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The propagation and interaction of two solitary waves with angular momentum in bulk nematic liquid
crystals, termed nematicons, have been studied in the nonlocal limit. These two spinning solitary waves are
based on two different wavelengths of light and so are referred to as two-color nematicons. Under suitable
boundary conditions, the two nematicons can form a bound state in which they spin about each other. This
bound state is found to be stable to the emission of diffractive radiation as the nematicons evolve. In addition
this bound state shows walk-off due to dispersion. Using an approximate method based on the use of suitable
trial functions in an averaged Lagrangian of the two-color nematicon equations, modulation equations for the
evolution of the individual nematicons are derived. These modulation equations are extended to include the
diffractive radiation shed as the nematicons evolve. Excellent agreement is found between solutions of the
modulation equations and full numerical solutions of the nematicon equations. The shed diffractive radiation is
found to play a much lesser role in the nonlocal limit than in the local limit.
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I. INTRODUCTION

The study of optical nonlinear guided waves in soft matter
has seen a large increase of interest in recent years, examples
of such soft media being nematic liquid crystals �1–4� and
colloidal suspensions �5,6�. One reason for such interest is
that such media have been shown to support stable, two di-
mensional solitary waves. In the context of nematic liquid
crystals these solitary waves have been termed “nematicons”
�3�. Soft media such as nematic liquid crystals, as well as
being highly nonlinear, have the further important property
of being nonlocal, in that the response of the medium to the
light extends far beyond the waist of the light beam. This
nonlocality is vital in that solitary wave solutions of
�2+1�-dimensional nonlinear-Schrödinger- �NLS-� type
equations are normally unstable, undergoing catastrophic
collapse above an amplitude threshold �7�. Theoretical work
by Conti et al. �2� showed that nematicons are stable due to
their nonlocal interaction with the nematic. In addition the
nematicon equations are the same as those governing a ther-
moelastic waveguide. Kuznetsov and Rubenchik �8� showed
that solitary waves are stable in this additional context.

While the original work on nematicons considered the
propagation of a single soliton �2–4,9–11�, more recent work
has considered the interaction of two nematicons of the same
wavelength �color� �12� and two different wavelengths �col-
ors� �13�. It was shown numerically �12� and experimentally
�14� by Fratalocchi et al. for two interacting nematicons of
the same color that if the two beams have angular momen-

tum the attractive “force” due to the nematic can balance the
repulsive centrifugal “force,” so that a bound state can form
with the two self-trapped beams rotating about each other.
Moreover, the spin rate of the cluster can be controlled by
acting on the input power �15�. This interaction of two nem-
aticons of the same color, both in-phase and out-of-phase,
was studied theoretically by García-Reimbert et al. �16� us-
ing the averaged Lagrangian-based modulation theory devel-
oped by Minzoni et al. �17� for the evolution of a single
nematicon. This modulation theory had the advantage in that
it can take account of the diffractive radiation shed by a
nematicon as it evolves.

In previous work Skuse and Smyth �18� considered the
interaction of two-color nematicons in the local limit by us-
ing the averaged Lagrangian method of García-Reimbert et
al. �19,20�. In this limit catastrophic collapse is avoided due
to the nematicon equations reducing to a pair of saturating
NLS equations. Skuse and Smyth �18� were interested in the
case in which the two colors formed a bound state, a vector
nematicon. Due to the nonsymmetric optical parameters for
the two colors, momentum conservation gives that the vector
nematicon experiences walk-off. Here the term walk-off re-
fers to a diffraction effect rather than optical anisotropy, the
angular deviation of the Poynting vector from the wave vec-
tor. It is then the off-axis departure of each color �beam�
component as it undergoes a different amount of diffraction
while the system conserves linear and angular momentum.
Excellent agreement was found for this walk-off as given by
solutions of their modulation equations and by full numerical
solutions. It was further found that the inclusion of the effect
of the shed diffractive radiation was vital for this agreement.
Without the inclusion of this radiation, the modulation walk-
off differed from the numerical one by up to 30%, while
when the radiation was included the difference was no more
than 1%.
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In the present work the interaction of two different color
nematicons with angular momentum will be studied in the
highly nonlocal limit using the theoretical approach of Min-
zoni et al. �17� for a single nematicon. As for the local limit,
the inclusion of the shed diffractive radiation will be found to
be vital in order to obtain good agreement with full numeri-
cal solutions. However, the shed radiation is found to play
much less of a role in the nematicon evolution than in the
local limit case. Neglecting this radiation results in a de-
crease in agreement of around 5%, rather than the up to 30%
decrease found in the local limit.

II. APPROXIMATE EQUATIONS

Let us consider two polarized, coherent light beams of
two different wavelengths propagating through a cell filled
with a nematic liquid crystal, as illustrated in Fig. 1. The
light initially propagates in the z direction, with the �x ,y�
plane orthogonal to this. A static electric field is applied in
the x direction so that in the absence of light the optical

director is pre-tilted at an angle �̂ to the z direction. Both
input light beams are polarized with their electric fields in
the x direction. Then let u and v be the electric field enve-
lopes of the two light beams and � be the perturbation of the
optical director angle from its static value due to the light
beams. In nondimensional form these equations are

i
�u

�z
+

1

2
Du�

2u + Auu sin 2� = 0, �1�

i
�v
�z

+
1

2
Dv�

2v + Avv sin 2� = 0, �2�

��2� − q sin 2� = − 2�Au�u�2 + Av�v�2�cos 2� , �3�

see Alberucci et al. �13�. The Laplacian �2 is in the �x ,y�
plane. The coefficients Du and Dv are the diffraction coeffi-
cients for the two colors and Au and Av are the coupling
coefficients between the light and the nematic for the two
colors. The parameter � measures the elasticity of the nem-
atic and q is related to the energy of the static electric field
which pretilts the nematic �20�.

The usual operating regime for nematicon propagation is
the so-called nonlocal regime in which � is large �2,4�. In

this limit the reorientation of the nematic extends far past the
optical beam�s�, as measured by the waist�s� of the beam�s�.
Furthermore, in this limit, the deviation � of the director
from its equilibrium value is small, as can be seen from the
director Eq. �3�. So in the highly nonlocal limit the nematic
Eqs. �1�–�3� can be approximated by

i
�u

�z
+

1

2
Du�

2u + 2Auu� = 0, �4�

i
�v
�z

+
1

2
Dv�

2v + 2Avv� = 0, �5�

��2� − 2q� = − 2Au�u�2 − 2Av�v�2. �6�

These nonlocal two-color nematicon equations have the La-
grangian

L = i�u�uz − uuz
�� − Du��u�2 + 4Au��u�2 + i�v�vz − vvz

��

− Dv��v�2 + 4Av��v�2 − �����2 − 2q�2, �7�

where the superscript asterisk denotes the complex conju-
gate.

As in Minzoni et al. �17� and Skuse and Smyth �18� an
approximate solution of the highly nonlocal nematicon equa-
tions will be sought using appropriate trial functions in an
averaged Lagrangian. Solutions will then be sought using
self-similar trial functions of the form

u = auf��u/wu�ei�u + iguei�u,

v = avf��v/wv�ei�v + igvei�v,

� = �u„f��u/�u�…2 + �v„f��v/�v�…2, �8�

where

�u = ��x − �u�2 + �y − �u�2,

�v = ��x − �v�2 + �y − �v�2,

�u = 	u + Uu�x − �u� + Vu�y − �u� ,

�v = 	v + Uv�x − �v� + Vv�x − �v� . �9�

The electric field amplitudes au, av, widths wu, wv, nemati-
con positions ��u ,�u�, ��v ,�v�, velocities �Uu ,Vu�, �Uv ,Vv�,
phases 	u, 	v, shelf heights gu, gv and director pulse ampli-
tudes �u, �v and widths �u, �v are functions of z. The first
terms in the trial functions �8� for u and v are varying soli-
tary waves, while the second terms represent the diffractive
radiation of low wave number which accumulates under the
evolving nematicons �17,21�. This shed radiation cannot re-
main flat, so it is assumed that gu�gv� is nonzero in the disk
0
��x−�u�2+ �y−�u�2
Ru �0
��x−�v�2+ �y−�v�2
Rv�
�17,21�. In the case of the �1+1�-dimensional NLS equation
the existence of this shelf of low wave number radiation
under the pulse can be shown using inverse scattering �21�.

The most widely used self-similar profiles f are a Gauss-
ian �2� and a sech �17,18�. A sech profile is the same as that
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FIG. 1. �Color online� Schematic diagram of a liquid crystal cell
with two polarized light beams of different colors.
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for the soliton solution of the one-dimensional NLS equa-
tion. On the other hand, it was shown by Conti et al. �2� that
the numerically determined two-dimensional nematicon so-
lution has a Gaussian profile near its peak and its tail decays
as the Bessel function K0, due to circular symmetry. Hence a
sech is a better approximation away from the peak of a nem-
aticon, while a Gaussian is a better approximation around the
peak. In this regard it was found by Skuse and Smyth �18�
that in the limit of local interaction for � small the particular
choice of trial function made little difference to the final
results. Hence both the sech and Gaussian profiles

f�r� = sech r and f�r� = e−r2
�10�

will be considered here.
The trial functions �8� are now substituted into the La-

grangian �7� for the nematicon equations and the averaged
Lagrangian

L = �
−�

� �
−�

�

Ldxdy �11�

is calculated, from which the variational equations for the
nematicon parameters are derived. For the Gaussian trial
function all the required integrals can be evaluated. For the
sech trial function all integrals, except cross integrals of the
form

�
−�

� �
−�

�

��u�2dxdy , �12�

can be evaluated. As in García-Reimbert et al. �19� and Min-
zoni et al. �17� approximate values for such integrals can be
obtained using the idea of an “equivalent Gaussian,”
whereby in these integrals sech2�r /�� is replaced by the
Gaussian exp�−r2 / �A��2�and sech2�r /w� is replaced by the
Gaussian exp�−r2 / �Bw�2�. The scaling parameters A and B
are then calculated by matching the Taylor series of the in-
tegral �12� with the sech with the Taylor series with the
“equivalent Gaussians” in the highly nonlocal limit wu /�u
�1. The details are as in Minzoni et al. �17�, so that only the
final results will be given here.

Substituting the trial functions �8� into the Lagrangian �7�
then gives the averaged Lagrangian �11� as

L = − 2�I2au
2wu

2 + ugu
2��	u� − Uu�u� − Vu�u�� − 2I1auwu

2gu�

+ 2I1guwu
2au� + 4I1auguwuwu� − 2�I2av

2wv
2 + vgv

2��	v�

− Uv�v� − Vv�v�� − 2I1avwv
2gv� + 2I1gvwv

2av� + 4I1avgvwvwv�

− DuI22au
2 − DvI22av

2 − Du�I2au
2wu

2 + ugu
2��Uu

2 + Vu
2�

− Dv�I2av
2wv

2 + vgv
2��Uv

2 + Vv
2� − 4�I42�u

2 − 4�I42�v
2

− 2qI4�u
2�u

2 − 2qI4�v
2�v

2 + LI. �13�

The interaction component of the averaged Lagrangian is

LI = 2AuA2B2au
2wu

2��u�u
2Q1

−1 + �v�v
2Q2

−1e−�1�

+ 2AvA2B2av
2wv

2��v�v
2Q3

−1 + �u�u
2Q4

−1e−�2�

− 4��u�v�u
2�v

2Q5
−2�1 − �3�e−�3 − 2qA2�u�v�u

2�v
2Q5

−1e−�3.

�14�

Here

Q1 = A2�u
2 + B2wu

2, Q2 = A2�v
2 + B2wu

2,

Q3 = A2�v
2 + B2wv

2, Q4 = A2�u
2 + B2wv

2,

Q5 = �u
2 + �v

2, �1 =
�2

Q2
, �2 =

�2

Q4
, �3 =

�2

A2Q5
,

�2 = ��u − �v�2 + ��u − �v�2.

The integrals Ii, Iij are

A =
�2I2

�Ix32

,1 B = �2I2,1, I1 = �
0

�

xf�x�dx = 2C,
1

2
,

I2 = �
0

�

xf2�x�dx = ln 2,
1

4
,

I22 = �
0

�

x�f��x��2dx =
1

3
ln 2 +

1

6
,
1

2
, Ix32 = �

0

�

x3f2�x�dx

= 1.352301002 ¯ , I42 =
1

4
�

0

�

x� d

dx
f2�x�	2

dx =
2

15
ln 2

+
1

60
,
1

8
, �16�

where C is the Catalan constant C=0.915965594¯ �22�. The
first values of A, B and the integrals refer to the sech trial
function, while the second values refer to the Gaussian trial
function. There is no value given for Ix32 for the Gaussian
trial function as this integral is not needed. Finally

u =
1

2
Ru

2 and v =
1

2
Rv

2. �17�

Taking variations of the averaged Lagrangian �13� results
in the modulation equations

d

dz
�I2au

2wu
2 + ugu

2� = 0, �18�

I1
d

dz
�auwu

2� = ugu�	u� −
1

2
DuUu

2 −
1

2
DuVu

2	 , �19�

d�u

dz
= DuUu,

d�u

dz
= DuVu, �20�

I1
dgu

dz
=

1

2
DuI22auwu

−2 − AuA2B4auwu
2��u�u

2Q1
−2 + �v�v

2Q2
−2e−�1

− �v�v
2�2Q2

−3e−�1� , �21�

TWO-COLOR, NONLOCAL VECTOR SOLITARY WAVES ... PHYSICAL REVIEW A 78, 013832 �2008�

013832-3



I2�d	u

dz
−

1

2
DuUu

2 −
1

2
DuVu

2	
= − DuI22wu

−2 + AuA2B2��u�u
2�A2�u

2 + 2B2wu
2�Q1

−2

+ �v�v
2�A2�v

2 + 2B2wu
2�Q2

−2e−�1 − �vwu
2�v

2�2Q2
−3e−�1� ,

�22�

d

dz
��I2au

2wu
2 + ugu

2�Uu�

= − 2A2B2��u − �v��Au�vau
2wu

2�v
2Q2

−2e−�1

+ Av�uav
2wv

2�u
2Q4

−2e−�2� + 2q�u�v�u
2�v

2��u − �v�Q5
−2e−�3

+ 4�A−2�u�v�u
2�v

2��u − �v�Q5
−3�1 − �2Q5

−1�e−�3 �23�

d

dz
��I2au

2wu
2 + ugu

2�Vu�

= − 2A2B2��u − �v��Au�vau
2wu

2�v
2Q2

−2e−�1

+ Av�uav
2wv

2�u
2Q4

−2e−�2�

+ 2q�u�v�u
2�v

2��u − �v�Q5
−2e−�3

+ 4�A−2�u�v�u
2�v

2��u − �v�Q5
−3�1 − �2Q5

−1�e−�3

�24�

plus the algebraic equations

2�2�I42 + qI4�u
2��u

= A2B2�u
2�Auau

2wu
2Q1

−1 + Avav
2wv

2Q4
−1e−�2�

− qA2�v�u
2�v

2Q5
−1e−�3

− 2��v�u
2�v

2Q5
−2�1 − A−2�2Q5

−1�e−�3, �25�

qI4�u = A2B4�Auau
2wu

4Q1
−2 + Avav

2wv
4Q4

−2e−�2�

+ AvA4B2av
2wv

2�u
2�2Q4

−3e−�3 − 2��v�v
2Q5

−3��v
2 − �u

2

− ��v
2 − 3�u

2��2A−2Q5
−1 − A−4�u

2�4Q5
−2�e−�3

− q�v�v
2Q5

−2�A2�v
2 + �u

2�2Q5
−1�e−�3, �26�

for the nematicon parameters, together with symmetric equa-
tions for the v color. The modulation Eq. �18� is the equation
for conservation of mass and modulation Eqs. �23� and �24�
are the equations for conservation of the x and y momenta,
respectively. These conserved quantities are in the sense of
invariances of the Lagrangian �7� and do not all correspond
to these quantities in the context of optics. For instance, Eq.
�18� in the latter corresponds to conservation of power or
photon number.

The final quantities to determine are the shelf radii Ru and
Rv. In previous work on a single nematicon in the highly
nonlocal limit �2,17� these radii were determined by linear-
izing the modulation equations about their fixed point, which
resulted in a simple harmonic oscillator equation. The fre-
quency of this oscillator was then matched to the nematicon
frequency, which resulted in an expression for the shelf ra-
dius. While the same process could be performed for the
two-color nematicon equations, the number of equations

means that the resulting radii expressions are extremely com-
plicated. In experiments the diffraction coefficients Du and
Dv and the coupling coefficients Au and Av take similar val-
ues. For instance, for the experiments of Alberucci et al. �13�
the diffraction coefficients were 0.805 for red and 0.823 for
near-infrared light. To calculate the shelf radii, it is then
much simpler to take Du=Dv and Au=Av, in which case the
radius expression of Minzoni et al. �17� can be used, suitably
rescaled as this work had D=1 and A=1. These expressions
are given in the Appendix.

Nöther’s theorem applied to the Lagrangian �7� gives that
the nematicons satisfy the energy conservation equation

dH

dz
=

d

dz
�

−�

� �
−�

�

�Du��u�2 − 4Au��u�2 + Dv��v�2 − 4Av��v�2

+ �����2 + 2q�2�dxdy = 0. �27�

On substituting the trial functions �8� the final energy equa-
tion

dH

dz
=

d

dz
�DuI22au

2 + Du�I2au
2wu

2 + ugu
2��Uu

2 + Vu
2� + DvI22av

2

+ Dv�I2av
2wv

2 + vgv
2��Uv

2 + Vv
2�

− 2AuA2B2au
2wu

2��u�u
2Q1

−1 + �v�v
2Q2

−1e−�1�

− 2AvA2B2av
2wv

2��v�v
2Q3

−1 + �u�u
2Q4

−1e−�2�

+ 4�I42��u
2 + �v

2� + 2qI4��u
2�u

2 + �v
2�v

2�

+ 4��u�v�u
2�v

2Q5
−2�1 − A−2�2Q5

−1�e−�3

+ 2qA2�u�v�u
2�v

2Q5
−1e−�3� = 0 �28�

results. On making the symmetry assumption discussed
above, the fixed point of the modulation equations can then
be found from this energy equation and the relations deter-
mined by looking for the steady states of Eqs. �19� and �21�
and their v color equivalents. This fixed point will be re-
quired below, particularly in the calculation of radiation loss.

Adding the momentum Eqs. �23� and �24� to their v color
counterparts gives the equations for total momentum conser-
vation in the x and y directions as

d

dz
��I2au

2wu
2 + ugu

2�Uu + �I2av
2wv

2 + vgv
2�Uv� = 0 �29�

and

d

dz
��I2au

2wu
2 + ugu

2�Vu + �I2av
2wv

2 + vgv
2�Vv� = 0, �30�

respectively. Let us consider boundary conditions for which
the two nematicons form a bound state and denote these
boundary values by a subscript 0. Let us further assume that
the nematicons evolve to have the same position as z→�
and denote final steady state values by a hat superscript.
Then on noting mass conservation �18� and total momentum
conservation in the x and y directions and that gu0=gv0=0
and ĝu= ĝv=0, we have that the walk-off of the bound state
nematicon is given by
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�̂� = �̂u� = �̂v� =
DuDvPx0

I2�Dvau0
2 wu0

2 + Duav0
2 wv0

2 �
�31�

and

�̂� = �̂u� = �̂v� =
DuDvPy0

I2�Dvau0
2 wu0

2 + Duav0
2 wv0

2 �
, �32�

where

Px0 = I2au0
2 wu0

2 Uu0 + I2av0
2 wv0

2 Uv0 �33�

and

Py0 = I2au0
2 wu0

2 Vu0 + I2av0
2 wv0

2 Vv0 �34�

are the initial x and y momenta. Combining the two momen-
tum conservation expressions �31� and �32� gives the radial
walk-off of the vector nematicon as

�w� = ��̂�2 + �̂�2. �35�

III. KEPLER COORDINATES

The modulation Eqs. �18�–�26� for the u color and their
symmetric v counterparts consist of two basically indepen-
dent oscillations, one oscillation being an amplitude and
width oscillation in au�v�, wu�v� and gu�v�, and the other a
position and velocity oscillation in �u�v�, �u�v�, Uu�v�, and
Vu�v�. The position and velocity oscillation possesses a close
connection with the two body gravitational problem. This
can be more clearly seen by transforming the position and
velocity Eqs. �20�, �23�, and �24� and their symmetric v
equivalents to polar coordinates centered on the “center of
mass” of the two-color nematicons. This has the added ad-
vantage of making the position and velocity equations much
cleaner.

We define the “masses” Mu of the u color and Mv of the v
color as

Mu = I2au
2wu

2 + ugu
2 and Mv = I2av

2wv
2 + vgv

2. �36�

The positions of the two nematicons can be written in vector

form as ��u= ��u ,�u� for the u color and ��v= ��v ,�v� for the v
color. The polar coordinate system is then based on the “cen-
ter of mass” of the two-color nematicons

R� =
DvMu��u + DuMv��v

DvMu + DuMv
, �37�

with the relative displacement of the nematicons

�� = ��u − ��v. �38�

In this center-of-mass system, the distance from the center-
of-mass is � and the polar angle is �. The equations for the
position of the two-color nematicons are then the conserva-
tion of angular momentum equation

�2d�

dz
= L , �39�

where L is a constant and the radial equations

dR�

dz
= 0� �40�

and

d2�

dz2 − L2�−3 = −
DvMu + DuMv

MuMv

��

��
. �41�

The potential � is

� = − 2AuA2B2�vau
2wu

2�v
2Q2

−1e−�1

− 2AvA2B2�uav
2wv

2�u
2Q4

−1e−�2

+ 4��u�v�u
2�v

2Q5
−2�1 − A−2�2Q5

−1�e−�3

+ 2qA2�u�v�u
2�v

2Q5
−1e−�3. �42�

The potential �42� is attractive and the Hamiltonian has a
minimum, so that there exists a stable orbit for the two-color
nematicons. The position evolution of the two-color nemati-
cons then has an exact analogy with the classical two body
problem from Newtonian gravitation. However, for the two-
color nematicon interaction the potential is Gaussian, with a
rather involved form, rather than the inverse � potential of
gravitation.

IV. DIFFRACTIVE RADIATION LOSS

The modulation equations of the previous two sections are
not complete yet as the effect of the diffractive radiation shed
by the nematicons as they evolve has not yet been included.
As the amplitude of the shed radiation is much less than the
amplitude of the nematicons, this radiation is governed by
the linearized electric field equations

i
�u

�z
+

1

2r
Du

�

�r

r

�u

�r
� = 0,

i
�v
�z

+
1

2r
Dv

�

�r

r

�v
�r
� = 0, �43�

which are just the Schrödinger equation. This radiation prob-
lem has already been studied by García-Reimbert et al. �17�,
so that the details will not be repeated here. The final result is
that the mass conservation Eq. �18� and Eq. �21� for gu are
replaced by

d

dz
�I2au

2wu
2 + ugu

2� = − 2Du�ũu�u
2 �44�

and

I1
dgu

dz
=

1

2
DuI22auwu

−2 − AuA2B4auwu
2��u�u

2Q1
−2 + �v�v

2Q2
−2e−�1

− �v�v
2�2Q2

−3e−�1� − 2Du�ugu, �45�

respectively, where the loss coefficient �u is
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�u = −
�2�I1

2e�ũu

�
0

z

��u�z��ln��z − z��/̃u�

���
1

2
ln��z − z��/̃u��2

+
3�2

4
	2

+ �2ln��z − z��/̃u��2�−1 dz�

�z − z��
�46�

and

�u
2 =

1

̃u

�I2au
2wu

2 − I2âu
2ŵu

2 + ̃ugu
2� . �47�

The variable �u measures the difference between the mass of
the u color at z and its mass at the fixed point. The mass
equation for the v color and the equation for gv are obtained
by the obvious symmetric substitutions. Finally

̃u =
1

2
�7�u1/2�2, �u1/2 = �u sech−1�1/�2� . �48�

V. RESULTS

In this section solutions of the modulation Eqs. �19�, �20�,
�22�–�26�, �44�, and �45� and their symmetric v color coun-
terparts will be compared with full numerical solutions of the
two-color nematicon Eqs. �1�–�3�. The modulation equations
were solved using the standard fourth order Runge-Kutta
method. The full nematicon Eqs. �1�–�3� were solved using
the method described in Skuse and Smyth �18�, so this
method will not be described again here.

In deriving the modulation equations it was assumed that
the director angle � was small, so that sin 2� and cos 2�
could be approximated by the first terms in their Taylor se-
ries. It was found from numerical solutions that for this ap-
proximation to be valid, the nonlocality parameter � was
required to be O�100�, in which case ��0.1. In contrast, in
Minzoni et al. �17� for a single nematicon the small � ap-
proximation was valid for ��10, while for two-color nem-
aticons ��0.3−0.4 for �=10. The difference for two inter-
acting nematicons is that the nematicons are in fairly close
proximity and overlap to some extent, so that as the director
is forced by the sum of the powers of the two colors, as can
be seen from the director Eq. �3�, the forcing is increased
over a single nematicon. Now as � increases, � decreases.
Furthermore as � increases, the further apart the two colors
can be and still form a bound state due to nonlocality. So for
the examples of this section, the value �=500 was chosen,
which is at the upper end of the usual experimental range
from O�10�−O�100� �2�.

Let us first consider comparisons for the sech initial con-
dition. Figure 2 shows the walk-off comparison for the initial
values and parameters indicated. In this figure

�u = ��u
2 + �u

2�1/2 and �v = ��v
2 + �v

2�1/2, �49�

so that �u and �v measure the distances of the nematicons
from the axis, which is a measure of their walk-off �11�. It
can be seen that there is good agreement for the walk-off as

given by the full numerical and modulation solutions, par-
ticularly up to z=100. After this point, there is some period
difference between the solutions. Furthermore the modula-
tion solution settles to a more harmonic oscillation faster
than the numerical solution. Also shown in this figure is the
walk-off of the bound state given by Eq. �35�. This line
shows that the walk-off of the orbiting nematicons is given
nearly exactly by momentum conservation, so that there is
little momentum being shed in diffractive radiation, in agree-
ment with experimental reports �15�. This is in contrast to the
local limit for which momentum loss to radiation is signifi-
cant �18�. In Skuse and Smyth �18� a comparison was made
between the walk-off angle as given by the full numerical
and modulation solutions. In this local limit the nematicons
did not have angular momentum and their trajectories rapidly
settled to a straight line, making such a comparison possible.
However in the present nonlocal limit the nematicons remain
in an orbit about each other and do not settle to a straight
walk-off. Furthermore the numerical walk-off path is not har-
monic, even after z=400. Therefore it is not possible to make
a similar comparison here.

The comparison of Fig. 2 was for small angular velocities.
Figure 3 shows comparisons for much larger angular veloci-
ties. The walk-off comparison shown in Fig. 3�a� shows
similar good agreement between the numerical and modula-
tions solutions, again particularly up to z=100, with some
period difference for larger z. However for this example,
there is about a 5% difference between the momentum con-
servation trajectory �35� and the mean of the modulation
trajectories, showing that radiation loss is of some impor-
tance for higher angular velocities. The main difference be-
tween the results for small and relatively larger angular ve-
locities is shown in Fig. 3�b�, where an amplitude
comparison is shown. It can be seen that while there is agree-
ment in the means of the amplitude oscillation, the numerical
amplitude oscillation picks up a second frequency. This sec-
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FIG. 2. Radial positions of nematicons for the initial values
au=1.8, av=1.8, wu=3.0, wv=3.0, �u=1.0, �v=−1.0, �u=�v=0.0,
Uu=0.03, Uv=−0.01, Vu=0.03, Vv=−0.01 with �=500, q=2, Au

=1.0, Av=0.95, Du=1.0, Dv=0.98. Full numerical solution, u color
�—�; v color �— — — �; solution of modulation equations for u
color �· · ·�; v color �— · — · —�; momentum conservation result
�35� �¯ ·· ¯�.
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ond frequency was also noted by García-Reimbert et al. �16�
for the case of two interacting nematicons of one color. It is
due to the nematicons becoming elliptical in cross-section
due to the “high” angular velocity, the second frequency be-
ing the oscillation in the major and minor axes of the ellipse.
For the example shown in Fig. 3 the ratio of the minor to
major axis is about 0.7. For low angular velocities, the nem-
aticons remain circular and the second frequency is not seen.
As noted in García-Reimbert et al. �16� extending the trial
functions �8� to have an elliptical cross-section is not worth
the effort as it would make extended modulation equations
ever more extended, even if all the integrals could be com-
puted.

Similar comparisons could be made for the Gaussian trial
function. However, it was found that for the Gaussian trial
function, the small � approximation became valid only for
�=2000 and higher, which is above the usual experimental
range. This is in contrast to the local limit, in which case the
comparison between the modulation and full numerical solu-
tions was found to be nearly independent of the choice of

trial function �18�. For �=2000 and higher, the comparison
between the modulation and numerical solutions for the
Gaussian trial function is similar to that for the sech trial
function, so no results will be reported here.

VI. CONCLUSIONS

The interaction of two nematicons of different wave-
lengths �colors� has been considered in the highly nonlocal
limit. This interaction was analyzed using suitable trial func-
tions in an averaged Lagrangian formulation, resulting in
modulation equations for the nematicon parameters. These
modulation equations were shown to have a close connection
to the equations for the two body gravitational problem, but
with a potential that was Gaussian �and attractive�. Therefore
a vector nematicon solution consisting of the two nematicons
orbiting about each other exists, which was found to be
stable with respect to shed diffractive radiation. This is in
contrast to the opposite local limit, in which the diffractive
radiation was found to have a dominant role �18�. This de-
creasing effect of radiation as nonlocality increases is in
agreement with the work of Minzoni et al. �17� for the evo-
lution of single nematicons. The close connection between
the equations governing multicolored nematicons and gravi-
tation should allow further multicolored nematicon interac-
tions to be investigated. This is the subject of current inves-
tigations.
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APPENDIX: SHELF RADIUS

The shelf radii Ru and Rv are determined by linearizing
the modulation Eqs. �18�–�26� and their symmetric v coun-
terparts about their fixed point. After some algebra this re-
sults in the simple harmonic oscillator equation

d2gu

dz2 −
�u�̂u�

I1
2�ŵu

2 + 2âuŵu��
gu = 0 �A1�

and a similar equation for gv, where

�̂u� = 	̂u� −
1

2
DuÛu

2 −
1

2
DuV̂u

2, �A2�

� =
DuI22�

2 − AuA2B2ŵu
2�̂u

2��2�̂u + âuW1�

AuA2B2âuŵu�̂u�
, �A3�

� = 2A2�̂u�̂u
3 + ŵu�̂uW2� + 2B2ŵu

3�̂uW0, �A4�

W0 =
2q�I4 + A2/4�B2ŵu�̂u

2 + ��8I42 + 1�B2ŵu

2q�̂u�I4 + A2/4��2A2�̂u
2 − B2ŵu

2�
, �A5�

0

2

4

6

8

10

12

0 50 100 150 200 250 300

ρ u
,ρ

v

z

(a)

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

0 50 100 150 200 250 300

a u
,a

v

z

(b)

FIG. 3. Comparisons for the initial values au=1.8, av=1.8, wu

=3.0, wv=3.0, �u=1.0, �v=−1.0, �u=�v=0.0, Uu=0.1, Uv=−0.15,
Vu=0.1, Vv=−0.15 with �=500, q=2, Au=1.0, Av=0.95, Du=1.0,
Dv=0.98. Full numerical solution, u color �—�; v color �— — — �;
solution of modulation equations for u color �· · ·�; v color
�— · — · —�; �a� Radial postions, momentum conservation result
�35� �¯ ·· ¯�; �b� amplitudes.
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W1 =
4AuA2B4âuŵu

4

q�I4 + A2/4��2 , � = A2�̂u
2 + B2ŵu

2, �A6�

W2 =
8AuA4B4âu

2ŵu
3�̂u

q�I4 + A2/4��3 ��̂u − ŵuW0� , �A7�

� =
DuI22

2ŵu
2 �Q0 −

Q1 + Q2

�̂uŵu�̂u
	, Q0 = 1 −

2âu�

ŵu

, �A8�

Q1 = ŵu�̂u��̂u + âu�W1 + �W2�� , �A9�

Q2 = 2�̂uâu��A2�̂u
2 − B2ŵu

2���̂u − W0��−1. �A10�

As in Kath and Smyth �21� and Minzoni et al. �17�, the
frequency of the simple harmonic oscillator �A1� is then
matched to the nematicon oscillation frequency �̂u�, given by
Eq. �22� as

�̂u� = 2AuA2B2�̂uŵu
2�̂u

2�A2�̂u
2 − 2B2ŵu

2��I2�2�−1. �A11�

This results in

u = −
�̂u�I1

2ŵu�ŵu + 2âu��
�

. �A12�

The shelf radius Rv and v for the v color is found by sym-
metry.
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