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The influence of transverse relaxation on the resonance soliton �2� hyperbolic-secant pulse� in solids is
considered. It is shown that memory effects can be considered in terms of generalized non-Markovian optical
Bloch equations. The equations of self-induced transparency with a memory function are presented. Explicit
forms for the first-order effects of this relaxation on the frequency shift and the pulse height of a resonant 2�
soliton in solids are given and discussed. It is shown that memory effects do lead to a qualitative change in the
dynamics of the influence of transverse relaxations on a 2� pulse in comparison to the McCall-Hahn theory
and others. The dynamics of the changes of the inverse width of the pulse are obtained in both the Markovian
and the non-Markovian cases with realistic parameters that can be achieved in current experiments.
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I. INTRODUCTION

Resonant optical solitons can be created by means of the
McCall-Hahn mechanism, i.e., from the nonlinear coherent
interaction of an electromagnetic pulse with resonant atoms
in a medium �such as gaseous atoms or impurity atoms in
solids�, when the conditions �T�1 and T�T1,2 are satisfied
�1�. Here, � and T are the pulse frequency and duration,
respectively; T1 and T2 are the longitudinal and transverse
relaxation times of the resonant atoms. Exploring the evolu-
tion of a coherent light pulse in a resonant absorbing me-
dium, McCall and Hahn observed the amazing phenomenon
of anomalously low energy loss when the pulse power ex-
ceeds some critical value. This effect was called self-induced
transparency �SIT� �1�. The physical explanation of the SIT
effect is based on the representation of the absorber by an
ensemble of two-level atoms whose evolution is caused by
induced processes due to the interaction with the coherent
light pulse. In general the theory of the interaction of elec-
tromagnetic radiation with an ensemble of two-level atoms is
based on the Bloch equations for atoms and the Maxwell
equations for the classical electromagnetic field. From the
Maxwell-Bloch equations, many of the principal theoretical
results of SIT were originally obtained by McCall and Hahn,

using quite simple methods, in particular, the fact that certain
solutions of this system of equations, known as 2� pulses,
did indeed have solitonlike properties �1�.

In real physical systems, relaxation effects invariably ex-
ert an important influence on nonlinear wave processes.
These relaxation effects modify the evolution of the soliton
parameters, which is one of the principal problems in the
physics of nonlinear waves. In the case of ideal SIT, i.e.
without relaxation processes considered, one has an advan-
tage in that one can make use of the inverse scattering trans-
form �IST� �2–4�, by which it is possible to obtain the com-
plete solution of any integrable nonlinear system. There are
many situations when relaxation processes can be ignored.
Mostly due to the works of Lamb �5,6�, the soliton part of
the solution was developed and studied, which allowed one
to understand the asymptotic form of the solution of SIT in
the attenuator case. Following upon the work of Lamb �6�,
Ablowitz, Kaup, and Newell �7� obtained the complete solu-
tion for the Maxwell-Bloch equations, including the nonsoli-
ton part �called “radiation”� as well as the soliton part. The
simplified version of the theory of SIT, based on a sine-
Gordon equation, was analyzed by means of its IST in Ref.
�8�. Since that time, additional results have shown an even
closer connection between the McCall-Hahn theory and the
IST solution than was at first suspected �9–15�.

Although there have been many physical problems,
among them SIT, solved by these ISTs, at the same time
there continue to be many related problems which cannot be
solved exactly by these techniques. As an example, the
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addition of relaxation processes generally will cause the
method of the IST to fail. On the other hand, there are many
situations where these relaxation effects can be taken to be
small and, when that is the case, one can expect a perturba-
tion expansion to allow one to gain some insight into the
influence of these effects on the fully nonlinear state. Of the
fully nonlinear states, the most important are the soliton so-
lutions. In the absence of any perturbations, single solitons
have a fixed wave form �envelope� and velocity. When the
system is perturbed by relaxation, we can expect the shape of
the wave form, as well as its velocity and other parameters,
to change slowly �16–18�. A perturbation expansion based on
the IST was used in Ref. �17� to consider the first-order
effects of various relaxation processes on the propagation of
a 2� pulse. Explicit analytical but approximate expressions
for the phase modulation, the time delay, the instantaneous
frequency �the frequency shifts�, and the decay rate of the
pulse were determined. The results from Ref. �17� generally
agree with those of McCall and Hahn’s theory but provide
corrections for the effects of relaxation. Effects due to relax-
ation result in a time delay and a changed rate at which an
off-resonance 2� pulse would drift away from the resonance
due to the homogeneous broadening.

In Ref. �19�, the IST perturbation expansion was used to
investigate the influence of a Markovian transverse relax-
ation process on the 2� pulse of SIT due to the inhomoge-
neous broadening of spectral lines. In this work, the influ-
ence of the relaxation on the continuous spectrum of the
scattering data of the Zakharov-Shabat �ZS� eigenvalue prob-
lem was investigated. Explicit analytical expressions for the
continuous part of the scattering coefficients were deter-
mined. It was shown that the transverse relaxation induces
the excitation of the continuous spectrum of the scattering
data of the ZS spectral problem. It was found that the trans-
verse relaxation effect leads to changes in the wave form and
the energy of the pulse of SIT, and explicit first-order, ana-
lytical expressions for these quantities were given.
Asymptotic expressions for the amplitude and energy of the
pulse were also calculated in Refs. �19,20�.

The above-mentioned work �1,17,19,20� gives the com-
plete physical picture of the influence of relaxation processes
on optical SIT in the framework of the Bloch-Maxwell equa-
tions if Markovian relaxation processes are present. In these
semiphenomenological Bloch equations, the effect of trans-
verse relaxation was taken into account by means of the Mar-
kovian relaxation terms Px /T2 and Py /T2, where Px and Py
are the in-phase �with respect to the electrical field of the
pulse� and quadrature �shifted in phase by � /2� components
of the electrical dipole moment of optical atoms �12,14,21�.
Consequently, the components of the transverse polarization,
Px and Py, and the longitudinal component, Pz, evolve ac-
cording to

�Px

�t
= �E�P� � E��x −

Px

T2
,

�Py

�t
= �E�P� � E��y −

Py

T2
,

�Pz

�t
= �E�P� � E��z −

Pz − P0

T1
, �1�

where �E is the gyroelectric ratio, and P� and E� are the vec-
tors of the polarization and the electric field, where P0 is the
equilibrium value toward which the function Pz relaxes when
the electric field equals zero �1,21�. Equations �1� are called
the “T1-T2 model” of the optical Bloch equations �21,22� and
follow from the so-called Markov approximation wherein
one takes the time evolution of the optical polarization Px,y
to depend only on the values of Px,y at that same time.

Numerical investigations of optical processes are typically
based on these optical Bloch Eqs. �1� �21,22�. It is to be
noted that this T1-T2 model of the Bloch equations is a good
approximation for gases and other systems. But this is not
always the case, particularly for solid state systems and cer-
tain dielectrics, where relaxation processes occur due to
electron-phonon interactions which need time to be built up
�retarded interaction�. Even in some cases where the trans-
verse components do exhibit exponential decay, the dynam-
ics of the polarization does not follow Eqs. �1� �22�. In sol-
ids, the Markovian model is only a rough approximation at
best and in many cases is actually inapplicable. Because of
this, it becomes appropriate to consider certain non-
Markovian models which would be more appropriate for
light-matter interactions in solids, for which there exist nu-
merous experimental results �22,23�.

To do this, it becomes necessary to include contributions
of memory effects into the Bloch equations, i.e., Eq. �1�
would have to be modified so that the evolution would con-
tain time integrations of Px,y over all previous times t�� t. In
this case, the appropriate terms in Eq. �1� would be replaced
according to

Px,y�t�
T2

→ �
−�

t

K�t − t��Px,y�t��dt�,

where K�t− t�� is a memory function �24–27�. Such a gener-
alization of the Bloch equations would significantly improve
their suitability for the description of optical relaxation in
solids. That is the purpose of this paper, wherein we shall
incorporate into the SIT theory memory effects in transverse
relaxations so as to better approximate the evolution of SIT
solitons in solids. Examples for the microscopic derivation of
such memory effects are given in Refs. �22,28–32�.

II. T1-T2 MODEL OF THE OPTICAL BLOCH EQUATIONS

To introduce the formalism let us first review the T1-T2
model of the optical Bloch equations. Then we will consider
the influence of relaxation processes on resonance SIT soli-
tons in solids, which contain optical active impurity atoms.

We shall take the optical pulse to be linearly polarized
with width T�T1,2, frequency ��T−1, and wave vector k�.

The electric field E� �z , t�=e�E�z , t� is taken to be propagating
along the positive z axis, where e� is the polarization vector,
directed along the x axis.

For the description of impurity atoms we use the two-
level model which can be described by the states �1� and �2�
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with energies E1=0 and E2=	�0, respectively, where �1� is
the ground state. The Hamiltonian and wave function of this
system are

H = H0 + V̂ ,

�
� = �
n=1,2

cn�t�exp	−
i

	
Ent
�n� ,

where H0=	�0�2��2� is the Hamiltonian of the two-level
atom with frequency of excitation �0,

V̂ = − �12��2��1� + �1��2��E

is the interaction Hamiltonian, 	 is Planck’s constant, and
�12=�� 12·e� where �� 12 is the electric dipole moment for the
corresponding transition, assumed to be real. The quantities
E1 and E2 are eigenvalues of the Hamiltonian H0. From the
Schrödinger equation, the probability amplitudes c1 and c2
are determined by �33�

i	
�c1�t�

�t
= − �12Ec2�t�e−i�0t,

i	
�c2�t�

�t
= − �12Ec1�t�ei�0t. �2�

Using the method of slowly changing envelopes

E = �
l=�1

ÊlZl, �3�

where Êl is the slowly varying complex envelope of the elec-
tric field and Zl=eil�kz−�t� contains the rapidly varying phase
of the carrier wave, we may apply

� �Êl

�t
� ���Êl�, � �Êl

�z
� � k�Êl� . �4�

We also take E to be real in which case Êl= Ê
−l
* .

Substituting Eq. �3� into Eq. �2� and taking the probability
amplitudes to be of the form

c1 = iv1
*e−i�/2�t, c2 = v2

*ei�kz+�/2�t�, �5�

where =�0−�, the Schrödinger equations �2� will be trans-
formed into the Zakharov-Shabat spectral problem �4�:

�v1

�t
+ i�v1 = qv2,

�v2

�t
− i�v2 = rv1, �6�

where r=−q* and

� =


2
, r = −

�12

	
Ê1, q =

�12

	
Ê1

*. �7�

The average values of the Pauli operators �̂i which describe
the induced dipole and inversion probability for the state
�
�, si=Tr�
��̂i�
� �where i=1,2 ,3� are �21�

sx = c1
*�t�c2�t�e−i�0t + c1�t�c2

*�t�ei�0t,

sy = ic1
*�t�c2�t�e−i�0t − ic1�t�c2

*�t�ei�0t,

sz = c2
*�t�c2�t� − c1

*�t�c1�t� . �8�

Defining s�= 1
2 �sx� isy�, then from Eqs. �5� and �8�, we

obtain

s+ = iv1
*v2e−i�kz−�t�,

s− = − iv1v2
*ei�kz−�t�,

sz = �v2�t��2 − �v1�t��2. �9�

Substituting Eq. �9� into Eq. �6� and defining the quantities

�+ = v1
*v2, �− = v1v2

*,

we obtain the undamped Bloch equations �21�

��+

�t
= i�+ − rsz,

��−

�t
= − i�− + qsz,

�sz

�t
= 2�r�− − q�+� . �10�

It also becomes convenient to represent the functions ��

as

�� =
1

2
��iu + v�e�i�,

where � is a phase function, and u and −v are the compo-
nents, in units of the transition moment �12, of the atomic
dipole moment in-phase and in-quadrature components with
respect to the field E. In other words, v is the absorptive
component of the atomic dipole moment, while u is the dis-
persive component. In the absence of phase modulation,

where �=0, the functions Ê1= Ê
1
*= Ê are real, and Eq. �10�

can be transformed to the usual form of the optical Bloch
equations in the rotating frame �21�:

�u

�t
= − v,

�v
�t

= u +
2�12

	
Êw,

�w

�t
= −

2�12

	
Êv ,

where 1
2	�0w is the expectation of the atom’s unperturbed

energy.
Next we define the quantities

�� = � i�12n0�
�, W = �12n0sz,

where n0 is the concentration of optically active atoms, and
introduce phenomenological Markovian decay constants into
Eq. �10�, which transforms the Bloch equations into the form

��+

�t
= i�+ − irW −

�+

T2
,

��−

�t
= − i�− − iqW −

�−

T2
,
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�W

�t
= 2i�r�− + q�+� −

W − W0

T1
, �11�

where W0 is the equilibrium value toward which the inver-
sion W relaxes when r=q=0. Equation �11� forms the optical
semiphenomenological Bloch equations for the T1-T2 model
in the rotating frame �12,14,21�. To study solitons as self-
consistent solutions of the Maxwell-Bloch equations, we
need, in addition to Eq. �11� for the material, a description of
the pulse propagation in the medium. The wave equation for
the electric field E�z , t� of the optical pulse in medium is
given by

�2E

�z2 −
�

c2

�2E

�t2 =
4�

c2

�2P

�t2 , �12�

where c is the light velocity in vacuum, � is the permittivity
constant, and P is the polarization of the two-level system.
Upon taking into account inhomogeneous broadening of the
spectral line, the polarization of the two-level system is equal
to

P =� g����+Z−1 + �−Z1�d , �13�

where g�� is the inhomogeneous broadening function. In
order for the polarization P to be real, it follows that �+*

=�−. Assuming that the envelopes �� vary sufficiently
slowly in space and time as compared with the carrier wave
parts, it follows that we may take

� ���

�t
� ������, � ���

�z
� � k���� .

The above together with the Eq. �4� is known as the slowly
varying envelope approximation �1,9,12,14,21�.

Substituting the polarization �13� into Eq. �12�, using Eqs.
�3� and then taking into account Eq. �7�, we obtain the fol-
lowing nonlinear wave equations for the envelopes:

�r

�z
+
�

c

�r

�t
= − �0� g���+d ,

�q

�z
+
�

c

�q

�t
= �0� g���−d ,

where

�0 =
2�n0�12

2 �

c�	
,

and � is the refractive index ��2=��. Introducing the re-
tarded time � and the spatial distance as new independent
variables

� = z, � = t −
�

c
z , �14�

the material and wave equations obtain the form

�̇+ = i�+ − irW −
�+

T2
,

�̇− = − i�− − iqW −
�−

T2
,

Ẇ = 2i�r�− + q�+� −
W − W0

T1
, �15�

r� =
�r

��
= − ��+�, q� =

�q

��
= ��−� , �16�

where the overdot denotes differentiation by the variable �
and �¯�=�0−�

� g��¯d. Equations �15� and �16� are the
system of equations of the SIT with damping which have
been investigated in Refs. �1,5,17,19,20,34–36�. This model
is the T1-T2 model of the Maxwell-Bloch equations. As al-
ready mentioned, this system of equations is not generally
valid in solids. We next will take into account memory ef-
fects and include them into Eqs. �15� to study a model more
suitable for relaxation processes in solids.

III. THE MEMORY FUNCTION

Microscopic, non-Markovian relaxation processes in the
Bloch equations can be described in a time-local �37� or
time-nonlocal description �28,37� via a self-consistent calcu-
lation using a Hamiltonian containing the electronic system,
the optical field, and the bath as well as respective interac-
tions. Both approaches agree in their results for the weak
coupling case �38�. A critical discussion of the ad hoc intro-
duction of memory terms into Bloch equations is given in
Ref. �39�. Therefore it is appropriate to use a non-Markovian,
time-nonlocal description similar to those derived micro-
scopically in Refs. �28–32�. Here we shall simply focus on
using a well-behaved model of a memory function in order
to obtain analytical results. Our goal in this paper is not to
redo the microscopic derivation of the relaxation contribu-
tions, but rather only to solve the Maxwell-Bloch system for
soliton propagation when memory effects are present.

Here we shall suppose that the longitudinal relaxations are
longer than the transverse relaxations, i.e., we take T1�T2,
and will ignore the effects of the longitudinal relaxations by
taking T1→�. This limit is called the pure dephasing model
�32�. We note that the influence of T1 relaxations on SIT have
already been previously investigated in Refs. �1,17,34,35�.
In these works the T1-T2 model of the optical Bloch equa-
tions �15� has been used, which is valid in gaseous media,
and this model has also been used as a rough approximation
for solids. For dielectrics that contain optically active impu-
rity atoms or for semiconductor nanostructures, the Markov-
ian T1-T2 model of the optical Bloch equations loses its va-
lidity �22,28–32�. It then becomes appropriate to determine
the shape of the spectral line and the memory dynamics of
the transverse relaxations by the use of the fluctuation-
dissipation theorem �40� and to express this shape by means
of the Fourier transform of the correlation function,

G�t� =
Tr�exp�− iHintt�Sx exp�iHintt�Sx�

Tr�Sx
2�

.

The function G�t� is called the function of free induction
decay, where Sx is the x component of the pseudospin �22�,
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Hint is the interaction Hamiltonian which determines the
broadening of the spectral line. A typical example for such an
application is the electron-phonon coupling in solids. In most
cases it is impossible to obtain an exact expression for the
function G�t� and therefore approximations are usually used.
For dielectrics containing optically active impurity atoms,
the function G�t� is governed by the memory function �25�

dG�t�
dt

= − �
0

t

K�t − t��G�t��dt�. �17�

Because G�t�� Px,y�t�, the dependence of G�t� on the
memory is the same as for the x and y components of the
polarization. As a consequence of the time retardation in t�,
the free induction decay does not have the exponential decay
character �22,28–32� that is often characteristic of the T1-T2
model. This modification is well known from SIT experi-
ments on different solid materials, and particularly for those
dielectrics that contain optically active impurity atoms. Thus,
to better describe SIT in solids, it becomes important to in-
clude memory effects into any such model.

Since the x and y components of the polarization, as well
as the functions G�t� and K�t�, change rapidly with respect to
the characteristic dephasing time �25�, one should note that
as a consequence of the presence of memory in Eq. �17�, the
pseudospin will not commute with the interaction Hamil-
tonian Hint. Therefore the pseudospin will not be a quasi-
integral of the motion.

Since one cannot generally obtain exact expressions for
G�t�, it becomes appropriate to develop approximate analyti-
cal expressions for this function in various limits �25�. For
example, for small memory depth and times, we may take

G�t� = 1 −
M2

2!
t2 +

M4

4!
t4 − ¯ ,

where the moments M2n are

M2n = �− 1�n	d2nG

dt2n 

t=0

, M2n+1 = 0, n = 0,1,2, . . . .

The memory function K�t� may have a rather complex
form, and consequently for material-specific calculations it is
necessary to use different, adopted correlation functions. Of-
ten, Gaussian approximations �Refs. �25,41� and references
therein� or exponentials exp�−� /�c� �42� can be used. In this
paper, as a first attack on the very complex problem of si-
multaneous pulse propagation and system-bath interaction,
we focus on the Gaussian memory structure. It contains well-
defined parameters �memory depth and strength� as well as
being sufficiently localized in the frequency domain to pro-
vide a well-defined model system. Investigation of the more
specific mechanism of the relaxation is not the goal here, but
is left to future investigations on specific materials.

Similarly to G�t�, for the memory function K�t�,

K�t� = M2	1 −
N2

2!
t2 +

N4

4!
t4 − ¯ 
 ,

we may take as a simple approximation for K�t� the form

K�t� = M2e−�N2/2�t2, �18�

where the quantity N2 is the second moment of the memory
function. Note that for small times we still have the correct
form for K�t�. For large t, due to the Gaussian shape, there is
a rapid decay in this function, whose rate is governed by N2.
We emphasize that the use of the Gaussian approximation for
the function of memory does not mean that the shape of the
spectral line should be Gaussian too. Thus there is some
reason to expect that the Gaussian approximation could give
reasonable results for optical SIT in solids.

Continuing, it is convenient to introduce the functions P�

defined by

P��t� = Px�t�� iPy�t� ,

in which case, in the absence of the optical fields, since
G�t�� Px,y, from Eq. �17�, we would have �25�

dP��t�
dt

= − �
−�

t

K�t − t��P��t��dt�. �19�

The lower limit of the integral has been taken to be −� since
we seek a pulse shape bounded at ��.

We need to point out that the driving pulse must be suf-
ficiently weak as not to probe the reservoir during the inter-
action, i.e., we assume that the bath approximation is well
suited for the system under investigation. Otherwise the
dephasing rate will depend on the driving field intensity �43�.

We define the unitary operator

U = ei�0Szt,

where Sz is the z component of the pseudospin. Upon carry-
ing out the corresponding unitary transformation, we obtain

P��t� = P̂��t�e�i�0t, �20�

in which case Eq. �19� becomes

dP̂��t�
dt

= � i�0P̂��t� − �
−�

t

K�t − t��P̂��t��e�i�0�t−t��dt�.

�21�

Inserting the above expression �18� for K into Eq. �21�, using

the expression P̂��t�=��e�i�t, where the spatial and tempo-
ral variables are given in Eq. �14�, and now including the
optical field we obtain the equations

�̇+ = i�+ − irW − �T
+,

�̇− = − i�− − iqW − �T
−,

Ẇ = 2i�r�− + q�+� , �22�

where

�T
� = M2�

−�

�

��e�i��−t��e−�N2/2��� − t��2
dt�.

As mentioned before, we consider here only the case where
T1→�.

INFLUENCE OF NON-MARKOVIAN RELAXATION… PHYSICAL REVIEW A 78, 013840 �2008�

013840-5



The system of equations �16� and �22� are the equations
for SIT with pure dephasing only, described by a non-
Markovian memory of the dipole and are the main object of
our investigations. For the solution of these equations we
will use the IST and its perturbation theory to study the evo-
lution of a soliton’s parameters �17,18�.

IV. ZAKHAROV-SHABAT EQUATIONS

We shall now show that by solving the Zakharov-Shabat
equations �ZSEs�

v̇1 = − i�v1 + qv2, v̇2 = i�v2 + rv1, �23�

where r=−q*, we can also solve the system of equations �16�
and �22� when the damping terms �T

� are included or absent,
respectively. First we delineate certain properties of these
equations that we shall need.

There are two pairs of linearly independent solutions �Jost

functions� of the ZSE: the first pair is denoted by � and �̄,

� = 	�1

�2

, �̄ = 	�̄1

�̄2


 ,

and the second pair is 
 and 
̄


 = 	�1

�2

, 
̄ = 	�̄1

�̄2


 .

The first pair � and �̄ is defined by the asymptotic limit as
�→−� to be

�→ 	1

0

e−i��, �̄→ 	 0

− 1

ei��,

and the second pair 
 and 
̄ is defined by the asymptotic
limit as �→ +� to be


→ 	0

1

ei��, 
̄→ 	1

0

e−i��.

For real �, the scattering coefficients a, b, ā, and b̄ are de-
fined by the asymptotic limits at �→ +�, where

�→ 	ae−i��

bei�� 
, �̄→ 	 b̄e−i��

− āe−i��
 .

On the real axis, one finds that aā+bb̄=1. From the above
definitions, one observes that in general the two pairs of
solutions can be related by

� = a
̄ + b
, �̄ = − ā
 + b̄
̄ .

From the relation r=−q*, it follows that �̄ and 
̄ can be

given in terms of � and 
̄:

�̄ = 	 �2
*

− �1
*
, 
̄ = 	 �2

*

− �1
*
 ,

and

ā��� = a*��*�, b̄��� = b*��*�

where for real �

āa + b̄b = 1.

In addition to the continuous spectra, the ZSE �Eq. �23��
can also possess bound states. These occur whenever a���
has a zero in the upper half complex � plane. Here we shall
consider the situation where a has only one zero. If we des-
ignate the zero of a by �1=�1+ i�1, with both �1 and �1 real,
then since a��1�=0, ���1�=b1
��1�, where b1=b��1�
=ei�1e2�1x0, which defines �1 and x0.

Next we note that the undamped form of Eq. �22�, i.e.,
�T
�=0, can be “factored” into parts which are Eqs. �6�, upon

taking �= /2. In fact, for �T
�=0 this becomes obvious if we

define

�+ = �1
*����2������=/2,

�− = �1����2
*������=/2,

sz = ����2����2 − ��1����2���=/2, �24�

where � is the above mentioned eigensolution of the ZSE
�17�.

The IST allows one to find exact solutions of a certain
class of nonlinear equations �15�. A well-known application
is obtaining the SIT solutions of the Maxwell-Bloch equa-
tions without damping �Eqs. �10� and �16��. For this system
of equations, the ZSE, Eqs. �6�, and Eqs. �8� for the average
values of the Pauli operators �̂i are used. On the other hand,
for the study of transverse non-Markovian relaxation effects
we must consider the more general Eqs. �22�, forming a gen-
eralization of Eqs. �10�. The terms �T

� in Eqs. �22� are re-
sponsible for the influence of the non-Markovian relaxation
effects on the SIT soliton. Following from the general theory
of the IST, a small perturbation of the exactly solvable mod-
els �e.g., Bloch equations without damping� does not lead to
a large change in the scattering data of the Zakharov-Shabat
spectral problem �16–18�. Therefore, a small perturbation
does not destroy the soliton solution and first-order perturba-
tion theory leads only to small perturbations of the soliton
parameters �17�. These parameters, including the relaxation
effects, are calculated below. Also, it is important to note that
the perturbation approach is valid for both Markovian �Eqs.
�15� and �16�; �17�� and also non-Markovian �Eqs. �22� and
�16�� cases, considered in the present work, as long as the
perturbed solution can be expressed as a small perturbation
of the exactly solvable Eqs. �10�. Consequently, in the fol-
lowing, the terms �T

� in the Bloch equations �22� are as-
sumed to be small and their influence is considered in per-
turbation theory on the basis of the exactly solvable Eqs. �10�
and �16� as in the unperturbed solution. Thus we now have a
means for constructing damped SIT solutions. We shall be
mainly interested in the soliton solutions.

Now, let us consider the solution of these equations when
we have a single SIT soliton. In this case, the scattering
coefficient b=0 on the real axis and a���= ��−�1� / ��−�

1
*�

has a single zero in the upper half complex � plane at �=�1.
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The eigenfunctions of the ZSE 
 for such a single soliton
��=�1� have the following form:

�1��1� =
b1

*e−�i�1+3�1�t

z0
, �2��1� =

e�i�1−�1�t

z0
, �25�

where z0=1+ �b1�2e−4�1t.
Substituting the wave functions �1 and �2 in Eqs. �23�,

we obtain

�+ = A
e2�i�1−�1�t

z0
2 + B

e2�i�1−3�1�t

z0
2 ,

�− = �+*, sz = − 1 +
2��b1�2e−4�1t

z0
2 , �26�

where

A =
4i�b1

 − 2�1
, B =

4i�1b1�b1�2

 − 2�1
* ,

� =
4�1

2

�/2 − �1
*��/2 − �1�

.

Substituting these expressions for �� into Eq. �13�, we
obtain the general form of the polarization P which is valid
for soliton propagation in all three cases: undamped and
damped for Markovian and for non-Markovian damping.
These different cases will differ in the dependence of the
scattering data on the distance �. This dependence for the
non-Markovian case, not known up to now, will be consid-
ered in the next section.

V. EVOLUTION OF THE PARAMETERS
OF THE SOLITON

Let us now apply the perturbation expansion for the ZSE
developed in Ref. �17�. We can then determine the perturbed
evolution of the soliton parameters �1 and �1 due to the
influence of the memory relaxations on the pulse width
�pulse height� 1 /2�1, and the instantaneous frequency �0
−2�1 by means of the equation �3,17�

�1�
=

b1

a1�
I��,�� , �27�

where

I��,�� = �f��,����→−�
�→� + �

−�

�

h��,��d� ,

f��,�� = − i� �+

2� − 
��1

2 + i� �−

2� − 
��2

2

− i� N

2� − 
���1�2 + �2�1� ,

h��,�� = − i� �T
+

2� − 
��1

2 + i� �T
−

2� − 
��2

2,

a1� = �	 �a

��

�
�=�1

.

Substituting Eqs. �24�–�26� into Eq. �27�, after long
analytical calculations with the aid of the computer software
MATHEMATICA, we obtain the evolution equations of these
parameters:

�1�
= − i

M2�
2

8�1
2 	A1 − A2 + iB2

− �2.5A1 − 1.5A2 + 1.5iB2�
N2

4�1
2
 , �28�

where

An = �0�
−�

� g��

�	 − 2�1

2�1

2

+ 1�n
d ,

Bn = �0�
−�

� g��
 − 2�1

2�1

�	 − 2�1

2�1

2

+ 1�n
d, n = 1,2.

From Eq. �28�, after separating the real and imaginary parts,
we obtain the pair of equations

�1�
= D�1 − 1.5L�B2, �29�

�1�
= − D�A1�1 − 2.5L� − A2�1 − 1.5L�� , �30�

where

D =
M2�

2

16�1
2 , L =

N2

4�1
2 .

These equations give the evolution of the soliton’s width
and frequency shift due to the transverse relaxations due to
memory, and are the main results of this work. Thus we now
have a model of the evolution of the parameters of an SIT
soliton in a solid when the relaxations have a memory. Next,
we will consider some of the implications of these results.

VI. CONCLUSION

In Eqs. �29� and �30�, we have first-order equations of
motion for the 2�-soliton action parameters �1��� and �1���
as a function of distance. These parameters occur in the one-
soliton solution in the following manner �12,14,17�:

Ê1 =
2�1	

�12
ei�1e−2i�1� sech�2�1�� − �0�� . �31�

From Eqs. �14� and �31�, we see that
2�1	

�12
is the pulse height,

�0−2�1 is the instantaneous frequency, �1+2�1� /c is the
phase at fixed �, and �0 is the central position of the pulse
�17�.

For the study of the influence of transverse relaxation on
the resonance solitons of SIT in solids, in the present work
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we investigate the scattering data �1 and �1, i.e., on the pulse
height and the instantaneous frequency.

Let us take the limit of a large inhomogeneous broadening
and let T

2
* be a measure of the width of this inhomogeneous

broadening �thus T
2
* is small.� Then using the limit �1T

2
*

�1, the above quantities An are found to be �17�:

An = 2�1�0�2�1�
��2n − 2�!

4n−1��n − 1�!�2 , n = 1,2, . . . ,

where

�0�2�1� = �0g�2�1� .

With this, we then obtain, in lowest order,

A1 = 2A2 = 2��1�0�2�1�, B2 = − �1�1T2
*2

A1. �32�

Combining Eqs. �29�, �30�, and �32� we have

�1�
= − �1�1T2

*2
D�1 − 1.5L�A1, �33�

�1�
= − D�1 − 3.5L�A2. �34�

Equations �33� and �34� give us the evolution of the scatter-
ing data �parameters� of the SIT soliton �2� hyperbolic-
secant pulse�, Eq. �31�. These equations take into account
memory effects and are valid for non-Lorentzian spectral
lines.

In the special case of the Markov approximation, which is
the T1-T2 model, the line shape is Lorentzian. For this case,
the evolution of the scattering data have already been inves-
tigated �17,19,20�. To obtain the Markovian limit from the
memory function K�t�=M2 exp�−�N2 /2�t2�, we consider the
case when N2 is very large and M2

�N2 is held constant.
Under this condition the function K�t� essentially becomes a
� function of zero argument. Then it follows that we may
replace all the memory terms involved with the function
G�t�, the transverse components of the polarization Px,y, and
Eq. �17� with the constant value of 1 /T2, in which case, the
non-Markovian optical Bloch equations �22� will reduce to
the usual form of the optical Bloch equations given by Eqs.
�15� �for T1→��. In this case the evolution equations for the
scattering data become �17,33�

�0�
= −

4��0�2�0�
3T2

�0�0T2
*2

, �35�

�0�
= −

4��0�2�0�
3T2

, �36�

where the quantities �0 and �0 are the corresponding values
of � and � in the special situation when the line shape is
Lorentzian as considered earlier in Refs. �17,34,35�.

Let us now return to the non-Markovian case in the limit
when �1T

2
*�1. Equations �33� and �34� now become

�1�
= − �1T2

*2 M2�
3

8
�1 − 1.5L��0�2�1� , �37�

�1�
= −

M2�
3

16�1
�1 − 3.5L��0�2�1� . �38�

Now we have the case that when N2 is sufficiently small such
that L 2 /3, Eq. �37� shows that if a 2� pulse �soliton�, Eq.
�31�, is off resonance, it exhibits a stable evolution and �1
will move back toward the resonance. On the other hand,
when N2 is larger than this limit, �1 will be unstable and will
move further off resonance. The dependencies seen here for
solids containing memory effects �Eq. �37�� are therefore dif-
ferent from what one would obtain for the Markovian ap-
proximation �Eq. �35��. From Eq. �38� we can obtain an im-
plicit equation for �1 or ����=�1

2���+b ln��1
2���−b�:

���� = ��0� −
�3M2�0�2�1�

4
� �39�

where b= 7
8N2.

Let us now compare this result, where memory effects are
present, with the Markovian result, Eq. �36�, where the spec-
tral line is Lorentzian �17� and memory effects are absent. In
the latter case,

�0��� = �0�0�	1 −
4��0�2�0�
3�0�0�T2

�
 . �40�

Comparing these two expressions, one can see that memory
effects do lead to different dynamics in the quantity �. In
particular, if one takes into account that in the non-
Markovian case we have assumed that N2 /�1

2�1 and if we
suppose that the initial inverse pulse widths in both cases
were the same, i.e., �1�0�=�0�0�, then Eq. �39� would sim-
plify and the inverse of the pulse duration, �1���, would be
determined by a square root law, in contrast to the linear
dependence found for the Markovian case �Eq. �40��:

�1��� = �0�0��1 −
�3M2�0�2�1�

4�0
2�0�

� . �41�

Using typical parameters for the pulse and the materials
�44�, we can construct a plot of the inverse width of a Mar-
kovian pulse �0��� /�0�0� as a function of the distance � in
comparison to that of a non-Markovian pulse �1��� /�0�0�
for the same value of the coefficient of �. The result is shown
in Fig. 1.

From the figure it is clear that in both cases, the propa-
gating pulse width �2�1,0�−1 will be growing but there is a
different functional for the Markovian and non-Markovian
cases. The different slopes of the curves could be experimen-
tally addressed. We do note that each of these theories is
valid only for distances where the condition T�T2 is satis-
fied. We have to note that because the quantity N2 character-
izes the memory function shape, after neglecting in Eq. �39�
the terms proportional to b, we lost very important informa-
tion about the shape of the memory function and therefore
for a more detailed consideration, it will be preferable to use
Eq. �39� instead of Eq. �41�.

Summarizing the above results, we see that the influence
of memory effects on the process of nonlinear pulse propa-
gation under the condition of SIT leads to qualitatively new
results. In particular, the dynamics of the bound state eigen-
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value becomes different—whence the evolution of the fre-
quency shift and the pulse height of SIT solitons in solids
with memory effects will differ from those known from stud-
ies in gases.

The influence of transverse relaxations on the evolution of
a SIT soliton in the general case is given by Eqs. �16� and
�22�. The solution of these equations for different shapes of
the spectral line is connected with different mathematical
problems. Therefore the solution of these two different
physically interesting situations has to be considered sepa-
rately. The first situation is when the spectral line has a
Lorentzian shape and the second is when it has a non-
Lorentzian one. In the first case the memory function K�t� is
damping exponentially very fast compared to the transverse
components of the polarization Px,y. In this case, the appro-
priate equations are �15� and �16� and the evolution of the
scattering data has the form �35�, �36�, and �40�. This is the
case investigated in Refs. �1,17,19,20,34–36�. In the second
case when the spectral line has a non-Lorentzian shape, we
must use the SIT equations with memory, �16� and �22�, and

the evolution of the scattering data follows the form given by
Eqs. �37�–�39� and �41�.

It is clear that Eqs. �22� are more general and contain Eqs.
�15� in the limiting case where N2 /�1

2�1. However, it must
also be noted that we have to be very careful when we con-
sider the limiting case. This is because in solving the system
of equations �16� and �22�, we have used the assumption that
N2 /�1

2�1 and therefore Eqs. �37� and �38� do not contain in
the limit the case of Eqs. �35� and �36�. In other words, we
consider two cases: the first case is where N2 /�1

2�1 and the
second case is where N2 /�1

2�1. The corresponding values of
the scattering data �0 ,�0 and �1 ,�1 do not transform into
each other and are two different limiting values. But at the
same time we can see that in both limiting cases the func-
tions �0�

and �1�
are negative and therefore in both cases the

pulses must always decay.
In the present work we have neglected not only the effects

connected with longitudinal relaxations but also with all the
other additional effects considered in Ref. �17�, since
memory effects would not influence them. The approach that
we have used is of a rather general character and can be used
for investigations of the influence of memory not only on
other aspects of SIT solitons, but also for other types of
nonlinear waves �breathers, double breathers� �14,45–48�
and for interactions between solitons. It could also be used to
study the properties of the resonant solitons in acoustic
waves �49–51� as well as nonlinear electromagnetic waves
involved in electron microwave spectra �52,53�.

ACKNOWLEDGMENTS

G.T.A. thanks the ISTC �Grant No. G-1219� and the DFG
�Sfb 787, GEO� for financial support. The contributions of
D.J.K. have been supported in part by National Science
Foundation Grant No. DMS-0505566.

�1� S. L. McCall and E. L. Hahn, Phys. Rev. 183, 457 �1969�.
�2� C. S. Gardner, J. M. Greene, M. D. Kruskal, and R. M. Miura,

Phys. Rev. Lett. 19, 1095 �1967�.
�3� M. J. Ablowitz, D. J. Kaup, A. C. Newell, and H. Segur, Stud.

Appl. Math. 53, 249 �1974�.
�4� V. E. Zakharov and A. B. Shabat, Zh. Eksp. Teor. Fiz. 61, 118

�1971�.
�5� G. L. Lamb, Jr., Phys. Rev. Lett. 31, 196 �1973�.
�6� G. L. Lamb, Jr., Phys. Rev. A 9, 422 �1974�.
�7� M. J. Ablowitz, D. J. Kaup, and A. C. Newell, J. Math. Phys.

15, 1852 �1974�.
�8� V. E. Zakharov, L. A. Takhtajan, and L. D. Faddeev, Dokl.

Akad. Nauk SSSR 219, 1334 �1974�.
�9� R. K. Dodd, J. C. Eilbeck, J. D. Gibbon, and H. C. Morris,

Solitons and Nonlinear Wave Equations �Academic Press,
New York, 1982�.

�10� A. C. Newell, Solitons in Mathematics and Physics �SIAM,
Philadelphia, 1985�.

�11� M. J. Ablowitz and H. Segur, Solitons and Inverse Scattering

Transform �SIAM, Philadelphia, 1981�.
�12� G. L. Lamb, Jr., Rev. Mod. Phys. 43, 99 �1971�.
�13� G. L. Lamb, Jr., Elements of Soliton Theory �Wiley, New York,

1980�.
�14� A. I. Maimistov, A. M. Bahsarov, S. O. Elyutin, and Yu. M.

Sklyarov, Phys. Rep. 191, 1 �1990�.
�15� S. P. Novikov, S. V. Manakov, L. P. Pitaevski, and V. E. Za-

kharov, Theory of Solitons: The Inverse Scattering Method
�Academy of Science of the USSR, Moscow 1984�.

�16� D. J. Kaup, SIAM J. Appl. Math. 31, 121 �1976�.
�17� D. J. Kaup, Phys. Rev. A 16, 704 �1977�.
�18� D. J. Kaup and A. C. Newell, Proc. R. Soc. London, Ser. A

361, 413 �1978�.
�19� G. T. Adamashvili, Teor. Mat. Fiz. 75, 371 �1988�.
�20� G. T. Adamashvili, M. A. Meladze, and N. G. Mchedlishvili,

Opt. Spektrosk. 68, 1313 �1990�.
�21� L. Allen and J. H. Eberly, Optical Resonance and Two-Level

Atoms �Dover, New York, 1975�.
�22� V. A. Galinishev-Kutuzov, V. V. Samartsev, and B. M. Xabibu-

0.2 0.4 0.6 0.8
Χ

0.2

0.4

0.6

0.8

1

������������
1 � Χ ,1�Χ

FIG. 1. Dependence of the inverse width of the pulses
�0��� /�0�0� and �1��� /�0�0� on the distance � for the Markovian
�bottom curve� and non-Markovian case. The initial values of the
widths of the pulses �2�0�0��−1 are the same. The � axis is in units
of 10−4 cm. All quantities are measured in the CGS system.

INFLUENCE OF NON-MARKOVIAN RELAXATION… PHYSICAL REVIEW A 78, 013840 �2008�

013840-9



lin, Impulsnaia Opticheskaia i Akusticheskaia Kogerentnaia
Spektroskopia �Nauka, Moscow, 1988�.

�23� P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin,
D. Ouyang, and D. Bimberg, Phys. Rev. Lett. 87, 157401
�2001�.

�24� A. Abragam, Yadernyi Magnetism �Mir, Moscow, 1963�.
�25� A. Abragam and M. Goldman, Nuclear Magnetism: Order and

Disorder �Clarendon Press, Oxford, 1982�.
�26� U. Haeberlen and M. Mehring, IMR Visokogo Razreshenia v

Tverdich Telach �Mir, Moscow, 1980�.
�27� D. N. Zubarev, Sovremenie Metody Statisticheskoy Teorii Ner-

avnovesnich Procesov: Itogi Nauki i Techniki �VINITI, Mos-
cow, 1980�, Vol. 15, p. 131.

�28� S. Butscher, J. Förstner, I. Waldmüller, and A. Knorr, Phys.
Rev. B 72, 045314 �2005�.

�29� M. Richter et al., Phys. Status Solidi B 243, 2302 �2006�.
�30� A. Thränhardt, S. Kuckenburg, A. Knorr, T. Meier, and S. W.

Koch, Phys. Rev. B 62, 2706 �2000�.
�31� A. Knorr et al., Chem. Phys. 210, 27 �1996�.
�32� J. Forstner, C. Weber, J. Danckwerts, and A. Knorr, Phys.

Status Solidi B 238, 419 �2003�.
�33� L. D. Landau and E. M. Lifshitz, Quantum Mechanics, Non-

relativistic Theory �Pergamon Press, Oxford, 1980�, p. 544.
�34� G. T. Adamashvili, Teor. Mat. Fiz. 57, 121 �1983�.
�35� G. T. Adamashvili, Phys. Lett. 95A, 439 �1983�.
�36� G. T. Adamashvili, Zh. Tekh. Fiz. 68, 130 �1998�.
�37� H. P. Breuer and F. Petruccione, The Theory of Open Quantum

Systems �Oxford University Press, Oxford, 2002�.
�38� S. Butscher and A. Knorr, Phys. Status Solidi B 243, 2423

�2006�.

�39� S. M. Barnett and S. Stenholm, Phys. Rev. A 64, 033808
�2001�.

�40� L. D. Landau and E. M. Lifshitz, Statistical Physics �Pergamon
Press, Oxford, 1980�, p. 544.

�41� E. Kh. Khalvashi and M. V. Chartishvili, Phys. Solid State 40,
1036 �1998�.

�42� M. Yamanoi and J. H. Eberly, Phys. Rev. Lett. 52, 1353
�1984�.

�43� D. Mogilevtsev, A. P. Nisovtsev, S. Kilin, S. B. Cavalcanti, H.
S. Brandi, and L. E. Oliveira, Phys. Rev. Lett. 100, 017401
�2008�.

�44� Parameters for the numerical simulation: �=1015 Hz, T
=10−8 s, �12=5�10−21 esu cm, n0=6�1015 cm−3, T2=8
�10−8 s, T*=3�10−11 s, �=3.

�45� G. T. Adamashvili and S. V. Manakov, Solid State Commun.
48, 381 �1983�.

�46� G. T. Adamashvili and D. J. Kaup, Phys. Rev. E 70, 066616
�2004�.

�47� G. T. Adamashvili, Phys. Lett. A 208, 323 �1995�.
�48� G. T. Adamashvili, N. T. Adamashvili, M. D. Peikrishvili, G.

N. Motsonelidze, and R. R. Koplatadze, Opt. Spektrosk. 96,
794 �2004�.

�49� N. S. Shiren, Phys. Rev. B 2, 2471 �1970�.
�50� G. T. Adamashvili, Sov. Phys. Solid State 25, 562 �1983�.
�51� G. T. Adamashvili, Phys. Lett. 86A, 487 �1981�.
�52� S. B. Grossman and E. L. Hahn, Phys. Rev. A 14, 2206

�1976�.
�53� G. T. Adamashvili, Radiofiz. 26, 741 �1983�.

ADAMASHVILI et al. PHYSICAL REVIEW A 78, 013840 �2008�

013840-10


