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We propose schemes that can perform perfect time-reversal operation of the tunneling dynamics of Bose-
Einstein condensates in optical lattices. One of the time-reversal schemes is to reverse the sign of the tunneling
coefficient by a time-periodic potential, maintaining its magnitude at a constant value. The other scheme
utilizes a staggered 0-� phase imprinting on the optical lattices. If the reversal of the tunneling coefficient or
the phase imprinting is performed at �=�p, the initial distribution of the condensates is regained at �=2�p.
Although the nonlinear interatomic interaction deteriorates the fidelity of the time-reversal operation, if the sign
of the nonlinearity is reversed simultaneously with the phase imprinting at �=�p, the time-reversal operation at
�=2�p becomes nearly perfect.
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I. INTRODUCTION

Quantum dynamics in a periodic lattice is one of the old-
est problems of quantum mechanics, whose basis was settled
by Bloch �1� and Zener �2�, around 1930. Aimed at a descrip-
tion of electron motion in crystalline lattices, this problem
has been considered for about half a century as an academic
one, because dissipation effects forbid the observation of
most quantum effects in the motion of a crystalline electron.
Laser cooling of atoms has brought a revival of interest in
such problems, as it produces atoms whose de Broglie wave-
length is comparable to the wavelength of the light interact-
ing with the atoms. Light potentials generated by standing
waves have been used in many experimental studies of quan-
tum dynamics. For example, Bloch oscillations have been
observed both with single atoms �3� and with a Bose-
Einstein condensate �4� in an accelerated standing wave.
Wannier-Stark ladders �5� and collective tunneling effects �6�
have also been studied with such systems.

The aim of this paper is to investigate spatiotemporal dy-
namics for a system of M condensates with tunneling al-
lowed only between neighboring condensates. We propose a
scheme that can perform a complete time-reversal operation
of the distribution of Bose-Einstein condensates �BECs� in
optical lattices. One of the time-reversal schemes is to re-
verse the sign of the tunneling coefficient by a time-periodic
field, maintaining its magnitude a constant value. The other
scheme utilizes staggered 0-� phase imprinting on the opti-
cal lattices. If the reversal of the tunneling coefficient or the
phase imprinting occurs at �=�p, the initial distribution of
the condensates is regained at �=2�p. The nonlinear atom-
atom interaction degrades the fidelity of the time-reversal
operation. However, if the sign of the nonlinearity is reversed
simultaneously with the phase imprinting at �=�p, the time-
reversal operation at �=2�p becomes nearly perfect.

We note that there is certainly a connection between the
question of equilibration of an isolated quantum system,
which is presently much debated in the literature �7�, and the
time-reversal operation described in this paper. It has been
shown that a generic isolated quantum many-body system
approaches a distinctly nonequilibrium steady state that bears

strong memory of the initial conditions �7�, which is required
to achieve the time-reversal operation.

Although, our study is done in the context of BEC phys-
ics, it is applicable to ubiquitous discrete problems such as
nonlinear lattices of condensed matter �8�, arrays of Joseph-
son junctions �9�, localized modes in electrical lattices �10�,
and optical waveguide arrays �11�.

II. BASIC MODEL

We consider M identical small condensates with tunneling
allowed only between neighboring condensates. All numeri-
cal results presented in this paper are performed for M =20.
When the heights of the interwell barriers of the periodic
potential are much higher than the condensate chemical po-
tential, the evolution of the quantum particles can be well
described by the discrete nonlinear Schrödinger equation
�DNLSE� which is derived from the Gross-Pitaevskii equa-
tion �12–14� with �=1:

i
dCj

dt
= �� j − ��Cj�2�Cj + ��Cj+1 + Cj−1� , �1�

where Cj�t� is the probability amplitude of finding the BEC
atoms on site j �j=1,2 , . . . ,M� at time t, � j represents the
site energies, � is the nearest-neighbor hopping �or tunnel-
ing� term, and �=4�a /m is the nonlinear coefficient, char-
acterized by the s-wave scattering length a and the mass
m. The normalized particle number on site j is given by
nj = �Cj�t��2N with the total number of particles N and the
total probability amplitude is maintained as unity, i.e.,
� j=1

M �Cj�t��2=1. Note that Eq. �1� is invariant with respect
to the transformations � /�→−� /�, � j /�→−� j /�, and
Cj→Cj

�ei�j. If we introduce a dimensionless time �=�t, � j
=� j /� and �=� /� become the only two variable parameters
in Eq. �1�.

III. TIME-REVERSAL BY �-REVERSAL OPERATION

We notice that, if all of the site energies are equal
�� j =�� and the interatomic interaction is neglected ��=0�,
Eq. �1� is invariant with respect to the transformation �→
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−� and t→−t. This transformation implies that the time-
reversal process is realized by reversing the sign of the tun-
neling coefficient �; hereafter we call this operation “� re-
versal.”

First we consider a case where the BECs are initially
loaded into a single site j=10 and the sign of the coupling
coefficient is reversed from positive to negative at �=10,
while ���=1 remains constatnt. The numerical result is
shown in Fig. 1�b�, where each curve corresponds to the
particle density nj���= �Cj����2. The lowest �highest� curve
corresponds to n1��� �n20����. They are successively shifted
to the upper side by the amount of 0.1. The BEC initially at
a single site gradually spreads to the neighboring sites due to
quantum tunneling. After ��5, the BEC has spread over all
sites and then coherently reflects at both boundaries, result-
ing in a complicated pattern due to the interference of the
matter waves. After � reversal at �=10, the spreading waves
show time-reversal behavior and then perfect recovery of the
initial state is realized at �=20, where all atoms again occupy
site j=10. In order to compare spatiotemporal behaviors with
and without � reversal, we show numerical result without �
reversal �see Fig. 1�a��. In this case, the matter waves show
strong dispersive nature as the development time is in-
creased.

Next, we consider how to realize the �-reversal process in
experiments. It is well known that the tunneling coefficient is
modified by a driving ac field. The effective coupling coef-
ficient under the influence of an ac field, whose amplitude
and frequency are described by the parameters V and 	, is
given by �eff=J0�Vx /	��, where J0 is the zeroth Bessel func-
tion of the first kind and x is the intersite separation of the
optical lattice �15–17�. If we choose two modulation ampli-
tudes V1 and V2 satisfying J0�V1x /	��=−J0�V2x /	��, the
perfect time-reversal process may be obtained as shown in
Fig. 1�b�. � reversal is also realized by periodic 
 kicks.
Recently, we have shown that the effective coupling coeffi-
cient is modified by periodic kicks as �eff=� cos�Ax�, where
A is the pulse area of the kick field �18�. The �-reversal
process is therefore realized for A1x=2n� and A2x
= �2n+1��, where n is integer. We confirmed by numerical
simulations that the ac modulation of the coupling coefficient
really gives rise to a time-reversal process. In order to obtain
high fidelity of the time-reversal process, the ac frequency
	 should be much higher than the tunneling frequency
	t�=2� /�� such as 	 /	t�30.

IV. TIME REVERSAL BY STAGGERED PHASE
IMPRINTING PROCESS

Considering again the invariant transformations � /�
→−� /� ��→−��, � j /�→−� j /� �� j→−� j�, and Cj
→Cj

�ei�j, we can expect that staggered 0-� phase imprinting
on the lattice sites also gives rise to a time-reversal process.
For staggered 0-� phase imprinting with the potential �p���
=�0 sech ���−�p� /�0� for odd sites with �0=50,�p=10,�0
=0.02, i.e., �−�

+��p���d�=�, we obtain time-reversal dynamics
that is almost identical with that shown in Fig. 1�b�. Thus, we
know that the staggered phase imprinting process is equiva-
lent to the �-reversal process.

In Fig. 2, we show another numerical result which is ob-
tained for a different initial condition in which the BECs are
equally distributed in all lattice sites, i.e., Cj�t�=1 /	M with
M =20. The time-reversal processes obtained for the
�-reversal process and the phase-imprinting process are
shown in Figs. 3�a� and 3�b�, respectively. The parameters of
the phase-imprinting potential are �p=10, �0=100, and �0
=0.01 which satisfy �−�

+��p���d�=�. Regardless of the differ-
ent initial conditions, the time-reversal behavior is clearly
seen at �=2�p=20. For the phase-imprinting scheme �see
Fig. 2�b��, residual ripples are seen in the time-reversed
waves, which can be sufficiently reduced by applying much
narrower phase-imprinting pulses.

Here, we consider how to realize staggered 0-� phase
imprinting. The optical lattice in which BECs are loaded is
created by two laser beams intersecting at angle . The re-
sulting periodic potential V�x�=V0 sin2��x /dL� has lattice
spacing dL=� / �2 sin� /2��. Another time-dependent optical
lattice with lattice spacing 2dL is superimposed on this opti-
cal lattice to give staggered phase imprinting; one of the
lattice sites j has a potential minimum �� phase imprinting�

FIG. 1. Time development of atomic populations nj���
= �Cj����2 in a linear lattice obtained for lattice number M =20 and
for the initial condition C10�0�=1.0, without �a� and with �b� �
reversal at �=10. The perfect recovery of the initial state is realized
at �=20, where all atoms are again occupied in site j=10 �shown by
the solid line�.

FIG. 2. Time development of atomic populations obtained for
the initial condition of equally distributed BECs on all sites, i.e.,
Cj�t�=1 /	20. The �-reversal operation at �=10 is shown in �a�. The
phase-imprinting operation at �=�p=10 is shown in �b�, with �0

=100, and �0=0.01.

FIG. 3. Time-reversal process in nonlinear systems obtained by
staggered phase imprinting for different values of the nonlinear co-
efficient �= �a� 1.0 and �b� 2.0.
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and its two nearest neighbor sites j�1 have potential
maxima �0 phase imprinting�. Phase imprinting by a phase
mask and potentials created by lithographically patterned
electrodes are other candidates to realize staggered phase im-
printing in experiments.

V. TIME-REVERSAL OPERATION
IN NONLINEAR SYSTEMS

So far, we have investigated a linear system in which the
interatomic interactions can be neglected. Here we study a
nonlinear system in which the interatomic interactions have
an important role. In Fig. 3, we show the time-reversal pro-
cess in a nonlinear system obtained by staggered phase im-
printing with different values of the nonlinear coefficient �.
The parameters used for the calculations are �0=50, �p=10,
�0=0.02, which satisfy �−�

+��p���d�=�, but �=1.0 �a� and 2.0
�b�. It is clear from comparing Figs. 3�a� and 3�b� with Fig.
1�b� that the time-reversal property deteriorates as the non-
linearity is increased. The degradation of the time reversal
can fortunately be reversed by simultaneous reversal of the
sign of the nonlinear coefficient at the phase-imprinting time
�=�p. In Fig. 4, we show the time-reversal dynamics ob-
tained for simultaneous utilization of the phase-imprinting
and nonlinearity reversal processes for ���=2.0 with �p=10.
Comparing Fig. 3�b� with Fig. 4, we can see that the simul-
taneous introduction of the nonlinearity reversal with the
staggered phase imprinting brings perfect recovery of the
initial state, i.e., perfect time reversal.

It is possible to control the interatomic interaction by ap-
plying an external magnetic field B, which controls the scat-
tering length. Specifically, the behavior of the scattering
length near a Feshbach resonant magnetic field B0 is typi-
cally of the form �19�

a�B� = ã
1 −
�

B − B0
� , �2�

where ã is the value of the scattering length far from reso-
nance and � represents the width of the resonance. Keeping
in mind the relation �=4�a�B� /m, we know that the sign
and the magnitude of the nonlinearity can be changed by an
external magnetic field. Magnetic fields B ��B0� give a
positive nonlinearity and magnetic fields B ��B0� a negative
one.

Finally, we point out a peculiar time-reversal phenomenon
in the nonlinear system. This is observed in two successive
phase-printing processes. Figure 5 shows the time develop-
ment of the matter waves when two phase-imprinting pulses
are successively applied. The nonlinear coefficient used for
the calculation is �=3.6 and the first and second phase im-
printing are applied at �=5 and 15, respectively. Here we
note that the first time-reversal behavior expected at �=10
shows poor recovery but the recovery by the second time
reversal expected at �=20 is quite good. This behavior can
be clearly seen for relatively high nonlinearities, typically
��2.4–4.0, and disappears above the self-localization
threshold for ��4. At present, we cannot understand the
physical mechanism of this peculiar behavior, but it seems as
if the nonlinear coefficient has effectively changed its sign at
the first time-reversal time at �=5, and therefore the accu-
mulated phase of the positive nonlinearity for �=0–10 can
be compensated in the successive development of the second
time reversal for �=10–20. From a practical point of view,
this scheme is very useful even if the time-reversal process is
not perfect, because it is a very simple process which does
not require a nonlinearity-reversal process.

Finally, we point out that the time-reversal mechanism in
nonlinear systems may have a connection to the question of
the equilibration of an isolated quantum system �7�: for large
values of the interatomic interaction the system approaches a
distinctly nonequilibrium steady state that bears a strong
memory of the initial conditions.

VI. CONCLUSION

We have proposed the two schemes that can perform a
complete time-reversal operation of the distribution of BECs
in optical lattices. One is the �-reversal scheme in which the
sign of the tunneling coefficient is reversed by the time-
periodic field. The other scheme is to utilize staggered 0-�
phase imprinting on the optical lattices. Furthermore, it was
shown that, if the sign of the nonlinearity is reversed simul-
taneously with the phase-imprinting process, the time-
reversal operation could be perfect even in a nonlinear
system.

FIG. 4. Time-reversal dynamics obtained for simultaneous uti-
lization of the phase-imprinting and nonlinearity-reversal processes
for ���=2.0 with �p=10.

FIG. 5. Time development of matter waves when two phase-
imprinting pulses are successively applied. The nonlinear coeffi-
cient used for the calculation is �=3.6 and the first and second
phase imprintings are applied at �=5 and 15, respectively.
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