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A method is proposed and considered theoretically for using phase-sensitive amplification as the intensity-
discrimination �saturable absorption� element in a laser cavity to generate stable and robust mode-locking. The
phase-sensitive amplifier acts as a phase filter for selecting the specific intensity-dependent phase rotation of
the mode-locked pulse that locks the phase to the amplifier pump phase. The nonlinear phase rotation is
analogous to the nonlinear polarization rotation which is used with passive polarizers for mode-locking. It is
demonstrated that the phase-sensitive amplification mechanism can indeed result in stable mode-locking. An
average cavity model explicitly calculates the stability of the mode-locked pulses.
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I. INTRODUCTION

Mode-locked lasers have been developed in a wide vari-
ety of cavity configurations �1–3�. The fundamental physical
mechanism responsible for generating stable mode-locked
pulse streams—i.e., saturable absorption �4–6�, polarization
rotation �7–11�, nonlinear interferometry �12–16�, active
modulation �17,18�, or nonlinear mode-coupling �19–22�—
can be significantly different in the various cavity configura-
tions. Common to each mode-locked laser, however, is the
intensity discrimination which is achieved by the mode-
locking mechanism. The intensity discrimination preferen-
tially attenuates low-intensity portions of a pulse with re-
spect to higher-intensity portions. When combined with the
laser cavity saturable gain, chromatic dispersion, and self-
phase modulation, stable mode-locking operation may be
achieved. In this paper, we propose a method for achieving
the required intensity discrimination in the cavity. Specifi-
cally, we show that the intensity-dependent phase rotation in
the laser cavity in combination with phase-sensititive ampli-
fication, which acts as a phase filter, can generate and sup-
port stable mode-locked pulses. The resulting mode-locked
solutions are solitonlike pulses that are locked in phase to the
pump phase of the phase-sensitive amplifier. The amplifier,
via the pump phase, thus acts to provide both the intensity
discrimination required of mode-locking in conjunction with
a stabilization mechanism for the generated solitonlike
pulses.

Three effects are critical in the mode-locking process.
First is the equilibration of energy in the laser which is pro-
vided by the saturating cavity gain �e.g., erbium-doped am-
plifiers�. Second is the intensity discrimination which must
occur in order for the cavity energy to begin pulse formation
or localization. And finally, the onset of pulse formation ul-
timately leads to soliton generation as a result of the balance
of the cavity chromatic dispersion and self-phase modulation
�1,3�. These three physical processes are common to mode-
locked lasers operating in the anomalous dispersion regime.
The effect which changes most from one mode-locked laser
to the next is the mechanism responsible for the intensity

discrimination. The laser cavity configurations listed above
�4–22� have a variety of different physical mechanisms pro-
viding an intensity-dependent effect. Here, both energy equi-
librization and intensity discrimination can be achieved in a
phase-sensitive amplifier �PSA�. Essentially, the PSA sifts
out and stabilizes the specific mode-locked pulse which has a
phase rotation over a cavity round-trip which is commensu-
rate with the pump field driving the PSA. All other phase
components are attenuated since they are not in phase with
the amplifier. PSAs are an experimentally viable technology
which have been developed in the context of a variety of
applications including long-haul communications, optical
storage, and pulsed optical parametric oscillation �26–34�.
Thus the proposal for a PSA mode-locking device considered
here relies on standard mode-locked fiber lasers with well-
documented PSA technologies.

In principle, this mode-locking mechanism is identical to
the phase selection mechanism generated by a figure-8 laser
�12–16� and with the nonlinear-polarization rotation-
selection mechanism �35,36�, which is used in laser cavities
mode-locked by a passive polarizer �7–10�. For both these
lasers, averaging methods demonstrate the key role that
phase selection plays in driving the dynamics of the figure-8
laser �16� and the polarization-rotation laser �11�. In these
lasers, the effective phase-selection mechanism is driven by
nonlinear processes—i.e., nonlinear phase rotation for the
figure-8 laser and nonlinear polarization rotation for the pas-
sive polarizer laser. In contrast, the phase selection here is
directly accomplished by the linear amplification in the PSA.
In any of these situations, an effective intensity discrimina-
tion is generated that is necessary for successful mode-
locking.

The paper is outlined as follows: Section II gives a quali-
tative description of the phase-sensitive amplifier and its
principle of operation in the mode-locked laser cavity. This is
followed by Sec. III, which presents the governing evolution
equations in the optical fiber and phase-sensitive amplifier.
To make further analytic progress, Sec. IV characterizes the
mode-locking dynamics by deriving an averaged model
which accounts for the long-time behavior in the laser cavity.
The theoretical predictions and conjectures are confirmed in
Sec. V with numerical simulations of the mode-locking dy-
namics using phase-sensitive amplification. A brief summary
and review of the mode-locking results are given in Sec. VI.*kutz@amath.washington.edu
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II. PRINCIPLE OF OPERATION

To be more precise about mode-locking with a phase-
sensitive amplifier, we consider the basic propagation in a
cavity dominated by chromatic dispersion and Kerr nonlin-
earity. Specifically, we consider the underlying wave propa-
gation governed by the nonlinear Schrödinger �NLS� equa-
tion �1�

i
�Q

�Z
+

1

2

�2Q

�T2 + �Q�2Q = 0, �1�

where the scalings will be discussed below. The NLS equa-
tion has the localized soliton solution which takes the form

Q�Z,T� = � sech��T�exp�i�2Z/2� . �2�

Of note in this solution is the parameter �, which corre-
sponds to an amplitude invariance of the governing NLS
equation �1�. Thus different amplitudes have a phase-rotation
rate given by

� =
�2

2
. �3�

This intensity-dependent phase dynamics �2� and �3� is criti-
cal for establishing an intensity-discrimination element in the
laser cavity via the phase-sensitive amplifier.

The amplification of electromagnetic energy in the phase-
sensitive amplifier occurs by amplifying �attenuating� pulse
components which are in phase �out of phase� with the pump
field of the amplifier. When considering the amplification of
a soliton pulse such as Eq. �2�, the state of phase of the
soliton pulse upon amplification becomes crucial; i.e., in-
phase solitons are amplified while out-of-phase solitons are
attenuated. The soliton phase relative to the pump phase then
determines the behavior the laser cavity dynamics. Again,
analogy should be made here with an equivalent effect that
occurs in a cavity with a passive polarizer �7–10�. In such a
system, it is the nonlinear polarization rotation and its rela-
tive relation to the passive polarizer which determines the
intensity-selection mechanism for generating the mode-
locking behavior �35,36�

Thus the solitons which experience maximal gain are
those that after every round-trip are aligned in phase with the
pump field of the PSA. This specific soliton is characterized
by a particular value of the parameter � in Eq. �2� since it
controls the phase-rotation rate Eq. �3�. Solitons with �
above or below this particular value experience a net attenu-
ation in the cavity due due to their misalignment in phase
with the pump. Thus a specific soliton �with associated �
value� emerges as a stable attractor in the mode-locked laser
cavity.

A schematic of the mode-locked laser configuration is
given in Fig. 1. Here the combination of fiber propagation
and PSA amplification is given for a ring laser cavity. The
total phase accumulated over a single cavity round-trip is
given by the rotation rate � in Eq. �3� multiplied by the
cavity round-trip distance ZR. Thus the accumulated phase is
�ZR. During a single-round trip of the cavity, the pump field

in the PSA will have experienced a phase rotation of ��p.
For in-phase amplification to occur, �ZR=��p+2n� with
n=integer, which using �3� gives

� =�2��p

ZR
�4�

as the specific amplitude which is in phase with the amplifier.
It is the soliton of this amplitude which is stabilized and
attracted by the laser cavity. Note the critical dependence on
��p /ZR. The basin of attraction for this specific soliton de-
termines whether the laser has the potential to self-start. Re-
gardless, the phase-selection mechanism clearly provides a
Kerr-lens effect �37� which can be used for mode-locking.

The phase-filtering aspect of the PSA has been exploited
previously in the context of optical fiber communication sys-
tems subject to in-line amplification with PSAs �26–32� in a
soliton storage loop �33� and in a pulsed optical parametric
oscillator �34�. To a certain extent, the application of the
PSAs used in these physical settings is very close to the
mode-locking ideas presented here. Thus the PSA as a soli-
ton stabilization mechanism is understood �30–34�. Here, the
focus is on generating the soliton from initial white-noise
fluctuations in the laser cavity—i.e. mode-locking.

III. GOVERNING EQUATIONS

The theoretical model for the dynamic evolution of elec-
tromagnetic energy in the laser cavity is composed of two
components: the optical fiber and the PSA element. Each of
these critical components are addressed in the following two
subsections. Note that since the PSA element is primarily
being used to generate intensity discrimination, the general
model considered also includes the effects of saturating gain
from—for instance, additional erbium-doped amplification.

A. Fiber propagation

The pulse propagation in a laser cavity is governed by the
interaction of chromatic dispersion, self-phase modulation,
linear attenuation, and bandwidth-limited gain. For conve-

Pump

Coupler

Output

PSA

90/10

FIG. 1. Proposed experimental arrangement of the laser cavity.
The ring configuration includes a phase-sensitive amplifier �PSA�
for energy equilibration and intensity discrimination. An output
coupler is used to tap off the mode-locked pulse train. In addition to
what is shown, it may be advantageous to include an isolator in the
cavity as well as an erbium-doped fiber section for augmenting the
gain. Recall that the PSA element is primarily used to provide the
intensity discrimination for mode-locking.
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nience, we consider an optical fiber laser such as depicted in
Fig. 1. The cavity propagation is given by

i
�Q

�Z
+

1

2

�2Q

�T2 + �Q�2Q + i�Q − ig�Z��1 + �
�2

�T2�Q = 0,

�5�

where

g�Z� =
2g0

1 + 	Q	2/e0
�6�

and Q represents the electric field envelope normalized by
the peak field power �Q0�2. Here the variable T represents the
physical time in the rest frame of the pulse normalized by
T0 /1.76, where T0=200 fs is the typical full width at half
maximum of the pulse. The variable Z is scaled on the dis-

persion length Z0= �2�c� / ��0
2D̄��T0 /1.76�2 corresponding to

an average anomalous cavity dispersion D̄
12 ps / �km nm�.
This gives the one-soliton peak field power �Q0�2
=�0Aeff / �4�n2Z0�. Further, n2=2.6�10−16 cm2 /W is the
nonlinear coefficient in the fiber, Aeff=60 	m2 is the effec-
tive cross-sectional area, �0=1.55 	m is the free-space
wavelength, c is the speed of light, and �=
Z0 �

=0.2 dB /km� is the fiber loss. The bandwidth-limited gain in
the fiber is incorporated through the dimensionless param-
eters g and �= �1 /��2��1.76 /T0�2. For a gain bandwidth
which can vary from ��=20 to 40 nm, ��= �2�c /�0

2��� so
that �
0.08–0.32. The parameter � controls the spectral
gain bandwidth of the mode-locking process, limiting the
pulse width.

Finally, it should be noted that a solid-state configuration
can also be used to construct the laser cavity. As with optical
fibers, the solid-state components of the laser can be engi-
neered to control the various physical effects associated with
Eq. �5�. Given the robustness of the mode-locking observed,
the theoretical and computational predictions considered
here are expected to hold for the solid-state configuration.

B. Phase-sensitive amplifier

Modeling of the phase-sensitive amplifier can occur on
several levels. The most general model includes the spa-
tiotemporal dynamics of the pump, signal, and idler fields.
Included in this description is the parametric, nonlinear in-
teraction of the fields with chromatic dispersion and tempo-
ral walk-off due to group-velocity mismatches. The govern-
ing equations in this general model are given by �23,24�

i
�u

��
+

du

2

�2u

�T2 + u
�2�wv* = 0, �7a�

i� �v
��

+ vvu
�v
�T
� +

dv

2

�2v
�T2 + v

�2�wu* = 0, �7b�

i� �w

��
+ vwu

�w

�T
� +

dw

2

�2w

�T2 + w
�2�uv = 0, �7c�

where u, v, and w represent the normalized signal, idler, and
pump fields, respectively. As with Eq. �5�, the variable T

represents the physical time in the rest frame of the signal
pulse normalized by T0 /1.76, where T0=200 fs is the typical
full width at half maximum of the pulse. The variable � is
scaled on the typical phase-sensitive amplifier length Za
=5 mm. The parameter dp= �Za /T0

2�d2kp /d�p
2 measures the

chromatic dispersion in the signal �p=u�, idler �p=v�, and
pump �p=w� fields where kp is the wave number and �p the
frequency. The nonlinear parametric coupling is given by the
parameter p

�2�= ��p
2 /2kpc2�Q0Za�2�, where �2� is the nonlin-

ear susceptibility of the amplifying medium, c is the speed of
light, and Q0 is the amplitude scaling used in Eq. �5�. Finally
the parameter vpq=dkp /d�p−dkq /d�q measures the group-
velocity walk-off which occurs between the signal, idler, and
pump fields.

The governing model �7� has been well studied �23,24�
and its phase-sensitive amplification properties well docu-
mented �25�. A simplified understanding of the system occurs
when two major physical assumptions are made: the system
is degenerate so that the signal and idler fields are commen-
surate, and the PSA crystal is sufficiently short �e.g., 5 mm�
so that chromatic dispersion and group-velocity mismatch
can be ignored. This reduces the governing evolution equa-
tions �7� to the coupled differential equation system �25�

i
�u

��
+ u

�2�wu* = 0, �8a�

i
�w

��
+ w

�2�u2 = 0. �8b�

These equations characterize the fundamental parametric in-
teraction between the degenerate signal and pump fields.

The final simplification which can be made occurs in the
undepleted pump approximation. Assuming the pump field to
be of much larger in magnitude than the signal field results in

i
�u

��
+ u

�2�wu* = 0, �9a�

i
�w

��
= 0, �9b�

which has the analytic signal field solution of the form

u��,T� = u�0,T�cosh���� + exp�i�����u*�0,T�sinh���� ,

�10�

where �=u
�2��w� and exp�i�����= iw / �w� gives the phase of

the pump field. The quadrature decomposition

u�0,T� = �A + iB�exp�i�/2� �11�

elucidates the nature of the phase-sensitive amplification. In
particular, the decomposition �11� shows that the in-phase
quadrature component A is amplified while the out-of-phase
quadrature component is attenuated since

u��,T� = A exp���� + iB exp�− ��� . �12�

This fundamental behavior in the PSA is key to its use as the
intensity discrimination element in the laser cavity. Specifi-
cally, only soliton pulses of the form �2� which are aligned
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in-phase with the quadrature A persist. Thus a soliton in the
cavity must lock to the PSA pump phase in order to persist.

IV. AVERAGED MODE-LOCKING MODEL

The quadrature decomposition �11� suggests a reformula-
tion of the laser cavity equations into in-phase and out-of-
phase components. This has been done previously in the con-
text of optical fiber communication systems subject to in-line
amplification with PSAs �30–32�. To begin, the governing
propagation field Q�Z ,T� in Eq. �5� is decomposed into its
quadrature components:

Q�Z,T� = �A�Z,T� + iB�Z,T��exp�i�/2� . �13�

Recall that the PSA amplifies components which are in phase
�A� with the amplifier and attenuate those which are out of
phase �B� so that

Q+ = �A− exp��� + iB− exp�− ���exp�i�/2� . �14�

Here the � denotes the input field before and after an am-
plifier, � is the field gain of the amplifier, and � is the ref-
erence phase associated with the PSA pump field. Thus the
in-phase portion is amplified and the out-of-phase portion is
attenuated. This attenuation of the out-of-phase portion
works to eliminate phase variations across the signal pulse’s
profile, which in turn leads to its enhanced stability �30–32�.

For convenience, the averaging will assume that all the
gain in the system comes from the PSA. Thus the pulse
propagation through an optical fiber, which includes disper-
sion, nonlinearity, linear loss, and periodic phase-sensitive
amplification, is governed by the perturbed NLS equation
�30,31�

i
�Q

�Z
+

1

2

�2Q

�T2 + �Q�2Q + i



�
Q − i

1

�
h�Z

�
�Q − i

1

�
ei��Z�f�Z

�
�Q*

= 0, �15�
where 
 is the linear loss rate in the fiber and the rapidly
varying periodic functions h and f account for the effect of
the cavity PSA. Specifically, they take the form

h���Q = �cosh���P�za� − 1��
n=1

N

��� − nl�Q�nl−,T� , �16�

f���Q* = sinh���P�za��
n=1

N

��� − nl�Q*�nl−,T� . �17�

Here za is length of the PSA, l is the laser cavity length in
terms of �=Z /�, P is the pump amplitude, � is a real con-
stant which depends upon the �2� nonlinearity of the ampli-
fying medium and frequency of the mode-locked signal, and
N is the total number of round-trips in the laser cavity. The
phase of the amplifier is represented by ��Z� and the scalings
are those used in Eq. �5�. Here the amplifier spacing �cavity
length� Zl is assumed to be much shorter than the dispersion
length Z0 so that ��Zl /Z0�1 �30,31�.

Performing a multiple-scale averaging �38� of Eq. �15�
using the short length scale �, the dispersion length scale Z

and the long length scale �̄=�Z give the following fourth-
order evolution equation that governs the mode-locking dy-
namics �30,31�:

�U

��
+

1

4
� �2

�T2 − ��2

U − ��U − �U3 + U5 + 3�U� �U

�T
�2

+ �� + 1�U2�2U

�T2 = 0, �18�

where �= �2−tanh 
 /
�, �=d� /dZ, �= �̄ / �2 tanh 
�, �� is
an O��2� correction to the exact balance between loss and
gain in the laser cavity, and U is the scaled in-phase compo-
nent of the pulse envelope after each amplifier: namely,

U = �1 − e−2


2

�1/2

Re�Qe−i�/2� . �19�

Equation �15� is a fourth-order, nonlinear, diffusion equation
which governs the pulse dynamics over the long length scale
�. The parameter �, which represents a constant amplifier
phase rotation rate ��=d� /dZ�, can be taken to be unity
without loss of generality since it can be scaled out of Eq.
�18�. Therefore, �=1 in what follows. The amplitude rescal-
ing corresponds to normalizing the pulse envelope so that
U2dT is the average pulse energy over one cavity period
�30,31�. Although the evolution equation �18� inherits much
of its structure from the NLS equation, it is important to note
that the evolution is of a non-Hamiltonian nature and, there-
fore, its dynamics are those of a dissipative system.

An idea of the general structure of the solutions to Eq.
�18� can be obtained by considering 
=0. In this limit,

U0 = � sech �T , �20�

where �= �1�2����1/2�1/2. The limit of small 
 and �� cor-
responds physically to assuming that both the amplifier spac-
ing and the amount of overamplification are small. The sta-
bility of these solutions can be determined by letting �=
2

�1 and expanding U=U0+�U1+�2U2+¯ and ��=��1
+�2�2+¯. Inserting this into Eq. �18� gives

U0� + L−
2U0 + ��U1� + L−L+U1 − H1�U0,�1��

+ �2�U2� + L−L+U2 − H2�U0,U1,�1,�2�� + ¯ = 0,

�21�

where Hn represents the perturbing terms at O��n� which
appear in the equation for Un and the operators L−
=−�1 /2��T

2 −U0
2+1 /2 and L+=−�1 /2��T

2 −3U0
2+1 /2 are the

real and imaginary parts of the linearized NLS equation �39�.
The self-adjoint operators L+ and L− are well understood
�39�. It can be proven that the solution �20� is stable for 0
����1 /4. This then represents the mode-locking regime
of interest. Further, is provides analytic proof for the stability
of the mode-locking process.

V. MODE-LOCKING DYNAMICS

Numerical simulations of the governing equations are per-
formed to demonstrate the mode-locking dynamics with a
PSA. In these simulations, the PSA is used as the intensity

J. NATHAN KUTZ PHYSICAL REVIEW A 78, 013845 �2008�

013845-4



discrimination element by providing phase-locking via the
PSA pump field. Additional saturated gain is provided by
erbium-doped amplification. The two subsections present
simulations first of the full laser cavity dynamics governed
by Eq. �5� with Eq. �8� applied every round-trip of the laser
cavity and, second, of the average cavity evolution dynamics
�18�. Both show stability of the mode-locked pulse solution.
For all simulations, the numerical integration uses a filtered
pseudospectral method in the spatial variable �T� and a
fourth-order Runge-Kutta to step forward in the time vari-
able �Z�.

A. Full model

To demonstrate the mode-locking dynamics which can oc-
cur in the laser cavity, Eq. �5� is simulated with Eq. �8�
applied every round-trip of the laser cavity. The scalings
used in Eq. �5� give a typical value of �=0.1 �e.g., 20–30 nm
gain bandwidth�. We further assume e0=1 and �=0.1 and
consider a 10% output coupling. The gain parameter g0 is
adjusted to overcome the output coupling losses and cavity
attenuation. Note that in this scenario, the PSA is used pri-
marily as a phase-selection mechanism as the overall gain is
augmented by erbium-doped amplification.

A critical parameter for mode-locking is the value of �p
which denotes the phase rotation experienced by the PSA
pump field over one round-trip of the cavity. For the simula-
tions presented here we consider �p=� /8. For any specific
value chosen, care must then be taken to adjust the remaining
free parameters to put the laser cavity in a mode-locking
regime. Most notably, the cavity length must be carefully
selected due to the soliton-locking condition �4�. The initial
amplitude of the pump field at the injection into the PSA is
�w�0,T��=0.7; i.e., the pump field is a cw beam. The initial
pump phase at the first cavity round-trip is zero, and it ad-
vances by �p=� /8 every round-trip. This is the phase that
the mode-locked solution locks to. The PSA is simulated for

�=1 �e.g., 
5 mm� with u
�2�=w

�2�=0.1. The propagation in
the fiber occurs at Z=0.5 �e.g., 
1 m�.

The basic mode-locking process is exhibited in Fig. 2 for
g0=0.15. Here, white-noise initial data are considered with a
small bump centered in the time domain so as to mode-lock
the pulse in the center of the computational domain. The
bottom panel shows that within approximately 100 round-
trips, the laser cavity has settled to the mode-locked pulse
solution which is locked in phase with the pump field on a
cavity round-trip basis. The bottom panel of Fig. 2 demon-
strates the equilibration of energy in the laser cavity from the
saturating gain. This is the proof of the concept that mode-
locking is possible with a PSA within some physically real-
izable parameter regime.

Figure 3 demonstrates the mode-locking behavior as the
gain pumping parameter g0 is increased. In the series of plots
presented here, the mode-locking first undergoes a Hopf bi-
furcation �instability� to a breathing pulse solution exhibited
in the top panel of Fig. 3. This breathing pulse persists as a
stable mode-locked solution. Further increasing g0 allows for
a multipulse scenario in which two pulses per round-trip of
the cavity are supported. Further increasing the gain shows
these two pulses to undergo a Hopf bifurcation again until a
three-pulse scenario is reached. This transition to multipuls-
ing behavior is standard in mode-locked lasers and can be
characterized theoretically �40�. Thus the model exhibits one
of the common features of a broad range of mode-locked
lasers.
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FIG. 2. Laser cavity dynamics showing the formation of a stable
mode-locked pulse over approximately 100 round-trips of the cav-
ity. The top figure shows the evolution of the intensity starting from
a white-noise initial condition with a small localized peak around
T=0. The bottom figure shows the relaxation of the energy to the
steady-state, mode-locked value. Here g0=0.15, �p=� /8,
�w�0,T��=0.7, �=0.1, e0=1, and a 10% output coupling is assumed.
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FIG. 3. Mode-locking dynamics as a function of increasing gain
pumping from g0=0.3 and 0.35 to 0.5. As g0 is increased beyond
that shown in Fig. 2, the pulse undergoes a Hopf bifurcation to a
breathing solution shown in the top panel. Further increasing g0

gives a stable, two-pulse per round-trip configuration as shown in
the middle panel. This also undergoes a Hopf bifurcation to two
breather solutions for g0 increasing further. Although only 200
round-trips are shown, the breathing states persist indefinitely. Here
�p=� /8, �w�0,T��=0.7, �=0.1, e0=1, and a 10% output coupling
is assumed.
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B. Averaged model

The average model is a valuable approximation as it
clearly relates to the fact that stability is achieved for the
hyperbolic secant solutions. Further, the average model holds
provided the periodic PSA amplification, or phase-locking,
occurs on a scale much shorter than the dispersion length.
The simulations presented in the previous subsection confirm
this fact. Thus the model gives insight into the possible op-
erating regimes of the laser.

The dynamics of the solitary wave solutions are exhibited
in Fig. 4. The stable evolution is demonstrated for the param-
eter �=0.1. In this case, the hyperbolic secant solution is
predicted to be exponentially stable. Indeed, the initial con-
ditions are observed to settle quickly to the final steady-state,
hyperbolic secant solution. Below a critical amplitude, how-
ever, the solutions decay to zero. The stability region for
these solutions was explored in detail elsewhere �32,41�.
Thus the averaged model suggests that a critical level of
initial energy �amplitude� in the cavity is necessary to induce
mode-locking. Simulations of the full governing equations as
in the last section also confirm this fact. As a consequence,
one might expect that significant gain pumping may be re-
quired to initially mode-lock the cavity. Alternatively, self-
starting may not be as robust as in other mode-locking mod-
els.

For values of ��1 /4, the solitary wave solutions desta-
bilize as eigenvalues cross into the right half-plane. The dy-
namics in this case leads to the formation of periodic wave
trains which can have complicated structures. Figure 5 dem-
onstrates the onset of instability for �=0.5 and �=3. As in
the last section, the additional cavity energy leads to multi-
pulsing behavior. However, the averaged model does not in-
cluded the effect of gain saturation at its leading order and
thus the cavity energy exhibited in Fig. 5 continues to grows
as the cavity is filled with pulses. A more detailed description

of the spatial-temporal dynamics of this system which ex-
plores a larger class of solutions and their stability is consid-
ered by Hewitt and Kutz �42�.

VI. CONCLUSIONS

This paper has demonstrated that phase-sensitive amplifi-
cation can be used as an intensity-discrimination element in a
laser cavity for generating stable and robust mode-locking.
The intensity-dependent phase rotation of the solitonlike
pulse propagating in the laser cavity locks to the phase of the
PSA pump phase. Thus a phase filter is effectively created
which allows only a specific pulse intensity to persist in the
laser cavity: i.e., the mode-locked pulse. The operation of the
laser is analogous in concept to the intensity-dependent po-
larization rotation of laser cavities mode-locked with a pas-
sive polarizer.

Numerical simulations of the laser cavity demonstrate the
stable, self-starting mode locking with PSAs. Increasing the
cavity gain pumping shows that the mode-locked solutions
undergo a Hopf bifurcation to a breathing state before stable
multipulse operation is established. The transition from N to
N+1 pulses in the cavity is a commonly observed phenom-
ena in mode-locking models. These results again allow one
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FIG. 4. Mode-locking dynamics as governed by the averaged
evolution equation �18�. As predicted from the stability analysis, the
solution settles exponentially to the steady-state hyperbolic secant
solution for initial data with lower amplitude �top panel� or higher
amplitude �bottom panel� than the mode-locked solution. Here ��
=0.1, �=1, and �=1.
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FIG. 5. Instability of the mode-locked solution as �� is in-

creased beyond the predicted stability value of 1 /4. As with the full
governing model of the last subsection, a multipulsing instability is
observed. However, the averaged model does not include the effects
of gain saturation so that the continuous generation of new pulses is
observed. For ��=0.5 �top panel�, a wave train is generated with
no nodes as observed from the final state of the system �bottom
panel, light line�. With ��=3 �middle panel�, a wave train with
nodal separation is created as observed from the final state of the
system �bottom panel, bold line�.
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to think of the mode-locking with a PSA as generating much
of the same behavior observed in a wide variety of laser
cavities.

In addition to simulations, a theoretical treatment is given
to the stability of the mode-locked pulses in the context of an
average model which accounts for the effect of the PSA as a
continuous versus discrete effect. The averaged model shows
that hyperbolic secant solutions exist and are exponentially
stable for a range of physically relevant parameters. Further,
the model predicts when instability occurs and how this in-
stability is manifest in the system. The asymptotic validity of

the averaged model also lends insight into the expected con-
figurations where the PSA-based mode-locked laser can op-
erate. Specifically, application of the PSA must occur rapidly
enough �on a scale shorter than the cavity dispersion length�
so that the phase-locking can occur.
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