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We study the birefringence of quantized polarized light in a magneto-optically manipulated atomic ensemble
as a generalized Stern-Gerlach effect of light. To explain this engineered birefringence microscopically, we
derive an effective Shrödinger equation for the spatial motion of two orthogonally polarized components,
which behave as a spin with an effective magnetic moment leading to a Stern-Gerlach split in a nonuniform
magnetic field. We show that the electromagnetically-induced-transparency mechanism can enhance the
magneto-optical Stern-Gerlach effect of light in the presence of a control field with a transverse spatial profile
and a nonuniform magnetic field.
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I. INTRODUCTION

Particles with opposite spins and nonzero magnetic mo-
ments will go their separate ways in a nonuniform magnetic
field, which is well known as the Stern-Gerlach effect �1�.
Most recently, this kind of effect was theoretically predicted
in a generalized version for some effective nonuniform fields
�2�, e.g., a chirality-dependent induced gauge potential for
chiral molecules resulting from three nonuniform light fields
even in the absence of the nonuniform magnetic field �3�.

On the other hand, a similar effect for nonpolarized
slow light was experimentally observed as the
electromagnetically-induced-transparency �EIT� �4,5� en-
hanced deflection by a small magnetic field gradient �6�. It
was also experimentally demonstrated with a spatially dis-
tributed control field �7�. Such spatial motion of light in the
EIT atomic medium has been well explained by a semiclas-
sical theory based on the spatial dependence of the refraction
index of the atomic medium �8� and a fully quantum ap-
proach �9� based on the excitation of the dark polaritons—
the mixtures of a photon and an atomic collective excitation
�10–12�. The latter takes advantage of revealing the wave-
particle duality of dark polaritons, and its crucial point of
explanation is to derive the effective Schrödinger equation
for the propagation of slow light in the EIT medium.

However, the above EIT-enhanced deflection of nonpolar-
ized light cannot be simply explained as an analog of the
conventional Stern-Gerlach effect since only one component
of the “spin” is available �6–9�. An analog between light ray
and atomic beam only appears in the polarized material.
Birefringence—the decomposition of a ray of light into two
rays dependent on the polarization when it passes through
certain types of material, is classically formalized by assign-
ing two different refractive indices to the material for differ-
ent polarizations. In this sense, it is the Stern-Gerlach effect
of light.

In this paper, we study a generalized Stern-Gerlach effect
of quantized polarized light as a phenomenon of birefrin-
gence. The anisotropic material is artificial. It is an atomic
ensemble controlled by a specially designed magneto-optical
manipulation based on the EIT mechanism. Two EIT con-
figurations are formed by an optical field with a transverse
spatial profile, since a magnetic field removes the degeneracy
of the ground state. To represent an analog between birefrin-
gence of quantized light and the Stern-Gerlach effect, an
effective Schrödinger equation is established for the spatial
motion of two polarized components of light. Such an effec-
tive equation of motion describes a quasispin with an effec-
tive magnetic moment in an effective nonuniform magnetic
field. The spatial gradient results from the transverse spatial
profile of the optical field, and the effective magnetic mo-
ment is proportional to the two-photon detuning with con-
nection to the corresponding optical field and the atomic
transition.

This paper is organized as follows. In Sec. II, we present
the theoretical model for four-level atoms with a tripod con-
figuration in the presence of nonuniform external fields, and
we give an analytical solution of the Heisenberg equations of
this atomic ensemble in the atomic linear response with re-
spect to the probe field. In Sec. III, an effective Schrödinger
equation is derived for the spatial motion of two orthogo-
nally polarized components, which behave as a spin with an
effective magnetic moment. In Sec. IV, the symmetric and
asymmetric Stern-Gerlach effects are investigated in the
presence of a nonuniform magnetic field with a small trans-
verse gradient. Then we investigate the optical Stern-Gerlach
effect in Sec. V, which is caused by a nonuniform light field
with a Gaussian profile in the transverse direction. In Sec.
VI, we give an explanation based on dark polaritons, which
are introduced as dressed fields to describe the spatial motion
of collective excitation. We conclude our paper in the final
section.

II. MAGNETO-OPTICALLY CONTROLLED
ATOMIC ENSEMBLE

The system we consider is in a gas-cell ABCD shown in
Fig. 1�b�. It is an ensemble of 2N identical and noninteract-
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ing atoms with a tripod configuration �13� of energy levels
labeled as �i� �i=1,2 ,3 ,4�; see Fig. 1�a�. Here, the submani-
fold is spanned by two Zeeman levels �1� and �2�. The energy
levels are shifted by the corresponding amount �i=�iB,
which is determined by the applied magnetic field along the
z axis. Here, the magnetic moments �i=mF

i gF
i �B are defined

by the Bohr magneton �B, the gyromagnetic factor gF
i , and

the magnetic quantum number mF
i of the corresponding state

�i�. The excited state �3� with mF
3 =0 is coupled to state �1�

��2�� with mF
1 =−1 �mF

2 =1� via a �+ ��−� component E1 �E2�
of the linear-polarized probe field with frequency � and wave
vector k=kêz. A classical control field with frequency �c and
wave vector kc=kcêz drives the atomic transition �3�-�4� with
spatially dependent Rabi frequency ��r�.

The Hamiltonian of the total system H=H�A�+H�F�+H�I�

is written in terms of the collective atomic operators
�̃���r , t�= �1 /Nr��rj�Nr

�̃��
j �t�, averaged over a small but

macroscopic volume containing many atoms Nr= �2N /V�dV
�1 around position r, where 2N is the total number of atoms
and V is the volume of the medium �10,11�, and �̃��

j �t�
= ��� j���. Here, H�F� is the free Hamiltonian of the radiation
field. Neglecting the kinetic term of atoms, the Hamiltonian
of the atomic part reads

H�A� =
2N

V
	 d3r���0 + �1��̃11 + ��0 + �2��̃22 + �3�̃33

+ ��4 + �4��̃44� , �1�

where �1=�2=�0, and �� ��=1,2 ,3 ,4� are the atomic en-
ergy level spacing in the absence of the magnetic field. Un-
der the electric-dipole approximation and the rotating-wave
approximation, the interaction between the atomic ensemble
and the electromagnetic fields reads �9–11�

H�I� = −
2N

V
	 d3r���̃34e

i�kcz−�ct� + d31Ẽ1
+�̃31 + d32Ẽ2

+�̃32

+ H.c.� . �2�

Here, Ẽj
+ are the positive frequency of the probe fields, ��r�

is the Rabi frequency of the control field, which usually de-
pends on the spatial coordinate through the spatial profile of

the driving field, and d31 �d32� is the dipole matrix element
between the states �3� and �1� ��2��.

As it is well known that EIT is a phenomenon specific to
optically thick media in which both the optical fields and the
material states are modified �5�, we introduce the slow vary-
ing variables Ej�r , t� for probe fields,

Ẽj
+�r,t� =
 �

2	0V
Ej�r,t�ei�kz−�t� �j = 1,2� �3�

and �3j �j=1,2 ,4� for the atomic ensemble,

�̃31 = �31 exp�− ikz� , �4a�

�̃32 = �32 exp�− ikz� , �4b�

�̃34 = �34 exp�− ikcz� . �4c�

Then, the interaction Hamiltonian is rewritten as

HI =
2N

V
	 d3r��
1�11 + 
2�22 + 
c�44�

− ���34 + gE1�31 + gE2�32 + H.c.�� , �5�

in a frame rotating with respect to the probe and driving
fields, where g=d31


v / �2	0V�, which is the same for both
circular components E1,2 due to the symmetry of the system
��d31�= �d32��, is the atom-field coupling constant and detun-
ings are defined as


1 = �0 − �3 + v + �1, �6a�


2 = �0 − �3 + v + �2, �6b�


c = �4 − �3 + vc + �4. �6c�

Before going on, we remind the reader that tripod atoms are
proven to be robust systems for “engineering” arbitrary co-
herent superpositions of atomic states �14� using an exten-
sion of the well known technique of stimulated Raman adia-
batic passage.

The dynamics of this laser-driven atomic ensemble are
described by the Heisenberg equations

�̇12 = �i�
1 − 
2� − ���12 − igE1�32 + igE2�13, �7a�

�̇13 = �i
1 − ���13 + igE1��11 − �33� + igE2�12 + i��24,

�7b�

�̇14 = �i�
1 − 
c� − ���14 − igE1�34 + i��13, �7c�

�̇23 = �i
2 − ���23 + igE2��22 − �33� + igE1�21 + i��24,

�7d�

�̇24 = �i�
2 − 
c� − ���24 − igE2�34 + i�*�23, �7e�

�̇34 = − �i
c + ���34 − igE1
†�14 + igE2

†�24 + i�*��33 − �44� ,

�7f�

where we have introduced the coherence relaxation rate of
the ground state � and the decay rate of the excited state �

FIG. 1. �Color online� �a� Energy diagram of atoms interacting
with a coupling field and a linear-polarized probe field in the pres-
ence of a magnetic field parallel to the field propagation direction.
� is the Rabi frequency. �b� Schematic diagram of light deflection
in the atomic medium.
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phenomenologically. EIT is primarily concerned with the
modification of the linear and nonlinear optical properties of
the probe field perturbatively. We outline the solution of Eqs.
�7� in the low-density approximation, where the intensity of
the quantum probe field is much weaker than that of the
coupling field, and the number of photons contained in the
signal pulse is much less than the number of atoms in the
sample. In the low-density approximation, the perturbation
approach can be applied to the atomic part, which is intro-
duced in terms of perturbation expansion,

��� = ���
�0� + 
���

�1� + 
2���
�2� + ¯ , �8�

where �, �= �1,2 ,3 ,4� and 
 is a continuously varying pa-
rameter ranging from zero to unity. Here ���

�0� is of the zeroth
order in gEj, ���

�1� is of the first order in gEj, and so on. By
substituting Eq. �8� into Eqs. �7� and keeping the terms up to
the first order in the probe field amplitude, the equations for
the first-order atomic transition operators read

�̇13
�1� = �i
1 − ���13

�1� +
1

2
igE1 + i��14

�1�, �9a�

�̇14
�1� = �i�
1 − 
c� − ���14

�1� + i�*�13
�1�, �9b�

�̇23
�1� = �i
2 − ���23

�1� +
1

2
igE2 + i��24

�1�, �9c�

�̇24
�1� = �i�
2 − 
c� − ���24

�1� + i�*�23
�1�, �9d�

�̇34
�1� = − �i
c + ���34

�1� + i�*��33
�1� − �44

�1�� , �9e�

where we have assumed that the atoms are incoherently
pumped in states �1� and �2� with equal population at the
beginning. Under the adiabatic approximation that the evo-
lution of the atomic system is much faster than the temporal
change of the radiation field, the steady-state solutions are
found,

� j3
�1� =

gEj�
 j − 
c�
2���2

�j = 1,2� , �10�

where the condition ���2��� for the observation of the im-
portant features of EIT is used, and we also set �=0 for
showing the basic principle of physics.

III. EFFECTIVE SCHRÖDINGER EQUATION
DESCRIBING POLARIZATION AS SPIN PRECESSION

In this section, we derive an effective Schrödinger equa-
tion for the spatial motion of two orthogonally polarized
components of light. In the linear optical response theory, the
equations of motion for the optical fields are given by �9�


i�t + ic�z +
c

2k
�T

2�Ej = − 2g*N� j3
�1�, �11�

which are achieved straightforwardly from the Heisenberg
equations. Here, c is the velocity of light in vacuum and the
transverse Laplacian operator in the rectangular coordinates
is defined as

�T
2 =

�2

�x2 +
�2

�y2 . �12�

Without loss of generality, we consider the propagating of
a probe field confined in an x-z plane. From Eqs. �10� and
�11�, the equations of motion for the probe fields read

i�tEj = 
− ic�z −
c

2k

�2

�x2 +
�g�2N�
c − 
 j�

���2 �Ej . �13�

In order to write Eqs. �13� in a more compact form and
naturally show the superposition of the “quasispin” states of
photons, we introduce the “spinor” � and the third Pauli
matrix SZ,

� = 
E1

E2
�, SZ =

1

2

1 0

0 − 1
� . �14�

Then Eqs. �13� become

i�t� = He� , �15�

which is a two-component Schrödinger equation with the
effective Hamiltonian

He = T + V�x� − �eBe�x,z�SZ. �16�

Here the effective kinetic term is given in terms of the mo-
mentum operators Pj �−i� j �j� �x ,z��,

T = cPz +
Px

2

2m
, �17�

which represents an anisotropic dispersion relation in which
the longitudinal motion is similar to an ultrarelativistic mo-
tion while the transverse motion is of nonrelativity with an
effective mass m=k /c. The scalar potential is determined by
the detunings and tan2 �,

V�x� = 

c −
1

2
�
1 + 
2��tan2 � , �18�

where we have defined tan2 ���g�2N / ���2. The effective
magnetic field Be�x ,z� times magnetic moment �e gives the
spin-dependent potential

�eBe�x,z� = �
1 − 
2�tan2 � . �19�

Obviously, the above effective Hamiltonian totally deter-
mines the dynamics of the probe field with quasi-spin-orbit
coupling �eBe�x ,z�SZ, which is also spatially dependent due
to the inhomogeneity of the applied field.

IV. STERN-GERLACH EFFECTS IN NONUNIFORM
MAGNETIC FIELD

In this section, we study the Stern-Gerlach effect of light
when the magnetic field is inhomogeneous. Consider a linear
magnetic field B�r�=B0+B1x, which is applied to the atomic
ensemble driven by a uniform classical field. Due to the
quasi-spin-orbit coupling, photons with orthogonal polariza-
tions separate their ways by the small transverse gradient B1.
To go into this effect, we assume that both components of the
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linearly polarized probe beam are initially in a spatial Gauss-
ian state,

��x,0� =
1


�b2�1

1
�exp
−

x2

2b2 −
z2

2b2� , �20�

which is centered at �x ,z�= �0,0� before it enters the gas cell.
Here b is the width of the probe field profile. After a period
of time, from Eq. �13� it is found that the initial Gaussian
packet ��x ,0� evolves into

��x,t� = 
E1�t�
E2�t�

� = 
e−iH1tE1�0�
e−iH2tE2�0�

� . �21�

Here, the effective Hamiltonian is defined by

Hj = cPz +
1

2m
Px

2 − � jb0 − � j�x , �22�

with the parameters

� = B1 tan2 � , �23a�

b0 = B0 tan2 � , �23b�

� j = � j − �4, �23c�

where we have assumed that the optical fields are in reso-
nance with the atomic transition in the absence of the exter-
nal fields. By making use of the Wei-Norman algebraic
method �15�, the wave packet at time t can be explicitly
obtained,

Ej�t� = � 1/�

b2 + i
t

m
�

1/2

ei�j−��z − ct�2/2b2�

� exp�−

x − t2� j�

2m
�2

�b2m2 − itm�

2b4m2 + 2t2 � , �24�

where we have introduced

� j = � jt
�x + b0 −
t2

3

� j�
2

2m
� . �25�

From Eq. �24�, we can see that after passing through the
atomic medium with length L, the initial center of the probe
field moves to the position given by

z = L, xj =
� jB1N�g�2L2

2�2kc
, �26�

which indicate that, as long as the two Zeeman levels are not
degenerate, the trajectories of �+- and �−-polarized photons
are bent in different directions. This means that the initial
linearly polarized beam is split into two parts with opposite
spins. Accompanying the split of light, the Stern-Gerlach ef-
fect along the transverse direction comes into being.

From Eq. �26�, we can see that the Stern-Gerlach effect in
the nonuniform magnetic field depends on the small mag-
netic field gradient B1 and the parameter � j. Obviously, the
Stern-Gerlach effect disappears when the nonuniform part of
the magnetic field B1 vanishes. Below we consider the split
configurations of the probe light for different � j when B1
�0. When x1=−x2, e.g., �4=0 and �1=−�2, a symmetric
Stern-Gerlach effect is found—two components of probe
beam propagate with a mirror symmetry around the êz axis as
shown in Fig. 1�b�. Generally �x1�−x2, that is, �1�−�2�,
the asymmetric Stern-Gerlach effect occurs due to detuning
mismatch, which is different from the split of atomic beam in
the magnetic field. It is the difference of �i that exerts not
identical forces on different polarized photons. The general-
ized Stern-Gerlach effect of light is caused by the asymmet-
ric gradient force shown in Figs. 2–4. It can be found that
when one of the following conditions is satisfied: �a� �1
��2�0; �b� �2��1�0; �c� �2��1�0; �d� �1��2�0, two
gradient forces are in the same direction with different mag-
nitudes for photons, therefore two rays of light are bent in
the same direction as shown in Fig. 2.

However, when one of the following conditions is satis-
fied: �e� �1�0��2 and ��1�� ��2�; �f� �1�0��2 and ��2�
� ��1�; �g� �2�0��1 and ��2�� ��1�; �h� �2�0��1 and
��1�� ��2�, the polarized-dependent gradient forces are in the
opposite directions with different magnitudes, therefore two
rays of light are bent in the opposite direction with different
angles as shown in Fig. 3.

In addition, when one of the following conditions is sat-
isfied: �i� �1=0 while �2�0; �j� �1=0 while �2�0; �k� �2
=0 while �1�0; �l� �2=0 while �1�0, only one of the two
polarized photons is bent, as shown in Fig. 4.

V. STERN-GERLACH EFFECTS IN A NONUNIFORM
LIGHT FIELD

The approach developed above can also be used to inves-
tigate the Stern-Gerlach effect of light caused by a nonuni-

FIG. 2. �Color online� Schematic illustration of the asymmetric deflection of probe light by the nonuniform magnetic field in conditions
�a�–�d�.
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form light field. In this section, we turn our attention to the
Stern-Gerlach effect of slow light by the atomic ensemble
driven by the optical field with a nonuniform profile while
the magnetic field is uniform.

In most experiments, the control field is continuous and
has a transverse spatial profile ��r� that changes little in the
propagating direction. To study its transverse effects on the
probe signal field, we choose the transverse spatial profile of
the control field to be a Gaussian profile,

��r� = �0 exp
−
x2

2�2� , �27�

where � is the width of the driving field profile. We also
assume that both quasispins of photons are initially linearly
polarized in a spatial Gaussian distribution,

��x,0� =
1


�b2�1

1
�e−��x − a�2/2b2�−�z2/2b2�, �28�

where b is the width of the probe field profile and a is the
initial wave-packet center of the probe field along the trans-
verse direction. The sign of a indicates the incident position
comparatively to the left- or right-hand side of the control
beam’s center x0=0, and the magnitude �a� denotes the dis-
tance from the control beam’s center.

Since we are concerned with the situation in which the
width of the probe field profile is much smaller than that of
the driving field profile, we expand ���−2 around a and retain
the linear term proportional to x−a,

���−2 � �0
−2�exp
 a2

�2� +
2a

�2 exp
 a2

�2��x − a�� . �29�

Then the dynamics of the probe field is governed by the
unitary operators Uj�t�=exp�−iHcjt�, which are generated by
the effective Hamiltonians

Hcj = cPz +
1

2m
Px

2 + �� j0 + � j1x� , �30�

where the parameters are defined as

� j0 = − �0
−2�g�2N� jB exp�a2/�2� , �31a�

� j1 = − 2a�0
−2�g�2N� jB exp�a2/�2�/�2. �31b�

By using the Wei-Norman algebraic method �15�, we
solve the time evolution problem of the probe field, and we
find that at time t, two components of light become

Ej�t� = � 1/�

b2 + i
t

m
�

1/2

e−i�j�−��z − ct�2/2b2�

� exp�−

x − a − t2 � j1

2m
�2

b2m2

2b4m2 + 2t2 � , �32�

where we have introduced

FIG. 3. �Color online� Schematic illustration of the asymmetric deflection of probe light by the nonuniform magnetic field in conditions
�e�–�h�.

FIG. 4. �Color online� Schematic illustration of the asymmetric deflection of probe light by the nonuniform magnetic field in conditions
�i�–�l�.
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� j� = �� j0 − x� j1�t +
mt

2mb4 + 2t2 −
� j1

2 t3

6m
. �33�

In Fig. 5, we numerically demonstrate the wave-packet evo-
lution of the two profiles of light fields.

From Eq. �32�, it can be found that at the boundary of the
medium, the center of the emergent wave function of the
probe field is changed to

z = L, xj� = a +
a� jB exp�a2/�2��g�2NL2

�0
2�2kc

, �34�

which indicates that the control field can split the linearly
polarized probe beam into two as long as the magnetic field
B and a are nonzero and �1��2. This is a generalized Stern-
Gerlach effect in a nonuniform light field. The configurations
of the splitting are completely determined by the detuning
mismatch � jB and the incident position a of the probe light.
Comparing Eq. �34� with Eq. �26�, we find that an external
controllable parameter a is offered in this case, which deter-
mines the splitting configurations of the probe light in a non-
uniform light field. We denote a�0 �a�0� as the probe
beam shifted to the right �left� with respect to the center of
control light. Below we take B�0. When a�0, the probe
beam Ej bends to the right of the axis at x=a with � j �0,
while with � j �0, the trajectory of Ej bends to the left. Ac-
tually, the splitting around the x=a axis is the same as that
shown in Figs. from 1�b� to 4�l� under the same conditions.
When a�0, the split around the x=a axis is similar to that in
a�0, except exchanging the role of both components. Ob-
viously, a spin current transverse to the energy flow in a
nonmagnetic isotropic medium is generated by the spatial
profile of a control field.

VI. DARK-STATE POLARITON EXPLANATION

In this section, we present a dark-state polariton �DSP�
�5,10,11� explanation of the magneto-optical Stern-Gerlach

effects for slow light �16� and show how the spatial motion
of DSPs is associated with slow light propagation. Originally
the quasiparticle picture is introduced to reveal the physical
mechanism for the temporary transfer of excitations to and
from the medium. To put it into a mathematical formalism,
one defines the dark �� j� and bright �� j� polariton fields
�5,10,11�,

� j = Ej cos � − 2
N� j4
�1� sin � , �35a�

� j = Ej sin � + 2
N� j4
�1� cos � , �35b�

which are relevant to different circular components here.
They are atomic collective excitations dressed by the quan-
tized probe light with its inverse relation,

Ej = � j cos � + � j sin � , �36a�

� j4
�1� =

1

2
N
�� j cos � − � j sin �� . �36b�

It is demonstrated in the previous references �6,7,9� that
the DSPs are matter particles with mass, momentum, mag-
netic moment, etc. However, in the system under our consid-
eration, two dark polariton fields are excited. It is the two
excited dark polariton fields that lead to the split of the emer-
gent light. We will analytically show this split below. First
we rewrite Eqs. �9� as

�13
�1� = −

i

�*
��t − d1��14

�1�, �37a�

�23
�1� = −

i

�*
��t − d2��24

�1�, �37b�

gE1 = − 2
��t − dc1�
1

�*
��t − d1� + ���14

�1�, �37c�

gE2 = − 2
��t − dc2�
1

�*
��t − d2� + ���24

�1�, �37d�

where we have defined

d1 = i�
1 − 
c� − � , �38a�

d2 = i�
2 − 
c� − � , �38b�

dc1 = i
1 − � , �38c�

dc2 = i
2 − � . �38d�

In terms of dark and bright polariton fields, Eqs. �11� and
�37� can be rewritten as


i
�

�t
+ ic

�

�z
+

c

2k
�T

2��� j cos � + � j sin ��

= i
g*
N

�*
��t − dj��� j cos � − � j sin �� �39�

and

FIG. 5. �Color online� The density distributions �in arbitrary
unit� of the two profiles of the probe light field for the symmetry
Stern-Gerlach effect at different times: �a� t=0, �b� t=1, �c� t=2,
and �d� t=3.
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g
N�� j cos � + � j sin �� = − 
��t − dcj�
1

�*
��t − d1� + ��

� �� j cos � − � j sin �� . �40�

Under conditions of EIT, i.e., for negligible absorption,
the excitation of bright polariton field � j vanishes approxi-
mately. Then the dynamics of the dark polariton fields � j are
governed by the Schrödinger-like equations �9�,

i�t� j = �TB + VBj�r��� j , �41�

where the polarized-dependent effective potentials are given
by

VBj�r� = − � jB�r�sin2 � , �42�

which are induced by the atomic response to the external
spatial-dependent field. And the effective kinetic operator is
defined by

TB = vgPz +
Px

2

2mB
, �43�

which also shows a similar anisotropic dispersion to that
mentioned above. However, besides the effective mass mB
=k /vg, the velocity vg=ccos2 � along the z direction can be
controlled by the amplitude of the control field. By adiabati-
cally rotating the mixing angle � from 0 to � /2, the polariton
is decelerated to a full stop, thus all the information carried
by different degrees of freedom of the probe field is stored in
the atomic medium.

In the linear magnetic field B�r�=B0+B1x, after the dark
polaritons are excited in the atomic medium with Gaussian
distribution,

� j�0� =
1


�b2
exp
−

x2

2b2 −
z2

2b2� , �44�

we find that these dark polaritons achieve different transverse
velocities,

v jx =
� jL

mBvg
, �45�

since the hybrid light-matter quasiparticles have different ef-
fective magnetic moments. Hence, a �+- and a �−-polarized
beam are emergent, which are separately centered at �xj ,zj�
= (� jB1L2sin2 � / �2kvg� ,L) on the boundary as long as a mag-
netic field with nonzero transverse magnetic gradient is ap-
plied. The deflection angle of the corresponding components
of light is given by

�Bj =
vx

vg
= ��− 1� jgF

j − mF
4gF

4�
�BB1L tan2 �

kc
, �46�

which implies that a mirror symmetry splitting around the z
axis can be achieved if the magnetic quantum number mF

4

=0 can be selected. Figure 1�b� schematically illustrates the
Stern-Gerlach effect at mF

4 =0.

VII. CONCLUSIONS

In summary, we have studied magneto-optical Stern-
Gerlach effects in an EIT atomic ensemble. We have derived
an effective Schrödinger equation for the spatial motion of
two orthogonally polarized components of light. It has been
shown that magneto-optical Stern-Gerlach effects can hap-
pen in the presence of both the nonuniform magnetic field
and the nonuniform control light field. We have also pre-
sented a dark-state polariton explanation of magneto-optical
Stern-Gerlach effects.

It should be pointed out that our present scheme is essen-
tially different from the previous work on the light deflection
in an atomic medium �8,9�. First, the present scheme relies
solely on an intra-atomic process of the single-species
atomic ensemble, which causes simultaneous EIT for both
components of the probe field interacting with magnetically
Zeeman split sublevels in the presence of a driving field. The
split of the optical beam is based on the attainment of
double-EIT for both components of the probe field. We note
that the double-EIT effect is not simply the sum of two in-
dependent EIT effects, and two types of dark polaritons with
different effective magnetic moments are needed to under-
stand magneto-optical Stern-Gerlach effects in a double-EIT
atomic ensemble. Secondly, our scheme concerns the exploi-
tation of the two spin-state superposition of photons, and the
predicted phenomena are more general than those in Refs.
�8,9�. Thirdly, in our scheme the magnetic field is required
for splitting the atomic sublevels, but it is not necessary in
Refs. �8,9�.

Finally, comparing magneto-optical Stern-Gerlach effects
in an EIT atomic ensemble with the spin Hall effect �17–20�,
we can predict the existence of a polarization �or quasispin�
current, which is transverse to the flow of photons and can be
generated either by the transverse profile of electric fields or
the transverse gradient of magnetic fields. The polarized cur-
rent is carried by electrically neutral dark-state polaritons.
Because the spectral position of dark resonances is very sen-
sitive to magnetic fields, we hope that such an optical analog
of such a “spin Hall effect” can be observed in the future.
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