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Two particular subjects tackled in the recent paper by Schirmer and Dreuw �SD� �J. Schirmer and A. Dreuw,
Phys. Rev. A 75, 022513 �2007�� are commented on by us. By providing a convincing example, we answer
positively the question posed by SD whether a local operator can be reconstructed from the knowledge of its
particle-hole matrix elements �when the number of particle states exceeds one�. In connection with the problem
of the utmost reduction of the density-functional theory �DFT� to a solution of one equation for the density
amplitude—the radical Kohn-Sham �rKS� approach—used by SD as a valuable tool to investigate the time-
independent and time-dependent DFT, we demonstrate that the calculational scheme implementing the rKS
formulation is rather uncompetitive with the traditional KS scheme.
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In their recent paper, Schirmer and Dreuw �SD� �1� criti-
cally analyzed the foundations of the time-dependent
density-functional theory �TDDFT�. Since this theory is an
extension of the original �time-independent� DFT, it is quite
natural that some parts of it are discussed by these authors.
Our Comment is connected with the last aspect of the SD
paper. We feel that two particular problems tackled in �1� are
worth exploring in greater depth.

SD �1� formulate and prove the theorem that a local �mul-
tiplicative� operator v=v�r� is uniquely determined up to a
constant by its p-h and h-p matrix elements with respect to a
complete one-particle basis and an arbitrary partitioning of
that basis into occupied �occ� �hole �h�� and unoccupied �un-
occ� �particle �p�� one-particle states �orbitals�. But answer-
ing the question of whether it is possible to reconstruct a
local operator if only its p-h matrix elements are given, they
say, “it seems that this is not possible except for a special
case of n=1” �here n is the number of occupied states�. The
positive answer valid for any n, supported by three different
examples of reconstruction algorithms, is given by two of us
in Sec. III of our paper �2�. We quote here an especially
simple reconstruction formula �termed in �2� the type-B rep-
resentation�,

v�r1� = v�r2� + �
s

unocc

�
a

occ
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v jk =� d3r� j
��r�v�r��k�r� , �2�
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a
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After choosing arbitrarily and fixing the reference point r2
and the value v�r2� of the potential there �which plays the
role of an additive constant�, the potential v�r1� at the run-

ning point r1 is determined from Eq. �1� in terms of its p-h
and h-p matrix elements and orbitals. Obviously, the type-B
reconstruction, Eq. �1�, is valid for such pairs of arguments
r1 ,r2 that ��r1 ;r2��0. However, if the original potential is
continuous at r10, but ��r10;r2�=0, then v�r10� can be deter-
mined from Eq. �1� as lim v�r1� for r1→r10, just because Eq.
�1� is an identity satisfied by an arbitrary local operator v�r�.

As the second subject of our Comment, we choose the
problems connected with the Schrödinger equation for the
density amplitude—the square root of the electron density
��r�,

�− 1
2�2 + ṽeff����r���1/2�r� = �rKS�1/2�r� �4�

�atomic units are used here and throughout the paper�. This
equation allows us to realize the radical Kohn-Sham �rKS�
version of DFT �as it is termed by SD�: when, for a given
system, the effective potential ṽeff as a functional of � is
known, the self-consistent solution of Eq. �4� provides the
true ground-state density of the considered interacting many-
electron system. It should be remembered that in the case of
the traditional KS approach, one needs to find self-
consistently the N lowest-energy eigensolutions of the KS
equation,

�− 1
2�2 + veff����r���a�r� = �a�a�r� , �5�

to obtain the same density as ��r�=�a=1
N 	�a�r�	2; here N is

the number of electrons. It should be noted that the potential
occurring in Eq. �5� is defined by Eq. �39� of �1�, and that in
Eq. �4� by Eq. �50� of �1�; the latter is marked by us with a
tilde to make the notation unique. The rKS formulation
serves SD “as a valuable analytical tool to clarify various
aspects of DFT and, in particular, TDDFT.” But SD specu-
late also on a practical role of this formulation, saying “it is
not inconceivable that the rKS variant will have some com-
putational potential as well.” In our view, brought out below,
such an expectation seems too optimistic at present.

The Schrödinger equation for the density amplitude, like
Eq. �4�, was derived for the first time by Hunter �3� �see also

PHYSICAL REVIEW A 78, 016501 �2008�

1050-2947/2008/78�1�/016501�2� ©2008 The American Physical Society016501-1

http://dx.doi.org/10.1103/PhysRevA.78.016501


�4�� with the local potential ṽeff�r� calculated as the expecta-
tion value of the N-electron Hamiltonian over the conditional
probability amplitude �0

N �according to Hunter’s formulation
introduced in �5�, the N-electron ground-state function can be
expressed directly as a product of �0

N and the marginal prob-
ability amplitude ���r� /N�1/2�. The same expression for
ṽeff�r� was rederived by Levy et al. �6�. This expression was
helpful for analyzing properties of the exchange-correlation
potential of DFT for two-electron spin-compensated systems.
The last restriction becomes obvious when ṽeff is discussed
in terms of the Pauli potential vP����r� �see, e.g., Levy and
Görling �7� and references therein�. Namely,

ṽeff����r� = veff����r� + vP����r� , �6�

where veff is the effective potential of the traditional KS ap-
proach, see Eq. �5�. Analogously to other potentials of DFT,
the Pauli potential is defined as the functional derivative
vP����r�=�EP��� /���r� of the Pauli energy. The preceding is
the difference of two kinetic energy �KE� functionals,

EP��� = Ts��� − TW��� , �7�

namely the noninteracting-electrons KE Ts��� �defined by
Levy �8� using a constrained search� and the Weizsäcker KE
TW���= 1

2
d3r	���1/2�r��	2. �Evidently, EP����0 for systems
described by only one KS �spatial� orbital.� As was shown in
�9� by two of us, these definitions of functionals are
constructive—they lead to an algorithm allowing evaluation
of EP��� and vP����r� for any given input function ��r�. This
means that for any choice of approximate �by necessity�
functional for the exchange-correlation energy Exc��� and,
subsequently, the corresponding potential �both of which de-
termine the practical implementation of the traditional KS
scheme�, one can perform also calculations with the rKS
scheme and obtain the same accuracy in the results for the
electron ground-state density and the total energy as calcu-
lated with the KS scheme.

However, the conceptual simplification of the rKS ap-
proach with respect to the traditional one is not accompanied
by a gain in computational efficiency such as a reduction of
costs and time of calculations. When executing the algorithm
�9� for EP and vP�r�, one needs to determine first, as auxiliary
objects, the N−1 lowest-energy eigensolutions �Kj�r� ,� j� j=2

N

of the second-order differential eigenequation,

�− 1
2 � �1 + ln ��r�� · � + vcpl�r��Kj�r� = � jKj�r� , �8�

with the coupling �cpl� potential

vcpl�r� =
1

2
��2K1�r�

K1�r�
+ �� ln ��r�� · �� ln K1�r��
 , �9�

where K1 is defined by K1
2�r�=1−� j=2

N Kj
2�r�. The eigenfunc-

tions �Kj�r�� should satisfy specific boundary conditions
�given in �9��. The input density enters Eqs. �8� and �9� via
the vector � ln ��r� only. Since the potential vcpl is a func-
tional of �Kj� j=2

N �by means of K1�, an iterative method of
solving, terminated at self-consistency, should be applied.
Then

vP�r� = − vcpl�r� , �10�

EP = �
j=2

N

� j +� d3r��r�vP�r� . �11�

Evidently, the effort to calculate self-consistently N−1 so-
lutions of Eq. �8� and one solution of the rKS Eq. �4� is
comparable with �if not greater than� the effort to calculate N
solutions of the KS Eq. �5�.

Of course, one may try to find an approximation for EP���
and then have the corresponding approximate potential vP
=�EP /��, in analogy to the local-density approximation, the
generalized-gradient approximation, etc., for Exc���. Since
TW is known as the explicit functional of �, an approxima-
tion for Ts��� is needed, according to Eq. �7�. Many such
approximate orbital-free KE functionals have been proposed
�see, e.g., Wang and Carter �10� and references therein�, but,
to the best of our knowledge, they are not sufficiently accu-
rate to yield, within the variational DFT approach, a ground-
state density of comparable quality to that resulting from the
KS approach �e.g., showing the shell structure in the case of
atoms�. However, the recent investigation of Chai and Weeks
�11� makes promising progress in this direction; here the
kinetic potential vTs

����r�=�Ts��� /���r� is approximated as
a basic object rather than the KE itself. Then Ts is evaluated
from this potential by means of functional integration.

Finally, we would like to add a comment concerning ter-
minology. The rKS Eq. �4� transformed by SD into Eq. �77�
of �1�, ṽeff→w���=�2��1/2� / �2�1/2�+const, demonstrates
that the shape of the effective potential for any given many-
electron system can be calculated easily from its ground-state
density �provided ��r� is available from quantum-chemical
calculations or from an experiment�. This density-dependent
potential w���, commented on by SD as a trivial one, is
studied in the recent chemistry literature under the name
“one-electron potential.” The corresponding acronym OEP
should not be confused with that for the term “optimized
effective potential,” which can be spotted frequently in nu-
merous DFT papers.
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