 j . �17�

We will call these matrices unsigned symplectic. They clearly
form a group which consists of the union of all real symplec-
tic 2�2 matrices, denoted by Sp�1,R�, and all these matri-
ces multiplied by the matrix j in Eq. �8� which �is not sym-
plectic but� satisfies Eq. �17� with the minus sign. Due to Eq.
�17�, symplectic products at · j ·b remain invariant up to a
sign under transformations of the form a→m ·a. Using un-
signed symplectic transformations, it becomes possible to
map the triple of vectors �0,−1�, �1, 0�, and �1, 1� into a
configuration with threefold rotational symmetry which is
equivalent to the three MU bases in Eq. �5�, up to a nonuni-
tary scaling transformation as described after Eq. �16�.

N=2. MU bases correspond to sets of product vectors a�

=a1 � a2, b� =b1 � b2 , . . ., with equal unsigned symplectic
products. We now exhibit five vectors which satisfy Eq. �16�
with K=1, namely,

�1

0
� � �1

0
�, �0

1
� � �0

1
�, �1

1
� � �1

1
� ,

� 1

1 − R
� � �1

R
�, � 1

2 − R
� � � 1

1 + R
� . �18�

Here the number R is the golden ratio, i.e., the positive so-
lution of R2=R+1. Each coefficient of the five vectors is a
sum of integer multiples of the numbers 1 and R. Hence, we
find that the coefficients are elements of a number field given
by a quadratic extension of the integers �just as the field of
complex numbers is an extension of the real numbers where
i, the solution of r2+1=0, plays the same role as R�. Thus
the link between MU bases and number theory which per-
vades the finite-dimensional case �surveyed in, e.g., �21��
also exists for continuous variables. Interestingly, MU bases
for multiple qubits �22� or qutrits �23,24� must contain en-
tangled states, contrary to what we find here.

In a second step, we construct MU bases for N continuous
variables from states not limited to the tensor products �12�.
To do so we introduce metaplectic operators which represent
linear canonical phase space transformations in Hilbert
space. Explicitly, consider the transformation A�=M ·A,
with A= �q1 , . . . , pN���q ,p��R2N and M being a symplec-
tic matrix of size 2N�2N. Then there is a unitary operator

ÛM such that the translation operators T̂�A�—each a product
of N operators of the form �7�—transform according to

ÛMT̂�A� = T̂�M · A�ÛM, �19�

defining the metaplectic ÛM. If symplectic transformations
are composed, M=M� ·M�, then the corresponding meta-

plectic operators are composed in the same manner: ÛM

= ÛM�ÛM�.
The use of metaplectic operators has been implicit in our

earlier discussion where we obtained a set of states �a ,
�,
satisfying Eq. �9�, which are MU with respect to the position
eigenstates �q�. We now show that these states can be ob-
tained directly by application of a metaplectic operator. Ex-
pand Eq. �19� in A and consider the linear term to obtain

ÛMx̂A= x̂M·AÛM. First, let N=1 and choose the symplectic
matrix m such that m ·a= �0,1�t, so x̂m·a= q̂. The eigenfunc-

tions of x̂a in Eq. �9� are then generated by �a ,
�= Ûm�q�.
The symplectic matrix satisfying m · �Q , P�t= �0,1�t is

m = �1 0


 1
�� P − Q

1/Q 0
� , �20�

where 
�R parametrizes a shear along the line defining the
states �a ,
�. It affects the phase of 	q �a ,
�, but not its mag-
nitude.

In order to discuss a more general construction of MU
bases �with N�1� we use a general expression �25� for a
metaplectic operator which corresponds to a symplectic ma-
trix M of dimension 2N,

ÛM =
exp�i��


�det�M − I��
� dA

�2���N exp� i

2�
At · N · A�T̂�A� .

�21�

Here � is a phase which need not concern us further, N
= 1

2J�M+I��M−I�−1 is a symmetric matrix, J= j � ¯ � j a
block diagonal generalization of j in Eq. �8�, and the integra-
tion is over the 2N dimensions of phase space, dA
=dQ1dQ2¯dPN. The matrices M and N may be written us-
ing blocks of dimension N�N,

�q�

p�
� = �Mqq Mqp

Mpq Mpp
��q

p
�, N = �Nqq Nqp

Npq Npp
� . �22�

Consider the action of ÛM on N-fold products of position
eigenstates, �q���q1� � ¯ � �qN�. Using Eqs. �21� and �22�,
we find that states ÛM�q���M ,q� are unbiased relative to
the position eigenstates, i.e.,

�	q��M,q��2 =
1

�2���N

1

�det�M − I�det�Npp��
. �23�

It follows from the composition property of metaplectic ma-
trices that states �M ,q� with different M are MU, and that
the magnitude of their overlap can be calculated by compos-
ing the underlying symplectic matrices as follows:

�	M,q�M�,q���2 = �	q�ÛM
−1ÛM��q���2 = �	q��M−1M��,q���2,

�24�

where the final expression is evaluated using Eq. �23�. Thus,
the problem of finding MU bases associated with metaplectic
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operators can be solved by finding symplectic transforma-
tions such that the resulting expressions on the right-hand
side of Eq. �23� take the same values. This may allow for a
much larger set of MU bases than Eq. �16�.

Our principal results are conditions for bases related by a
metaplectic transformation to be MU, namely, Eq. �16� �for
which we found a solution �18�� and more generally Eq. �24�
�as yet unexplored�. To conclude we point out open ques-
tions. Even in the case of N=1, it is not known whether more
than three MU bases exist. To have only three MU bases
would be slightly surprising as the limit of d→� passing
through prime dimensions suggests the existence of an un-
limited number of MU bases. The result �4� confirms this
expectation in a restricted sense—any pair of bases B� and
B�� is MU but with possibly different values for the overlap.
Future studies will reveal whether the pairwise unbiased
bases B� ,�� �0,� /2� are as useful as a complete set of MU
bases.

It is also unknown whether the bases Bq and Bp can be

supplemented by a third MU basis qualitatively different
from the one presented in Eq. �6�. Let the state ��� be a
member of such a basis. The conditions �	q ����= �	p ����
=1 /
2�� imply that its expansion coefficients in the posi-
tion and momentum basis are constant multiples of phase
factors exp�if�q�� and exp�ig�p��, respectively, related to
each other by a Fourier transform,

eig�p� =
1


2��
�

−�

�

eif�q�e−ipq/�dq . �25�

Thus, if the only pairs of functions �f�q� ,g�p�� solving this
integral equation consist of quadratic polynomials, then there
are no MU bases beyond the ones exhibited so far. Unfortu-
nately, the entire set of its solutions is not known to us.
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