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Nonlinear dynamics of optical absorption of intense beams
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On traversing materials with absorbing dyes, weak optical beams decay exponentially (a Beer profile), while
intense beams develop in time a profile that is spatially linear until at great depth it becomes spatially
exponential. This anomalous, deep penetration, due to photobleaching of surface layers, is important for heavy
dye loading and intense beams, for instance in photo-actuation. We address the problem of the evolution in
time from initial Beer’s Law to a finally deeply-penetrating optical profile in dyes. Our largely analytic solution
of the coupled, nonlinear, partial differential equations governing the spatiotemporal decay of the Poynting flux
and the nonlinear population dynamics of the photo-active molecules under intense irradiation has application

to optomechanical devices.
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Light absorption can optically switch the nematic phase of
liquid crystals to the disordered, isotropic state: rodlike dye
molecules transform from their linear trans to their bent cis
isomers and thereby disrupt the orientational order of their
nematic hosts. When such a host is part of a nematic elas-
tomer, then the solid responds with stresses [1] or huge
(several 100%) optically induced strains [2,3]. Optical actua-
tion offers advantages over electrical, thermal, and solvent
mediated response, being of large amplitude, easily revers-
ible, sensitive to polarization and susceptible to remote ap-
plication.

Two mysteries attend photoisomerization, seen for in-
stance in actuation. The first concerns the magnitude of bend
seen in photocantilevers [4]. In practice, the dye loading of
these materials is so large that the penetration depth d of the
intensity profile I(x)=I,e™¢ is significantly smaller than the
sample thickness w [5]. In this case only a thin surface layer
near the front of the cantilever contracts and the remaining
material resists bend. Despite this, significant bending is of-
ten observed. Nonlinear absorption at high light intensities,
where Beer’s law gives way to a linear and more penetrating
intensity profile [6,7], have been suggested to explain this
phenomenon [8,9]. The second mystery concerns the dy-
namical response, which is often initially slow and then pro-
ceeds quickly [10], especially in heavily dye-loaded systems.
It is this second mystery that we address here.

Dye dynamics is a rich and much-studied subject, espe-
cially in the nonlinear limit, for instance the reverse satura-
tion absorption (RSA) problem (see [11] and extensive ref-
erences therein). Systems of molecular levels participating in
absorption and decay are complex with a wide range of pro-
cesses often in the ns to ps range. We are interested in a
simpler aspect, namely the dynamics of a dye system char-
acterized by a ground state (t) and a next lowest level (c).
The t population is lost by photon absorption to an excited
intermediate state which decays quickly to c. The subsequent
c—t thermal or stimulated decays are relatively slow, taking
ms to minutes (depending on intensity in the stimulated
case), whence one ignores the dynamics of the intermediate
state and considers an effective two-level system. We show
that a largely analytic solution of the slow dynamics is
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thereby possible, allowing much insight as to how the ex-
cited state profile develops (the determinant of mechanical
response when isomerization accompanies the dye response).
We initially only consider purely thermal ¢ —t back transi-
tions (at rate 1/7). Experimentally this is often the case [12];
see also [7]. We deal with optically stimulated back reaction
at the end of the paper. These can modify our NL absorption
profiles, but we are not concerned here with the more subtle
RSA limit [11] where an excited state cross section can be
larger than that of the ground state, thereby acting as a useful
limiter of transmission of intense beams—indeed we are ex-
ploring the deeper penetration of beams due to bleaching.
However, the RSA limit (using light of different color) is
used to stimulate the recovery of photostrain; we return to it
elsewhere.

Ignoring optical back reaction, the spatial decay of the
Poynting flux of a light beam, I(x), is governed by

lldx =— yI'n(D)I = - nJd/d, (1)

where n, is the local number fraction of t-dye molecules and
depends on time ¢ and space x (through I). The Beer length
d=1/(»I") depends on the material parameters y (propor-
tional to the number density of chromophores and the energy
each t— c transition absorbs from the beam) and on I' which
determines the t— c transition rate as also seen in the dy-
namics of n;:

onddt=-TIn,+n. (2)

The c-number fraction is n,=1-n,. We reduce intensity by
the incident value to give Z(x)=1I(x)/I,. The combination
I,=1/(I'7) gives a characteristic intensity, a material constant
related to the t-photo response. If [ is reduced by I, then
a=1y/1; is a measure of how intense the incident beam is.
The above equations then reduce to effectively Eq. (31) of

[11]:
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dLlox=-nTld, on/ot=-[(1+aD)n—-1)7. (3)

At short times conversion has not yet proceeded and n,=1.
Then the first of (3) easily integrates to Beer’s Law
I(x,t~0)=e™4,

At long times (equilibrium) dn/dt=0 and thus
n;=1/(1+aZ). For weak beams (@~ 0) n;~1 and again (3)
gives Beer’s Law. At high intensities > 1, one has nonlin-
ear absorption [7]. Then n,~ 1/(aZ), at least before depths
such that the beam attenuates to Z~ 1/ a. Then in (3) one has
JdL/dx=-1/(ad) and hence Z=1-x/(ad) (for x< ad). The
intensity profile is initially linear until depths where n, rises
to being significantly greater than 1/« and absorption is then
important. The surface layer is in effect photobleached and
lets much light down to depths x>d; see [8,9] for discus-
sion, including of the role of optical back reaction. We con-
sider here for simplicity nonmesogenic dyes and thus avoid
dye rotation rather than cis formation as a route to bleaching
(see [13] for this possibility). With the equilibrium form of n,
inserted into the first part of (3), integration gives the non-
linear, equilibrium profile [6-9]:

In[Z(x)] + o[ Z(x) = 1] =—x/d. 4)

The long-time limit (=57 in practice) of our dynamical

profiles will display the linear rather than exponential

forms until depths much greater than d. The Mathematica

defined function ProductLog gives [8,9] the solution:
= iProductLog[ae(“‘x)].

We are concerned here with the dynamics of the transition
from Beer’s law initially to the above equilibrium profile for
intense beams. The absorbance A=In[1/Z(w,7)] is the
usual measured quantity and reflects the absorber number
in the optical path. Rearranging the first of Eq. (3) to
%% =-n(x,t)/d and integrating [ de and [(dx, one obtains
for all times and incident intensities [recall Z(0,7)=1 for all

t):

A(w,1) = gﬁt vl f ’ dxny(x,1), (5)

dwly

where 7, is the mean t-number fraction through the sample.
In the nonlinear limit, 7, is not independent of w and hence
n,/d is no longer a simple, material-dependent extinction co-
efficient.

The dynamics of A is often observed and analyzed as-
suming exponential behavior:

Aw, 1) = A(w,») + [A(w,0) — A(W’w)]e—l/(n:cr).

Note that A(w,0)=w/d exactly and that the nonlinear limit
of A(w,) is given by the ProductLog solution to Eq. (4) for
Z(w). However, this is not a solution to the differential Eq.
(3) and becomes a bad dynamical estimate for thick samples,
w>d, that are only traversed by intense beams because of
bleaching. The characteristic time 7, =7/(1+aZ) is shorter
than thermal times, but clearly Z(x) depends on position in
thick samples and there is a spectrum of times, 7(x), and the
overall response is not exponential. To solve the problem
exactly, use A(x,f)=-In(Z) as the variable. Denote partial

spatial and temporal derivatives of X by X’ and X, respec-
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FIG. 1. Intensity against reduced depth for reduced incident in-

tensities a=10 (dotted) and 30 (full) at reduced times ¢/ 7 marked.
Beer’s law obtains for any « at =0 (heavy line).

tively. Differentiating Eq. (5) with respect to ¢ and using Eq.
(3) for 7, under the integral yields

A= f" dx[1-(1+ aD)nJ/(7d).

0

Now use n,/d=A", A(0,)=0, and A'=-7"/Z:

TA=x/d_fxdx(1 +al) A’ (6)
0
= A+ra-1="-A+ael-1). ()

d T d

A final quadrature gives A(x,?):

A dA
t/T= e (8)
aXld—a—- A+ ae”

The initial absorption A(x,7=0)=x/d obtains from the van-
ishing of each side of (8), and is Beer’s Law. The limit
t/ 7—o0 in Eq. (8) is achieved when the denominator in the
integrand tends to zero, from which one obtains Eq. (4), that
is, the ProductLog solution.

Figure 1 shows Z(x,r)(=e A" for reduced intensity
Iy/1, against x for a set of times ¢. Initially at r=0, the profile
Z(x,0) is exponential, and at long times (r=57) the profile is
essentially linear out to x ~ ad=10d, then decays exponen-
tially. At intermediate times the profile first saturates
(bleaches) at small x, that is it approaches the initial part of
the equilibrium profile. Then as the surface layers let more
light through, the profile deeper down also approaches the
non-Beer form. For even higher incident intensity, a=30,
ultimate penetration is deeper and the approach to the
bleached state, as time advances, even sharper. A front of
bleaching propagates through the sample. Compare the two
graphs at a given x=5d. The more intense case, a=30, sees
a spatially more rapid achievement of the bleached state than
the a=10 case, and over times considerably shorter than 7,
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FIG. 2. Emergent reduced intensity Z=1(w)/I, against time at
reduced incident intensity /y//, and 30 for various reduced sample
thicknesses w/d.

as the approximate analysis suggested. For either «, the
emergent light is far in excess of any Beer expectation, the
rate of buildup which we now examine.

Although these curves of Fig. 1 are vital to understanding
the buildup (and possible decay) of optically induced curva-
ture in heavily dye-doped solid nematics, the intensity profile
is not in general directly observable. It is more feasible to
measure the dynamics of the buildup of intensity of the light
emerging at the back face x=w of a sample, Z(w,r). Figure 2
reveals Z(w,?) for various fixed thicknesses w, for two re-
duced incident intensities «. The initial (r=0) value is that
from Beer penetration, e ™. Finally, Z rises to the long-time,
bleached value Z(w,7> 1) shown at the corresponding x=w
in Fig. 1. The rise is naturally slower for thicker samples.
Such penetration dynamics has recently been seen [10].

Thick (w>d) beams give initially exponentially small
emergent fluxes that give way to large fluxes as the linear
profile is set up. Such data are accommodated in the usual
logarithmic way, here by dividing the absorbance by the
thickness which is not a material-dependent constant (an ex-
tinction) in this nonlinear limit. Figure 3 shows
A(w,1)/(w/d) for various fixed thicknesses w, for incident
intensities a=10,30.

The initial increase of intensity away from the Beer value
in Fig. 2 is Z(w,t=0)=—A(w,0)e A0 =_A(w,0)e™/
whereupon using (7) for A at r=0 where A=w/d, one ob-
tains for the initial slope

PHYSICAL REVIEW A 78, 013823 (2008)

w/d =10 20 30

0 [ . . . 1 . . . 1 . . . 1 . . . 1 . . . 7
0 0.2 0.4 0.6 0.8 /1 1.0

FIG. 3. Nonlinear extinction A(w,7)/(w/d) against time at re-
duced incident intensity /y//, and 30 for various reduced sample
thicknesses w/d. The dotted line is the asymptote for the w/d=30
dynamics.

Z(w,t=0) = a1 —e™")e™4, 9)

For intense beams (a> 1) on thick (w~ ad) samples, the
initial intensities at the back face on irradiating the front face
are small, I(w,O):e‘W’d. The rates of increase are also ini-

tially very small, T~ ae*/ 7, but then rise sharply with time,
see the example with a=30.

Two other processes are sometimes important in nonlinear
absorption, those of host absorption and of ¢ absorption, that
is, optically stimulated back reaction. Both are discussed in
detail in the nonlinear static case [9]. Moderate host absorp-
tion can be successfully divided out and plays a limited role.
Back reaction occurs if the t—c and ¢—t absorption lines
begin to overlap. This is sometimes the case and has the
effect of reducing deep penetration [7].

In Eq. (1), host absorption gives another term,
—I/d,, while depletion of the beam by dyes in their c state
gives —y.I'.n (I)1. Optical back reaction also affects the dy-
namics. An additional term +I" In, from the decay c—t acts
in Eq. (2) to replenish the t population. There is a character-
istic intensity I.=1/(I'.7) analogous to that of the t species,
and thus another measure 8=1,/1, of the incident beam in-
tensity. Now the coupled, nonlinear partial differential equa-
tions (3) become

Ll dx 1 1 I 1
A=~ Pl Uil LIS Sk e (10)
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m=(1+B7) -1+ (a+ B)I]n,. (11)

The changes, even if only one of these influences is intro-
duced at a time, add difficulty to the solution of the equa-
tions. Proceeding as before, one differentiates Eq. (10) with
respect to time and uses (11) to eliminate 7,. Where n, ap-
pears, it can be eliminated in favor of A’ by using Eq. (10)
again. Terms do not quite all integrate totally as in going
from (6) and (7) because Eq. (10) has additional new con-
stant terms. Spatially integrating gives

TA:—A+x/deff+ (a+18)(1_ 1)

S R | PR ST
+adc+dh+ﬁeff0x’ ()

where 1/d.=1/d+1/d, is an effective absorption length
arising from the simple combination of dye and host absorp-
tions in the Beer limit. It is interesting that although 8 (and
thus 1/d.) and 1/d,, enter Egs. (10) and (11) in entirely dif-
ferent ways, their effects can be scaled on to each other in
the resultant equation for dynamical nonlinear absorption
(12). Remember, however, that d. depends on dj, and so
lengths are not quite equivalently affected by this inter-
change of sources of extra absorption. We show just the ef-
fect of adding in optical back reaction into the dynamical
equations, that is 1/d,=0 and lengths are still reduced by d.
For a=10 and, say, 8=0.2, the Z(w,r)—t curves are indistin-
guishable from those in upper Fig. 2 which have 8=0. Fig-
ure 4 shows the behavior for S=2 which should be compared
with upper Fig. 2. The starting values are of course the same;
the final values are lower because S acts to lower the final
penetration. The upward curvature at short times is lost.
Thicker samples are much more drastically affected. In lig-
uid samples, diffusion of t and ¢ species in the concentration
gradient set up optically can occur over our relatively long
time scales; an additional diffusive term arises in Eq. (11).
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FIG. 4. Emergent reduced light intensity Z(w,7) against time for
various reduced sample thicknesses w/d. Reduced incident inten-
sity is a=1,/1,=10 with a relatively high degree of reduced optical
back reaction B=1,/1.=2.

We have shown that the dynamics of penetration of in-
tense light beams into heavily absorbing media is complex
and strongly dependent upon incident intensity. We reduced
to a simple quadrature the dynamics of the buildup of the
nonexponential intensity profile through a material contain-
ing absorbing dyes with concentration coupled to the inten-
sity. A practical experiment to observe this effect via the time
dependence of the emergent light from the sample is pro-
posed. There is evidence from large amplitude photomechan-
ics that nonlinear dynamical effects are important in practice.
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